
Computer Vision

Professor John Daugman

University of Cambridge

Computer Science Tripos, Part II
Lent Term 2017/18

1 / 212

Lecture Topics

1. Overview. Goals of computer vision; why they are so difficult.

2. Pixel arrays, CCD / CMOS image sensors, image coding.

3. Biological visual mechanisms, from retina to visual cortex.

4. Mathematical operations for extracting structure from images.

5. Edge detection operators; gradients; zero-crossings of Laplacian.

6. Multi-resolution. Active Contours. Wavelets as primitives; SIFT.

7. Higher brain visual mechanisms; streaming; reciprocal feedback.

8. Texture, colour, stereo, and motion descriptors. Disambiguation.

9. Lambertian and specular surface properties. Reflectance maps.

10. Shape description. Codons; superquadrics and surface geometry.

11. Perceptual organisation and cognition. Vision as model-building.

12. Lessons from neurological trauma and deficits. Visual illusions.

13. Bayesian inference. Classifiers; probabilistic decision-making.

14. Model estimation. Machine learning and statistical methods.

15. Optical character recognition. Content-based image retrieval.

16. Face detection, face recognition, and facial interpretation.

2 / 212

Aims of this course:

– to introduce the principles, models and applications of computer vision,
as well as some mechanisms used in biological visual systems that might
inspire design of artificial ones. At the end of the course you should:

I understand visual processing from both “bottom-up” (data oriented)
and “top-down” (goals oriented) perspectives;

I be able to decompose visual tasks into sequences of image analysis
operations, representations, algorithms, and inference principles;

I understand the roles of image transformations and their invariances;
I describe detection of features, edges, shapes, motion, and textures;
I describe some key aspects of how biological visual systems work;
I consider ways to try to implement biological visual strategies in

computer vision, despite the enormous differences in hardware;
I be able to analyse the robustness, brittleness, generalisability, and

performance of different approaches in computer vision;
I understand roles of machine learning in computer vision, including

probabilistic inference, discriminative and generative methods;
I understand in depth at least one major vision application domain,

such as face detection, recognition, or interpretation.

3 / 212

Online resources and recommended books

I CVonline: “Evolving, Distributed, Non-Proprietary, On-Line Compendium
of Computer Vision” (Univ. of Edinburgh; updated Aug. 2015; includes
many Wikipedia links): http://homepages.inf.ed.ac.uk/rbf/CVonline/

I Matlab Functions for Computer Vision and Image Processing (updated
July 2015): http://www.peterkovesi.com/matlabfns/index.html

I Annotated Computer Vision Bibliography (updated 1 Jan. 2016):
http://iris.usc.edu/Vision-Notes/bibliography/contents.html

I A collection of Written Exercises for this course (past Tripos Questions)
is provided on the course website, with weekly assignments. These will be
reviewed in a series of Examples Classes (within the lecture slots).

I A collection of Practical Exercises for this course developed by
C Richardt, T Baltrusaitis, and L Swirski is provided here:
http://www.cl.cam.ac.uk/~ls426/computervision/

- Forsyth, D.A. & Ponce, J. (2003). Computer Vision: A Modern Approach.
- Shapiro, L. & Stockman, G. (2001). Computer Vision. Prentice Hall.
- Duda, R.O., Hart, P.E., & Stork, D.G. (2001) Pattern Classification (2nd Ed).

4 / 212

http://homepages.inf.ed.ac.uk/rbf/CVonline/
http://www.peterkovesi.com/matlabfns/index.html
http://iris.usc.edu/Vision-Notes/bibliography/contents.html
http://www.cl.cam.ac.uk/~ls426/computervision/

1. Examples of computer vision applications and goals:

I automatic face recognition, and interpretation of facial expression

I tracking of persons and objects; pose estimation; gesture recognition

I object and pattern recognition; 3D scene reconstruction from images

I biometric-based visual determination of personal identity

I image search and content-based image retrieval; scene understanding

5 / 212

(some computer vision applications and goals, con’t)

I vision-based autonomous robots; driverless cars
I motion estimation; collision avoidance; depth and surface inference

6 / 212

(some computer vision applications and goals, con’t)

I 3D assessment of tissue and organs from non-invasive scanning

I automated medical image analysis, interpretation, and diagnosis

I neural/computer interface; interpretive prostheses for the blind

I optical character recognition (OCR): recognition of handwritten or
printed characters, words, or numbers; e.g. car registration plates

7 / 212

(some computer vision applications and goals, con’t)

I 3D reconstruction from radiological scans, and design of prostheses

8 / 212

(some computer vision applications and goals, con’t)

I robotic manufacturing: manipulation and assembly of parts

I agricultural robots: weeding, harvesting, and grading of produce

9 / 212

(some computer vision applications and goals, con’t)

I anomaly detection; event detection; automated surveillance and
security screening of passengers at airports

10 / 212

1(b). Why the goals of computer vision are so difficult

In many respects, computer vision is an “AI-complete” problem.
Building general-purpose vision machines would entail, or require,
solutions to most of the general goals of artificial intelligence:

I it would require finding ways of building flexible and robust visual
representations of the world;

I maintaining and updating them, with machine learning;

I and interfacing the representations with attention, goals and plans.

Like other problems in AI, the challenge of vision can be described in
terms of building a signal-to-symbol converter. The external world
presents itself only as physical signals on sensory surfaces (such as a
camera, retina, microphone...), which explicitly express very little of the
information required for intelligent understanding of the environment.

These signals must be converted ultimately into symbolic representations
whose manipulation allows the machine or organism to understand and to
interact intelligently with the world.

11 / 212

(Why the goals of computer vision are so difficult, con’t)

Although vision seems like such an effortless, immediate faculty for
humans and other animals, it has proven to be exceedingly difficult
to automate. Some of the reasons for this include the following:

1. An image is a two-dimensional optical projection, but the world we
wish to make sense of visually is three-dimensional. In this respect,
vision is “inverse optics:” we must invert the 3D → 2D projection in
order to recover world properties (object properties in space); but
the 3D ← 2D inversion of such a projection is, strictly speaking,
mathematically impossible: there is no unique solution.

In another respect, vision is “inverse graphics:” graphics begins with
a 3D world description (in terms of object and illuminant properties,
viewpoint, etc.), and “merely” computes the resulting 2D image,
with its occluded surfaces, shading, gradients, perspective, etc.
Vision has to perform exactly the inverse of this process!

A classic example in computer vision is face recognition. Humans
perform this task effortlessly, rapidly, reliably, and unconsciously.

12 / 212

(Why the goals of computer vision are so difficult, con’t)

(We don’t even know quite how we do it; like so many tasks for which our
neural resources are so formidable, we have little “cognitive penetrance”
or understanding of how we actually perform face recognition.) Consider
these three facial images (from Pawan Sinha, MIT, 2002):

Which two pictures show the same person?

Unlike humans, classical computer vision algorithms would select 1 and 2
as the same person, since those images are more similar than 1 and 3.

However, recently remarkable progress has been made towards achieving
good pose-invariant face recognition with Google’s “FaceNet”, based on
a convolutional neural network and “deep learning” from a huge database
of hundreds of millions of labelled example face images, in different poses.

13 / 212

(Why the goals of computer vision are so difficult, con’t)

2. Few visual tasks can be performed in a purely data-driven way
(“bottom-up” image analysis). Consider this image: the foxes are
well camouflaged by their textured backgrounds; the foxes occlude
each other; they appear in different poses, perspective angles; etc.

14 / 212

(Why the goals of computer vision are so difficult, con’t)

Extracting and magnifying the lower-left corner of the previous image
(capturing most of the body of the fourth fox, minus its head) illustrates
the impoverished limits of a purely “data-driven, bottom-up” approach.

I How can edge detection algorithms find and trace this fox’s outline?
Simple methods would meander, finding nonsense edges everywhere.

I Even for humans this is difficult. “Top-down” guidance based on the
entire image is needed, allowing the use of prior knowledge about
the nature of the world and of the things that may populate it.

I Model-driven vision can drive image parsing by setting expectations.
Maybe the three central foxes with their distinctive heads are critical.

15 / 212

(Why the goals of computer vision are so difficult, con’t)

The image of foxes was intentionally noisy, grainy, and monochromatic,
in order to highlight how remarkable is the fact that we (humans) can
easily process and understand the image despite such impoverished data.

How can there possibly exist mathematical operators for such an image
that can, despite its poor quality:

I perform the figure-ground segmentation of the scene (into its
objects, versus background clutter)

I infer the 3D arrangements of objects from their mutual occlusions

I infer surface properties (texture, colour) from the 2D image statistics

I infer volumetric object properties from their 2D image projections

I and do all of this in “real time?” (This matters quite a lot in the
natural world, “red in tooth and claw”, since survival depends on it.)

Here is a video demo showing that computer vision algorithms can infer
3D world models from 2D (single) images, and navigate within them:
http://www.youtube.com/watch?v=VuoljANz4EA .

16 / 212

http://www.youtube.com/watch?v=VuoljANz4EA

(Why the goals of computer vision are so difficult, con’t)

Consider now the actual image data of a face, shown as a pixel array with
greyscale value plotted as a function of (x,y) pixel coordinates. Can you
see the face in this image, or even segment the face from its background,
let alone recognise the face? In this format, the image reveals both the
complexity of the problem and the poverty of the signal data.

Consider now the actual image data of a face, shown as a pixel array
with luminance plotted as a function of (X,Y) pixel coordinates. Can you
see the face in this image, or even segment the face from its background,
let alone recognize the face? In this form, the image reveals both the
complexity of the problem and the poverty of the data.

17 / 212

(Why the goals of computer vision are so difficult, con’t)

This “counsel of despair” can be given a more formal statement:

3. Most of the problems in vision are ill-posed, in Hadamard’s sense
that a well-posed problem must have the following set of properties:

I its solution exists;

I its solution is unique;

I its solution depends continuously on the data.

Clearly, few of the tasks we need to solve in vision are well-posed
problems in Hadamard’s sense. Consider for example these tasks:

I inferring depth properties from an image

I inferring surface properties from image properties

I inferring colours in an illuminant-invariant manner

I inferring structure from motion, shading, texture, shadows, ...

18 / 212

(Why the goals of computer vision are so difficult, con’t)

I inferring a 3D shape unambiguously from a 2D line drawing:

I interpreting the mutual occlusions of objects, and stereo disparity
I recognising a 3D object regardless of its rotations about its three

axes in space (e.g. a chair seen from many different angles):
pose-invariant recognition

19 / 212

(Why the goals of computer vision are so difficult, con’t)

I understanding an object that has never been seen before:

This "counsel of despair" can be given a more formal statement:

Most of the problems we need to solve in vision are ill-posed, in Hadamard's
sense that a well-posed problem must have the following set of properties:

o its solution exists;

o its solution is unique;

o its solution depends continuously on the data.

Clearly, few of the tasks we need to solve in vision are well-posed problems in
Hadamard's sense. Consider for example the problems of:

o infering depth properties from an image

o infering surface properties from image properties

o infering colours in an illuminant-invariant manner

o infering structure from motion, shading, texture, shadows,

o interpreting the mutual occlusions of objects, and stereo disparity

o recognizing a 3D object regardless of its rotations about its three axes in
space (..S. a chair seen from many different angles)

understanding an object that has never been seen before

etc.

...but enough counsel of despair. Let us begin with understanding what
image array is.

o

o

,L
I

t

Ir
G

- -

t3
r f

(''

fr

For a chess-playing robot, the task of visually identifying an actual chess
piece in 3D (e.g. a knight, with pose-invariance and “design-invariance”)
is a much harder problem than playing chess! (The latter problem was
solved years ago, and chess-playing algorithms today perform at almost
superhuman skill levels; but the former problem remains barely solved.)

...but enough counsel of despair. Let us begin with understanding what
an image array is.

20 / 212

2. Pixel arrays, CCD / CMOS sensors, image coding

I CCD / CMOS cameras contains dense arrays of independent
sensors, which convert incident photons focused by the lens onto
each point into a charge proportional to the light energy there.

I The local charge is “coupled” (hence CCD) capacitively to allow a
voltage (V=Q/C) to be read out in a sequence scanning the array.
CMOS sensors are simpler, cheaper, and consume only about 1%
as much power as CCD sensors, which are more sensitive.

I The number of pixels (picture elements) ranges from a few 100,000
to many millions (e.g. 6 MegaPixel) in an imaging array that is
about 1 cm2 in size, so each pixel sensing element is only about
3 microns in width.

I The photon flux into such small catchment areas is a factor limiting
further increases in resolution by simply building denser imaging
arrays. Note also that 3 microns is only six times larger than the
wavelength of a photon of light in middle of the visible spectrum
(yellow ∼ 500 nanometers or nm), so quantum mechanics already
limits the further resolution possible in sensors sized about 1 cm2.

21 / 212

(Image sensing, pixel arrays, CCD cameras, con’t)

I Spatial resolution of the image is thus determined both by the
density of elements in the CCD array, and by the properties of the
lens which is forming the image: optical figure-of-merit.

I Luminance resolution (the number of distinguishable grey levels) is
determined by the number of bits per pixel resolved by the digitizer,
and by the inherent signal-to-noise ratio of the CCD array.

I Colour information arises (conceptually if not literally) from three
separate CCD arrays preceded by different colour filters, or mutually
embedded as Bayer subpopulations within a single CCD array:

22 / 212

Data in video streams

Composite video uses a high-frequency “chrominance burst” to encode
colour; or in S-video there are separate “luma” and “chroma” signals; or
there may be separate RGB colour channels. Colour information requires
much less resolution than luminance; some coding schemes exploit this.

A framegrabber or a strobed sampling block in a digital camera contains
a high-speed analogue-to-digital converter which discretises this video
signal into a byte stream, making a succession of frames.

Conventional video formats include NTSC (North American standard):
640×480 pixels, at 30 frames/second (actually there is an interlace of
alternate lines scanned out at 60 “fields” per second); and PAL
(European, UK standard): 768×576 pixels, at 25 frames/second.

Note what a vast flood of data is a video stream, even without HDTV:

768×576 pixels/frame × 25 frames/sec = 11 million pixels/sec. Each
pixel may be resolved to 8 bits in each of the three colour planes, hence
24×11 million = 264 million bits/sec. How can we possibly cope with
this data flux, let alone understand the objects and events it encodes?

23 / 212

Image formats and sampling theory

Images are represented as rectangular arrays of numbers (1 byte each),
sampling the image intensity at each pixel position. A colour image may
be represented in three separate such byte arrays called “colour planes”,
containing red, green, and blue components as monochromatic images.
An image with an oblique edge within it might include this array:

0 0 0 1 1 0
0 0 1 2 10 0
0 1 2 17 23 5
0 3 36 70 50 10
1 10 50 90 47 12

17 23 80 98 85 30

There are many different image formats used for storing and transmitting
images in compressed form, since raw images are large data structures
that contain much redundancy (e.g. correlations between nearby pixels)
and thus are highly compressible. Different formats are specialised for
compressibility, manipulability, or for properties of browsers or devices.

24 / 212

Examples of image formats and encodings

I .jpeg - for compression of continuous-tone and colour images, with
a controllable “quality factor”. Tiles of Discrete Cosine Transform
(DCT) coefficients are quantised, with frequency-dependent depth.

I .jpeg2000 - a superior version of .jpeg implemented with smooth
Daubechies wavelets to avoid block quantisation artifacts.

I .mpeg - a stream-oriented, compressive encoding scheme used
for video and multimedia. Individual image frames are .jpeg

compressed, but an equal amount of temporal redundancy is
removed by inter-frame predictive coding and interpolation.

I .gif - for sparse binarised images; 8-bit colour. Very compressive;
favoured for websites and other bandwidth-limited media.

I .png - using lossless compression, the portable network graphic
format supports 24-bit RGB.

I .tiff - A complex umbrella class of tagged image file formats.
Non-compressive; up to 24-bit colour; randomly embedded tags.

I .bmp - a non-compressive bit-mapped format in which individual
pixel values can easily be extracted. Non-compressive.

25 / 212

(Image formats and sampling theory, con’t)

I Various colour coordinates are used for “colour separation”, such as
HSI (Hue, Saturation, Intensity), or RGB, or CMY vector spaces.

I Regardless of the sensor properties and coding format, ultimately
the image data must be represented pixel by pixel. For compressed
formats, the image payload is actually in a (Fourier-like) transform
domain, and so to retrieve an array of numbers representing image
pixel values, essentially an inverse transform must be performed on
the compressive transform coefficients.

I Typically a monochromatic image is resolved to 8 bits/pixel. This
allows 256 different intensity values for each pixel, from black (0)
to white (255), with shades of grey in between.

I A full-colour image may be quantised to this depth in each of the
three colour planes, requiring a total of 24 bits per pixel. However,
it is common to represent colour more coarsely, or even to combine
luminance and chrominance information in such a way that their
total information is only 8 or 12 bits/pixel.

26 / 212

(Image formats and sampling theory, con’t)

I How much information does an image contain? Bit count does not
relate to optical properties, nor to frequency analysis.

I Nyquist’s Sampling Theorem says that the highest spatial frequency
component of information contained in an image equals one-half the
sampling density of the pixel array.

I Thus a pixel array with 640 columns can represent spatial frequency
components of image structure no higher than 320 cycles/image.

I Likewise, if image frames are sampled in time at 30 per second, then
the highest temporal frequency component of information contained
within a moving sequence is 15 Hertz.

I Increasingly, more complex sensors called RGB-D sensors capture
colour as well as depth information for purposes such as human
activity recognition, tracking, segmentation, and 3D reconstruction
from RGB-D data.

27 / 212

Using second-order pixel statistics to assist segmentation

I Low-level local statistical metrics can be useful for segmentation
(dividing an image into meaningful regions). For example, in the
NIR band (700nm – 900nm) used for iris imaging, it can be difficult
to detect the boundary between the eye’s sclera and the eyelid skin.

I But after computing pixel variance and mean in local (4×4) patches,
imaging their ratio sets the eyelid boundaries (eyelashes) “on FIRE”.
This helps with eye-finding because of the distinctive, iconic, orifice.

28 / 212

3. Biological visual mechanisms: retina to visual cortex

29 / 212

Low-level neurobiological mechanisms

I No artificial ‘general purpose’ vision system has yet been built.
I Natural vision systems abound. What can we learn from visual

neuroscience, despite the enormous differences in hardware?

30 / 212

Wetware

I Neurones are sluggish but richly interconnected cells having both
analogue and discrete aspects, with nonlinear, adaptive features.

I Fundamentally they consist of an enclosing membrane that can
separate electrical charge, so a voltage difference generally exists
between the inside and outside of a neurone.

I The membrane is a lipid bilayer that has a capacitance of about
10,000 µFarads/cm2, and it also has pores that are differentially
selective to different ions (mainly Na+, K+, and Cl−). Seawater
similarity: – L’homme vient de l’océan, son sang reste salé.

I These ion species cross the neural membrane through protein pores
acting as discrete conductances (hence as resistors).

I The resistors for Na+ and K+ have the further crucial property that
their resistance is not constant, but voltage-dependent.

I As more positive ions (Na+) flow into the neurone, the voltage
becomes more positive on the inside, and this further reduces the
membrane’s resistance to Na+, allowing still more to enter.

I This catastrophic breakdown in resistance to Na+ constitutes a
nerve impulse. Within about a msec a slower but opposite effect
involving K+ restores the original trans-membrane voltage.

31 / 212

(Wetware, con’t)

I After a refractory period of about 2 msec to restore electro-osmotic
equilibrium, the neurone is ready for action again.

I Nerve impulses propagate down axons at speeds of about 100 m/sec.

I Impulse signalling can be described as discrete, but the antecedent
summations of current flows into a neurone from other neurones at
synapses, triggering an impulse, are essentially analogue events.

I In general, neural activity is fundamentally asynchronous: there is no
master clock on whose edges utut the events occur.

I Impulse generation time prevents “clocking” faster than ∼ 300 Hz
(– about 10 million times slower than the 3 GHz clock in your PC.)

I Balanced against this sluggishness is massive inter-connectivity:

I Typically in brain tissue, there are about 105 neurones / mm3.

I Each has 103 − 104 synapses with other neurones within ∼ 3 cm.

I Thus brain tissue has about 3 kilometers of “wiring” per mm3 !

I Not possible to distinguish between processing and communications,
as we do in Computer Science. They are inseparable.

32 / 212

I Human brain has about 1011 neurones, making about 1015 synapses.
I About 2/3rds of the brain receives visual input; we are fundamentally

visual creatures. There are at least 30 different visual areas, with
reciprocal connections, of which the primary visual cortex in the
occipital lobe at the rear has been the most extensively studied.

33 / 212

The retina

I The mammalian eye is formed as an extruded ventricle of the brain.

I The retina is about 1 mm thick and it contains about 120 million
light-sensitive photoreceptors, of which only 6 million are cones
(with photopigments specialised for red, green, or blue wavelengths).
The rest are rods which do not discriminate in wavelength bands.

I The visible spectrum of light has wavelength range 400nm - 700nm.

I Rods are specialised for much lower light intensities. They subserve
our “night vision” (hence the absence of perceived colour at night),
and they pool their responses, at the cost of spatial resolution.

I Cones exist primarily near the fovea, in about the central 20◦ where
their responses are not pooled, giving much higher spatial resolution.

I As cones function only at higher light levels, we really have a dual
system with two barely overlapping sensitivity ranges.

I The total dynamic range of human vision (range of light intensities
that can be processed) is a staggering 1011 to 1. At the lowest level,
we can reliably “see” individual photons (i.e. reliably have a visual
sensation when at most a few photons reach the retina in a burst).

34 / 212

Distributions of photoreceptors
Visua l ax i s

Bl ind spot 40",

d

h 6
u t

C ' -

.s
.,u -o

e ? 1

. 0 x
: l t

(-

o-

0 . 2 0

0 . 1 B

0 . 1 6

0 . 1 4

0 . 1 2

0 . 1 0

0 .08

0 .06

0 .04

0 .02

0.00

t t

E
E

AJ
c

U

7

O
-o
E
z

180,000

r 60,000

140,000

120,000

100,000

80,000

60,000

40,000

20,000

0

400 440 480 520 560 600 640 680

Wavelength (nm)

70" 600 500 40" 30' 20' 100
Temporal on ret ina

200 300 400

Per imetr ic angle (deg)
35 / 212

Phototransduction and colour separation

I The most distal neurones in the retina are analogue devices.
I Photoreceptors do not generate impulses but respond to absorption

of photons by hyperpolarisation (increased trans-membrane voltage).
I This happens because in the photo-chemical isomerisation reaction,

11-cis-retinal + ~ν → all-trans-retinal, a carbon double-bond simply
flips from cis to trans, and this causes a pore to close to Na+ ions.

I As Na+ ions are actively pumped (the Na+ “dark current”), this
increased resistance causes an increased trans-membrane voltage.

I Voltage change is sensed synaptically by bipolar and horizontal cells.
I The three colour-selective classes of cones have cis-retinal embedded

in different opsin molecules. These quantum-mechanically affect the
probability of photon capture as a function of wavelength λ = c/ν.

Units: λ in nm (10−9m); ν in Hz (1/sec);

c = speed of light = 3 × 108 m/sec.
36 / 212

Photoreceptor sampling arrays

I Rods and cones are distributed across the retina in approximately
hexagonal lattices but with varying relative densities, depending on
eccentricity (distance from the fovea, measured in degrees of arc).

I The hexagonal lattices are imperfect (incoherent, not crystalline),
which helps to prevent aliasing of high resolution information.

37 / 212

Retina: not a sensor, but a part of the brain

I Far from acting as a camera, the retina is actually part of the brain.
I Note that there are 120 million photoreceptors, but only 1 million

“output channels” (the axons of the ganglion cells which constitute
the fibres of the optic nerve, sending coded impulses to the brain).

I Actual retinal cross-sections above (with flourescent dyes and stains)
reveal some of the complexity of retinal networks.

I Already at its first synapse, the retina is performing a lot of spatial
image processing, with temporal processing at the second synapse.

38 / 212

Lateral and longitudinal signal flows in the retina

I The retina is a multi-layered network, containing three nuclear layers
(of neurones) and two plexiform layers (synaptic interconnections).

I Paradoxically, the photoreceptors are at the rear, so light must first
travel through all of the rest of the retina before being absorbed.

I There are two orthogonal directions of signal flow in the retina:
longitudinal (photoreceptors → bipolar cells → ganglion cells); and
lateral (horizontal and amacrine cells, outer/inner plexiform layers).

39 / 212

Centre-surround opponent spatial processing in the retina

I Excitatory and inhibitory spatial structure creates a bandpass filter
I Such linear filters exist in both polarities: “on-centre” or “off-centre”

40 / 212

“See” your own retinal centre-surround operators!

I There actually are no dark circles at the intersections in this grid.
I But just move your eyes around the image, and you will see brief

round flashes of illusory darkness at those positions, thanks to
surround inhibition in the receptive fields of your retinal neurones.

41 / 212

Summary of image processing and coding in the retina

I Sampling by photoreceptor arrays, with pooling of signals from rods
I Both convergence (“fan-in”) and divergence (“fan-out”) of signals
I Spatial centre-surround comparisons implemented by bipolar cells

(direct central input from photoreceptors, minus surround inhibition
via horizontal cells, in an annular structure having either polarity)

I Temporal differentiation by amacrine cells, for motion detection
I Separate channels for sustained versus transient image information

by different classes of ganglion cells (parvo-cellular, magno-cellular)
I Initial colour separation by “opponent processing” mechanisms

(yellow versus blue; red versus green) sometimes also coupled with
a spatial centre-surround structure, termed “double opponency”

I Generation of nerve impulses in a parallel temporal modulation code,
transmitted down the 1 million optic nerve fibres leaving each eye

42 / 212

“Receptive field profile” as an image operator

I The visual area to which a neurone responds is its receptive field.

I The spatial profile of excitatory and inhibitory influences on a given
visual neurone determines its properties as a spatial image operator.

I Likewise for the temporal structure of neural responses.

I In both space and time, retinal neurones can be described as filters
whose response profiles are convolved with the visual input.

I To the extent that they act as linear devices (proportionality and
superposition of responses to components of stimuli), their behaviour
can be understood (and predicted for arbitrary images) through
Fourier analysis and the other tools of linear systems analysis.

I Visual neurones act as integro-differential image operators, with
specific scales and time constants, and may be direction-specific.

I An important aspect of retinal receptive fields – as distinct from
those found in most neurones of the visual cortex – is that their field
structure is quite isotropic (circularly symmetric), not oriented.

I New processing variables are introduced in the brain’s visual cortex.

43 / 212

Brain projections and visual cortical architecture

I The right and left visual fields project to different brain hemispheres.

44 / 212

Visual splitting and cortical projections

I You actually have two quasi-independent brains, not one.∗

I The optic nerve from each eye splits into two at the optic chiasm.

I The portion from the nasal half of each retina crosses over to project
only to the contralateral (opposite side) brain hemisphere.

I The optic nerve portion bearing signals from the temporal half of
each eye projects only to the ipsilateral (same side) brain hemisphere.

I Therefore the left-half of the visual world (relative to gaze fixation)
is directly seen only by the right brain, while the right-half of the
visual world is directly seen only by the left brain.

I It is not unreasonable to ask why we don’t see some kind of “seam”
going down the middle...

I Ultimately the two brain hemispheres share all of their information
via a massive connecting bundle of 500 million commissural fibres
called the corpus callosum.

∗
Commissurotomy, a radical surgical “last resort” for epilepsy patients in the 1960s, separated the

hemispheres and allowed two “minds” to exist. [C.E. Marks, Commissurotomy..., MIT Press, 1986.]

45 / 212

What is the thalamus doing with all that feedback?

I The projections to each visual cortex first pass to the 6-layered
lateral geniculate nucleus (LGN), in a polysensory organ of the
midbrain called the thalamus.

I It is an intriguing fact that this “relay station” actually receives
three times more descending (efferent) fibres projecting back down
from the cortex, as it gets ascending (afferent) fibres from the eyes.

I Could it be that this signal confluence compares cortical feedback
representing hypotheses about the visual scene, with the incoming
retinal data, in a kind of predictive coding or hypothesis testing
operation? We will return to this theory later.

I Several scientists have proposed that “vision is graphics” (i.e. what
we see is really our own internally generated 3D graphics, modelled
to fit the 2D retinal data, with the model testing and updating
occuring here in the thalamus via this cortical feedback loop).

46 / 212

Interweaving data from the two eyes for stereo vision

I The right-eye and left-eye innervations from each LGN to the
primary visual cortex in the occipital lobe of that hemisphere are
interwoven into “slabs,” or columns, in which neurones receive input
primarily from just one of the eyes. Right and left eyes alternate.

I These ocular dominance columns have a cycle of about 1 mm and
resemble fingerprints in scale and flow (see radiograph below).

I Clearly each hemisphere is trying to integrate together the signals
from both eyes in a way suitable for stereoscopic vision, computing
the relative retinal disparities of corresponding points in the images.

I The disparities reflect the relative positions of the points in depth,
as we will study later in stereo algorithms.

can be infered from the available retinal measurements r?()) without explic-

it ly knowing /()).

8.3 Stereo information

Important information about depth can be obtained from the use of two (ot

more) cameras, in the same way that humans achieve stereoscopic depth vision
by virtue of having two eyes. Objects in front or behind of the point in space at

which the two optical axes intersect (as determined by the angle between them,

which is controlled by camera movements or eye movementt), will project into

different relative parts of the two images. This is calle d stereoscopic disparity.

1234 B9 10 1 1 1213

Edge peaks in image L

This "error signal" becomes greater in proportion to the distance of the object

in front or behind the point of fixation, and so it can be calibrated to obtain
a depth cue. It also becomes greater with increased spacing between the two

eyes or cameras) since that is the "base of triangulation." (That is why the

German Army in WWI introduced V-shaped binocular "trench periscopes" to

increase stereoscopic visual acuity, for breaking camouflage by increasing the
effectiue spacing between the viewer's two eyes to almost a meter.)

The essence of making use of such stereoscopic disparity cues is the need to

solve the Correspondence Problem. In order to infer that the cylinder is in a

d i f fe rentp* ikgroundobjec ts in thetwof ramesshown,
it is first necessary to detect the correspondence of the background objects

in the two frames, or at least of their edges. This puts the two frames "into
registration," so that the disparity of the foreground object can be detected.

32

Edge peaks in image R

47 / 212

New tuning variable in visual cortex: orientation selectivity

I Orthogonally to the ocular dominance columns in the visual cortical
architecture, there runs a finer scale sequence of orientation columns.

I Neurones in each such column respond only to image structures
(such as bars or edges) in a certain preferred range of orientations.

I Their firing rates (plotted as nerve impulses per second) reveal their
selectivity for stimulus orientation: a “tuning curve”:

48 / 212

Origin of cortical orientation selectivity

I Orientation selectivity might arise from the alignment of isotropic
subunits in the LGN, summated together in their projection to the
primary visual cortex (V1). Both “on” and “off” polarities exist.

I Orientation columns form a regular sequence of systematically
changing preferred orientations. This sequence regularity is one of
the most crystalline properties seen in visual cortical architecture.

49 / 212

“Hypercolumns”

I A 3D block of about 100,000 cortical V1 neurones that includes one
“right/left” cycle of ocular dominance columns, and (orthogonally
organised) about ten orientation columns spanning 360◦ of their
preferred orientations in discrete steps, is called a “hypercolumn”.

I In the third dimension going down, there are six layers in which
neurones vary mainly in the sizes of their receptive fields.

I This block occupies approximately 2 mm3 of cortical tissue, and it
contains the “neural machinery” to process about a 1◦ patch in the
foveal area of visual space, or about a 6◦ patch in the periphery.

50 / 212

Quadrature phase relationships among paired V1 neurones

I Recording from adjacent pairs of neurones simultaneously, using a
kind of “double-barrelled” micro-electrode, showed that neurones
with the same receptive field position, orientation preference, and
size, were often in quadrature phase (had a 90◦ spatial phase offset)
when responding to a drifting sinusoidal luminance grating.

Phase Relationships Between Adjacent Simple
Cells in the Visual Cortex

Abstract. Adjacent simple cells recorded and "isolated" simultaneously from the
same microelectrode placement were usually tuned to the same orientation and
spatial frequency. The reponses of the members of these "spatial frequency pairs"
to drifting sine-wave gratings were cross-correlated. Within the middle range of the
spatial frequency selectivity curves, the responses of the paired cells differed in
phase by approximately 90°. This phase relationship suggests that adjacent simple
cells tuned to the same spatial frequency and orientation represent paired sine and
cosine filters in terms oftheir processing ofafferent spatial inputs and truncated sine
and cosine filters in terms of the output of simple cells.

We have recorded from "pairs" of
adjacent simple cells in the visual cortex
of the cat. Recording situations in which
two distinct action potentials of decided-
ly different amplitude can be recorded
simultaneously from a single microelec-
trode occur infrequently. However,
these paired responses provide a unique
opportunity to determine how adjacent
visual neurons differ in the encoding of
such important characteristics as orien-
tation preference (1), spatial frequency

preference (2), and relative phase be-
tween pair members.

Initially we examined the records from
16 cell pairs. These were obtained in the
course of 24 recent experiments for
which the original purpose was to com-
pare the response of simple and complex
cells to drifting sine-wave and square-
wave gratings (3) and from a review of
the data tapes from other work on simple
cells from this laboratory (4). In four
cases,- one cell was simple and the other

complex; these pairs were not analyzed
further. In the remaining 12 cases both
pair members were simple cells. Within
each ofthese pairs, both cells were tuned
to the same orientation and direction
within 5° to 100 and to the same spatial
frequency within one-fourth octave. In
these cases, a cross-correlation of each
cell's response to drifting sine-wave grat-
ings afforded an opportunity to deter-
mine'the extent of spatial overlap of the
adjacent receptive fields as measured by
their difference in spatial "phase." In-
formation of this type has not previously
been reported for neurons in the visual
cortex nor, to our knowledge, for a pair
of adjacent neurons anywhere along the
visual pathways.

General methods of anesthesia, re-
cording, presentation of visual stimuli,
and evaluation of preferred spatial fre-
quency have been presented in detail
elsewhere (4). The criteria of Hubel and
Wiesel (1) have been used for the identi-
fication of simple cells. Cross-correla-
tion techniques were used to define the

0.22 cycle/deg

A
2 s --E -

£bEn-L~~~~~~~~~~~~~~~~~~~~~~~~

0.31 cycle/dog

B

JAAAAAF~~~~~~~~~~

0.52 cycle/deg

I 60 spikes
per second

0.62 cycle/ deg
E

F
0.88 cycle/deg

rJ-A kJL. J'LN

(

C 0.44 cycle/deg

I f, ti
secodI

1 second

Fig. 1. Responses of two adjacent simple cells to six different spatial frequencies recorded simultaneously from the same microelectrode
placement. The upper tracings in each section represent the responses of one cell, and the lower set represents the responses of the other. The
calibration in (D) applies to (A) to (C) and (F) as well.

150 spikes
per second

Az!!L,i Jmr-nfi-.

SCIENCE, VOL. 212,19 JUNE 1981 0036-8075/81/0619-1409$00.50/0 Copyright 0 1981 AAAS 1409

-rri

 o
n

Ja
nu

ar
y

12
, 2

01
7

ht
tp

://
sc

ie
nc

e.
sc

ie
nc

em
ag

.o
rg

/
D

ow
nl

oa
de

d
fr

om

51 / 212

Summary of spatial image encoding in primary visual cortex

I There seem to be five main “degrees of freedom” in the spatial
structure of cortical receptive field profiles: position in visual space
(two coordinates), orientation preference, receptive field size, and
phase (even or odd symmetry).

I These parameters can be infered from the boundaries between the
excitatory and inhibitory regions, usually either bipartite or tripartite.

I Plotting how much a neurone is excited or inhibited by light as a
detailed function of stimulus coordinates within its receptive field,
extracts its 2D receptive field profile.

I For about 97% of such neurones studied, these receptive field
profiles could be well described as 2D Gabor wavelets (or phasors).

I In the next slide, several examples of empirically measured profiles
are shown in the top row; an ideal theoretical form of each such 2D
Gabor wavelet (to be defined later) is shown in the middle row; and
the difference between these two functions in the bottom row.

I The differences are statistically insignificant. So, it seems the brain’s
visual cortex discovered during its evolution the valuable properties
of such 2D wavelets for purposes of image coding and analysis!

52 / 212

Cortical encoding of image structure by 2D Gabor wavelets

2D Receptive Field Profiles

Fitted 2D Gabor Phasors

Residuals

53 / 212

Historical comment

The discoveries about neurobiological mechanisms summarised above
relate to six Nobel prizes won in the latter half of the 20th century:

George Wald discovered the basic photochemical reaction underlying
visual transduction: 11-cis-retinal + ~ν → all-trans-retinal
and determined the absorption spectra of photoreceptors.

Alan Hodgkin discovered biophysical mechanisms of excitable neural
membranes and how nerve impulses are generated.

Andrew Huxley discovered biophysical mechanisms of excitable neural
membranes and how nerve impulses are generated.

David Hubel discovered the selectivity properties of visual neurones, and
functional architecture of the visual cortex.

Torsten Wiesel discovered the selectivity properties of visual neurones,
and functional architecture of the visual cortex.

Dennis Gabor discovered the uncertainty-minimising elementary functions
which we now call wavelets, and he invented the hologram.

54 / 212

4. Mathematical image operations

I Almost all image processing begins with (2D) convolutions of an
image with small kernel arrays designed for specific purposes.

I Examples include: edge detection, filtering, feature extraction,
motion detection, keypoint identification, texture classification,...

I Conceptual unity: convolution ⇔ filtering ⇔ Fourier operation

I Even differential operators, such as taking derivatives to find edges,
are implemented as convolutions with simple Fourier interpretations.

I Example: applying the Laplacian operator (sum of the image second
derivatives in the vertical and horizontal directions) is equivalent to
simply multiplying the Fourier transform of the image by an isotropic
paraboloid: it is just a type of high-pass filtering.

I Equivalence between convolutions and (computationally simpler)
Fourier domain operations make it faster to perform convolutions in
the Fourier domain if the kernel chosen for the purpose is larger than
(5× 5), because of the huge efficiency of the Fast Fourier Transform
(FFT) and the fact that convolution is replaced by multiplication.

55 / 212

The Fourier perspective on images

I It is therefore useful to regard an image as a superposition of many
2D Fourier components, which are complex exponential plane-waves
having the form: f (x , y) = e iπ(µx+νy) with complex coefficients.

I Their parameters (µ, ν) can be interpreted as 2D spatial frequency√
µ2 + ν2 and orientation tan−1(ν/µ) of the plane-wave.

I Adding together a conjugate pair of them makes a real-valued wave.
I Different images simply have different amplitudes (contrasts) and

phases associated with the same universal set of Fourier components.
I Convolutions (filtering operations) just manipulate those amplitudes

and phases, as a function of 2D spatial frequency and orientation.

56 / 212

Convolution Theorem for two-dimensional functions

Let function f (x , y) have 2D Fourier Transform (2DFT) F (µ, ν), and let
function g(x , y) have 2DFT G (µ, ν). The convolution of f (x , y) with
g(x , y), which is denoted f ∗ g , combines these two functions to generate
a third function h(x , y) whose value at location (x , y) is equal to the 2D
integral of the product of the functions f and g after one is flipped and
undergoes a relative shift by amount (x , y):

h(x , y) =

∫

α

∫

β

f (α, β)g(x − α, y − β) dα dβ

Thus, convolution is a way of combining two functions, making all
possible relative shifts between them and integrating each such product.

The Convolution Theorem states that convolving two functions f (x , y)
and g(x , y) together (for us usually an image and a kernel) is equivalent
to just multiplying their two 2DFTs together in the 2D Fourier domain:

H(µ, ν) = F (µ, ν)G (µ, ν)

where H(µ, ν) is the 2DFT of the desired result h(x , y).

57 / 212

Utility of the 2D Convolution Theorem

I Nearly all feature extraction and image understanding operations
begin with applying some set of filters gk (x , y) to an image f (x , y),
which is a linear operation implemented by convolution of f (x , y)
with the filter kernels gk (x , y).

I The resulting output “image” hk (x , y) then is usually subjected to
non-linear operations of various kinds for analysis, segmentation,
pattern recognition, and object classification.

I The Convolution Theorem is extremely useful as it is much easier
simply to multiply two functions F (µ, ν) and G (µ, ν) together to
obtain H(µ, ν), than it is to explicitly convolve f (x , y) and g(x , y)
together (if the kernel is larger than about 5 x 5) to obtain h(x , y).

I Of course, exploiting the Convolution Theorem means going into the
2D Fourier Domain first and computing the 2DFT’s of f (x , y) and
g(x , y), and then performing yet another (inverse) Fourier transform
in order to recover h(x , y) from the resulting H(µ, ν). But with the
powerful 2D-FFT algorithm, this is very efficient. Moreover, the
2DFTs of the filter kernels gk (x , y) are usually known in advance.

58 / 212

Pseudo-code for explicit image convolution with a kernel

The discrete convolution of an image array with a 2D filter kernel can be
represented algebraically as follows, where the continuous integrals are
replaced by discrete summations (with array boundary issues ignored).
Note that there are four nested for-loops:

result(i , j) =
∑

m

∑

n

kernel(m, n)· image(i −m, j − n)

(inverse) FFT in order to recover h(x, y) from the resulting H(µ, ν). But
with available powerful and fast 2D-FFT algorithms, this is very efficient.

Practical Application: Filtering. The starting-point of all feature extrac-
tion and image understanding operations is the filtering of an image f(x, y)
with some set of filters gk(x, y). Filtering is a linear operation implemented
by the convolution of an image f(x, y) with filter kernel(s) gk(x, y). The
resulting output “image” hk(x, y) then normally undergoes non-linear op-
erations of various kinds for image segmentation, motion detection, tex-
ture analysis, pattern recognition, and object classification.

The 2D discrete convolution of an image array with a 2D filter kernel
can be represented algebraically in the following form, where the earlier
continuous integrals have now been replaced by discrete summations:

result(i, j) =
∑

m

∑

n
kernel(m,n)· image(i−m, j − n)

Simple pseudo-code for performing image convolutions

In the following simple example, the array image is being convolved with
the (typically much smaller) array kernel, in order to generate a new im-
age array result as the output of the convolution. (Problems with array
boundaries have been ignored here for simplicity.) Discrete convolution
such as illustrated here is the key operation for all image processing and
front-end stages of computer vision.

int i, j, m, n, sum, image[iend][jend],

kernel[mend][nend], result [iend][jend];

for (i = mend; i < iend; i++) {

for (j = nend; j < jend; j++) {

sum = 0;

for (m = 0; m < mend; m++) {

for (n = 0; n < nend; n++) {

sum += kernel[m][n] * image[i-m][j-n];

}

}

result[i][j] = sum/(mend*nend);

}

}

If we chose to implement the convolution in the Fourier domain because
the kernel array was large, then of the four nested for loops in the C code

26

59 / 212

Comparative analysis of computational efficiency

I If we implement the convolution in the Fourier domain because the
kernel array was large, then of the four nested for loops, the inner
two for loops would be entirely eliminated.

I Instead, the only operation inside the outer two for loops would be:

Result[i][j] = Kernel[i][j] * Image[i][j];

I ...but first we need FFTs of the kernel (trivial) and of the image.

I Since the complexity of a 2D FFT is on the order of n2 log2(n)
where n2 is the number of pixels, plus n2 multiplications in the two
nested for loops, the total complexity of the 2D Fourier approach is
n2(2 log2(n) + 1).

I In contrast, the number of multiplications for explicit convolution is
iend*jend*mend*nend (note that iend*jend = n2).

I Hence you can calculate that the trade-off point occurs when the
convolution kernel size mend*nend is about ≈ 2(log2(n) + 1): a very
small convolution kernel indeed, roughly 5 x 5 for a 512 x 512 image.

I For convolutions larger than this, the 2D Fourier approach is faster.

60 / 212

Differentiation Theorem

Computing derivatives of an image f (x , y) is equivalent to multiplying its
2DFT, F (µ, ν), by the corresponding spatial frequency coordinate (× i)
raised to a power equal to the order of differentiation:

(
∂

∂x

)m (
∂

∂y

)n

f (x , y)
2DFT
=⇒ (iµ)m(iν)nF (µ, ν)

Thus calculus gets replaced by algebra, in the Fourier domain.

A particularly useful implication is that isotropic differentiation, which
treats all directions equally (and for which the lowest possible order of
differentiation is 2nd-order, known as the Laplacian operator ∇2) is
equivalent simply to multiplying the 2DFT of the image by a paraboloid:

∇2f (x , y) ≡
(
∂2

∂x2
+

∂2

∂y 2

)
f (x , y)

2DFT
=⇒ −(µ2 + ν2)F (µ, ν)

Practical Application: Multi-Resolution Edge Detection

61 / 212

5. Edge detection

Whether edges are straight, curved, or forming closed boundary contours,
they are very informative for several reasons:

I Edges demarcate the boundaries of objects, or of material properties.
I Objects have parts, which typically make edges where they join.
I The three-dimensional distribution of objects in a scene usually

generates occlusions of some objects by other objects, and these
form occlusion edges which reveal the geometry of the scene.

I Edges can be generated in more abstract domains than luminance.
For example, if some image property such as colour, or a textural
signature, or stereoscopic depth, suddenly changes, it constitutes
an “edge” which is very useful for that domain.

I Aligning edges is a way to solve the stereo correspondence problem.
I A correspondence problem exists also for frames displaced in time.
I Velocity fields, containing information about object trajectories, can

be organized and understood by the movements of edges. Motions
of objects generate velocity discontinuities at their boundaries.

In summary, DISCONTINUITIES = INFORMATION.
62 / 212

Differential operators for edge detection

Edges mark loci of sudden change, so a natural approach to detecting
them is to estimate (directional) derivatives across an image frame.

Recall the “Newton Quotient” defining the first derivative of f (x):

df (x)

dx
≡ lim

∆x→0

f (x + ∆x)− f (x)

∆x

or for a 2D function f (x , y) such as an image, its partial derivatives:

∂f (x , y)

∂x
≡ lim

∆x→0

f ([x + ∆x], y)− f (x , y)

∆x

∂f (x , y)

∂y
≡ lim

∆y→0

f (x , [y + ∆y])− f (x , y)

∆y

These let us define the gradient vector field ~∇f (x , y) over the image:

~∇f (x , y) ≡
(
∂f (x , y)

∂x
,
∂f (x , y)

∂y

)

63 / 212

Finite difference approximations as discrete derivatives

For a discrete image array f [n,m], clearly ∆x ,∆y are fixed at pixel size.

The discrete form of a first derivative is a finite difference which simply
subtracts adjacent values, by row or by column: f [n + 1,m]− f [n,m] or
f [n,m + 1]− f [n,m]. These generate entire new images.

Computing these new images can be achieved by the discrete convolution
of our image array f [n,m] with the first finite difference kernel [−1, 1]
(for vertical edges) or with [−1, 1]T (for horizontal edges). These kernels
should be regarded as arrays, either (1× 2) or (2× 1).

The next slide illustrates their effects on an actual greyscale image,
to pick out either the vertical or the horizontal edges. But note these
edge detectors are also polarity sensitive: they distinguish between a
“rightward edge” (say from dark to bright) versus a “leftward edge”
(bright to dark). We might prefer polarity-independent edge detection.

64 / 212

First finite difference operators for detecting edges

convolution with [−1, 1] ⇐= ORIGINAL =⇒ convolution with [−1, 1]T

Successive concatenations of first finite difference kernels generate the
discrete approximations to successively higher derivatives, as you might
expect: [−1,+2,−1], [−1,+3,−3,+1], [−1,+4,−6,+4,−1], etc.
But the higher derivatives become successively less useful because they
become increasingly noisy. Recall from the Differentiation Theorem that
they amount to high-pass filtering with successive powers of frequency,
thus greatly increasing the high-frequency noise.

65 / 212

Gradient vector field: both edge magnitude and direction

The gradient vector field over an image, as introduced earlier:

∇f (x , y) ≡
(
∂f

∂x
,
∂f

∂y

)

locally points in the direction of most rapid change of image intensity:

The gradient direction (orientation of an edge normal) is given by:

θ = tan−1

(
∂f

∂y
/
∂f

∂x

)

while the edge strength is given by the gradient magnitude:

‖∇f ‖ =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

66 / 212

Gradient magnitude

Gradient magnitude usefully both detects edges and shows their strength:

‖∇f ‖ =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

67 / 212

Problem with noise and clutter in edge detection

Unfortunately, object boundaries of interest are sometimes fragmented,
and can have spurious “clutter” edge points. These problems are not
solved, but traded-off, by applying a threshold to the gradient magnitude:

68 / 212

Humans perform better at image segmentation

69 / 212

Combining 2nd-order differential operators with smoothing

An alternative to the gradient vector field is a second-order differential
operator, combined with smoothing at a specific scale of analysis. An
example of a 2D kernel based on the second finite difference operator is:

-1 2 -1
-1 2 -1
-1 2 -1

Clearly, such an operator will detect edges only in a specific orientation.
It is integrating in the vertical direction, and taking a second derivative
horizontally. In comparison, an isotropic operator such as the Laplacian
(sum of 2nd derivatives in two orthogonal orientations) has no preferred
orientation; that is the meaning of isotropy. A discrete approximation to
the Laplacian operator ∇2 (no smoothing) in just a small (3 x 3) array is:

-1 -2 -1
-2 12 -2
-1 -2 -1

Notice how each of these simple (3 x 3) operators sums to zero when all
of their elements are combined together. Therefore they give no response
to uniform illumination, but respond only to actual image structure.

70 / 212

Scale-specific edge operator: Laplacian of a Gaussian

A popular second-order differential operator for detecting edges at a
specific scale of analysis, with a smoothing parameter σ, is ∇2Gσ(x , y):

For a parameterised Gaussian form Gσ(x , y) = 1
2πσ2 e−(x2+y 2)/2σ2

, we have

∇2Gσ(x , y) =

(
∂2

∂x2
+

∂2

∂y 2

)
Gσ(x , y) =

x2 + y 2 − 2σ2

2πσ6
e−(x2+y 2)/2σ2

71 / 212

Why specify a scale of analysis for edge detection?

I Edges in images are defined at different scales: some transitions in
brightness are gradual, others very crisp. Importantly, at different
scales of analysis, different edge structure emerges.

I Example: an image of a leopard that has been low-pass filtered
(or analyzed at a coarse scale) has edge outlines corresponding to
the overall form of its body.

I At a somewhat finer scale of analysis, image structure may be
dominated by the contours of its “spots.” At a still finer scale,
the relevant edge structure arises from the texture of its fur.

I In summary, non-redundant structure exists in images at different
scales of analysis (or if you prefer, in different frequency bands).

I The basic recipe for extracting edge information from images is to
use a multi-scale family of filters as the image convolution kernels.

I One approach is to apply a single filter to successively downsampled
copies of the original image. A Laplacian pyrammid thereby extracts
image structure in successive octave bands of spatial frequencies.

72 / 212

Different image structure at different scales of analysis

Video demonstration of edge information in the high spatial frequencies:
https://www.youtube.com/watch?v=2rDRAa14KdU

73 / 212

https://www.youtube.com/watch?v=2rDRAa14KdU

Concatenation of smoothing and differentiation steps

I In the 2D Fourier domain, as we have seen, the spectral consequence

of applying the Laplacian operator ∇2 ≡
(
∂2

∂x2 + ∂2

∂y 2

)
to an image is

to multiply the image spectrum by a paraboloid: (µ2 + ν2).

I Clearly this emphasizes the high frequencies at the expense of the
low frequencies, and it eliminates the “DC” component entirely
(hence the output image has average “brightness” of zero).

I Blurring the Laplacian by a Gaussian Gσ(x , y) of scale σ, simply
limits the high-frequency components. The 2DFT of a Gaussian is
also a Gaussian, with reciprocal dimension. The scale parameter σ
determines where the high-frequency cut-off occurs.

I The resulting bandwidth of a ∇2Gσ(x , y) filter is about 1.3 octaves,
regardless of what value for the scale parameter σ is used.

I The zero-crossings of the (zero-centred) output image correspond to
edge locations. Thus edges are detected with invariance to polarity.

I The relevance of Logan’s Theorem (richness of zero-crossings in
one-octave bandpass signals) is asserted in favour of ∇2Gσ(x , y),
although 1.3 octaves doesn’t quite satisfy the one-octave constraint.

74 / 212

(Concatenation of smoothing and differentiation, con’t)

I Note that by commutativity of linear operators, the order in which
these steps are applied to the image I (x , y) doesn’t matter. First
computing the Laplacian of the image, and then blurring the result
with the Gaussian, is equivalent to first convolving the image with
the Gaussian and then computing the Laplacian of the result:

Gσ(x , y) ∗ ∇2I (x , y) = ∇2 [Gσ(x , y) ∗ I (x , y)]

I Both of these sequences are equivalent to just convolving the image
once with a single filter kernel, namely the Laplacian of a Gaussian:[
∇2Gσ(x , y)

]
∗ I (x , y). Clearly this is the preferred implementation.

I The filter kernel ∇2Gσ(x , y) does bear a noteworthy resemblance to
those “on/off centre-surround” neural receptive field profiles:

75 / 212

Canny edge operator

A computationally more complex approach to edge detection was
developed by Canny, to avoid the spurious edge clutter seen earlier.
It is popular because it is better able to distinguish real edges that
correspond to actual object boundaries.

The Canny edge operator has five main steps (two discussed earlier):

1. Smooth the image with a Gaussian filter to reduce noise.

2. Compute the gradient vector field ~∇I (x , y) over the image.

3. Apply an “edge thinning” technique, non-maximum suppression,
to eliminate spurious edges. A given edge should be represented
by a single point, at which the gradient is maximal.

4. Apply a double threshold to the local gradient magnitude, resulting
in three classes of edge data, labelled strong, weak, or suppressed.
The threshold values are adaptively determined for a given image.

5. Impose a connectivity constraint: edges are “tracked” across the
image; edges that are weak and not connected to strong edges are
eliminated.

76 / 212

Cleaner results using the Canny edge detector

input image output edge map

The resulting edge map corresponds better to actual object boundaries,
and the computed edges are marked as only one pixel large.

77 / 212

6. Multiscale wavelets for image analysis; active contours

An effective method to extract, represent, and analyse image structure is
to compute its 2D Gabor wavelet coefficients.

I The 2D form of Gabor wavelets were originally proposed as a model
for the receptive field profiles of neurones in the brain’s visual cortex,
and for understanding their selectivity properties.

I These 2D wavelets are optimal for extracting the maximum possible
information about the orientation and modulation of image structure
(“what”), simultaneously with 2D position (“where”).

I The 2D Gabor filter family achieves the theoretical lower bound on
joint uncertainty over these variables in the Uncertainty Principle.

I These properties are particularly useful for texture analysis because
of the 2D spectral specificity of texture and its spatial variation.

I These wavelets are also used for motion detection, stereoscopic
vision, and in many sorts of visual pattern recognition.

I A large and growing literature now exists on the efficient use of this
image representation basis, and its applications in vision.

78 / 212

(2D Gabor wavelets, con’t)

Two-dimensional Gabor wavelets have the functional form:

f (x , y) = e−[(x−x0)2/α2+(y−y0)2/β2]e−i [u0(x−x0)+v0(y−y0)]

I (x0, y0) specify position in the image,
I (α, β) specify effective width and length,
I (u0, v0) specify modulation, of spatial frequency ω0 =

√
u2

0 + v 2
0 and

orientation θ0 = tan−1(v0/u0).
I You may recall that these were also the main degrees-of-freedom

describing neurones in cortical V1.
I (A further degree-of-freedom not included here is the relative

orientation of the elliptic Gaussian envelope, which creates
cross-terms in xy .)

The 2D Fourier transform F (u, v) of a 2D Gabor wavelet has exactly the
same functional form, with parameters just interchanged or inverted:

F (u, v) = e−[(u−u0)2α2+(v−v0)2β2]e−i [x0(u−u0)+y0(v−v0)]

79 / 212

(2D Gabor wavelets, con’t)

The real part of one member of the 2D Gabor wavelet family, centered at
the origin (x0, y0) = (0, 0) and with unity aspect ratio β/α = 1 is shown,
together with its 2D Fourier transform F (u, v). There are two peaks
because two complex exponentials are required to make a cosine wave,
which is the real part of modulation (couldn’t plot a 4D surface).

-0.5

 0

0.5

Positio
n in Degrees

-0.5

 0

0.5

Position in Degrees

 0
0.

5
1

Z

2D Gabor Wavelet: Real Part

-10

 0

10

Spatial Frequency (C
PD)

-10

 0

10
Spatial Frequency (CPD)

 0
0.

5
1

Z

2D Fourier Transform

80 / 212

(2D Gabor wavelets, con’t)

With parameterisation for dilation, rotation, and translation, such 2D
wavelets can form a complete and self-similar basis for representing and
analysing the structure in images.

Here are examples of a wavelet family codebook having five sizes, by
factors of two (thus spanning four octaves), six orientations in 30 degree
increments, and two phases, over a lattice of positions.

81 / 212

(2D Gabor wavelets, con’t)

Self-similarity is reflected in using a generating function. If we take
Ψ(x , y) to be some chosen generic 2D Gabor wavelet, then we can
generate from this one member, or “mother wavelet”, the self-similar
family of daughter wavelets through the generating function

Ψmpqθ(x , y) = 2−2mΨ(x ′, y ′)

where the substituted variables (x ′, y ′) incorporate dilations in size by
2−m, translations in position (p, q), and rotations through orientation θ:

x ′ = 2−m[x cos(θ) + y sin(θ)]− p

y ′ = 2−m[−x sin(θ) + y cos(θ)]− q

These properties of self-similarity can be exploited for constructing
efficient, compact, multiscale codes for image structure.

82 / 212

(2D Gabor wavelets, con’t)

The completeness of 2D Gabor wavelets as a basis for image analysis
can be shown by reconstructing a facial image from them, in stages.

Reconstruction of Lena: 25, 100, 500, and 10,000 Two-Dimensional Gabor Wavelets

83 / 212

A “philosophical” comment about Gabor wavelets

I Aristotle defined vision as “knowing what is where.” We have noted
the optimality of 2D Gabor wavelets for simultaneously extracting
structural (“what”) and positional (“where”) information.

I Thus if we share Aristotle’s goal for vision, then we cannot do better
than to base computer vision representations upon these wavelets.

I Perhaps this is why mammalian visual systems appear to have
evolved their use. Currently this is the standard model for how the
brain’s visual cortex represents the information in the retinal image.

I The 2D Gabor framework has also become ubiquitous in Computer
Vision, not only as the “front-end” representation but also as a
general toolkit for solving many practical problems. Thus we have
seen the migration of an idea from neurobiology into mainstream
engineering, mathematical computing, and artificial intelligence.

Number of Wavelets

116 216 original16 52

���������
	���
������
��������������� �!�!"$#%��&'��(%��&)�!*,+-��&/.0*1� 23��� �4#5&6#5(7�,8!����":9;+��$<$��=��4&'�
>@?BA CED:F�GIHKJMLON-PBHRQ3PBN�J7DBS�TUS�VXWYGID:Z�[6J�\
]@^�	`_a	��b�c^�d!e6fhg�i1jlk�monEpqkc� 	or7���
	ts4d ubvX�
	�uwk$d 	xr�d
i�d
^�	;u�i7s�kcuKy%uzd
	��@�
	te {5i�|%eB	xe�icj�d
^�	�m;k1}Kic�6y%uzd
	��!ea~l������m;k1}Kic�@_@k��c	�ub	4d
j/��|%s�d
��i�|%e�k1�
	X|�i1d,ic� d ^%ic�ci�|%k1u��Id ^��%e����,{�ubv���|���d ^%k1dt�-j/i���k��c�b�c	t|�j�k1�,��ubv���i1jom;kc}5i���_@k��c	tu�	�d
et����d��we�|�i1d,{5i�e e �b}�u�	�d i
s�k1uws4�%ubk1d 	�k�_a	��b�c^�d`fhg@}�v0k�e ���,{�ub	,{��
i1�:	ts4d �bic|0icj�d ^%	�m;kc}5i��`_@k��c	tu�	�d`~-�c�3ic|�d i�d ^�	,�b��k1�c	�����|0j�k�s�dt��k�j�k1�,�bu�v�i1j6r7�5k1u
_ak���	�ub	4d
e�������@�~ �������t� �~ ���h ^5kce�d i�}K	0s4ic|5eB�wr7	��
	tr��¡]@^�	¢_@k��c	�ub	4d£�~ �1¤ �be�d
^�	¥r7�%k1uh_@k��c	tu�	�d�icj3d
^�	¢_ak���	�ub	4d,~ � ����¦§ ~ � �!¨ �~ �c¤�© ��ª g�« ¬ �¥n­�zd
^���®�°¯ �~ ��� ¨ ���t� ¨ �~ ���6±:² �l_6	�stk1|³_h�
�zd
	µ´ § ��¨K�� ©�¶ �·� �,�¥��|³i1d
^�	���_6i��
r%e��I�c�b�c	�|�¸�¹�ºR»¼¯'½�» ±
k1|%r³k�monEp®�®�¾�t~ ��� ¨ ����� ¨B~ ���h ��d ^�	�ic{7d
����kcu�_a	��b�c^�d
e�j/ic��¸Od ^%k1d��,�b|����,�b¿�	�d ^�	�	�|�	t� ��v��b|À	tÁK�À¯'Â ± kc� 	�������	�|³}�v
f g � § ¸¼¨ �~ � � © ���)dÃs�kc|¢}5	�e ^�i$_h|�d ^%k1d �~ � �-�ÅÄ ¬3Æ ��ÇRÈ�É g�« ¬ ~ �c¤ ��_h^%	��
	�� g�« ¬ � § ~ � �!¨B~ �1¤�© �

ÊÌËYÍ
Î ÏÎ

ÐË
Ë Ñ

ÒoÓ�Ô�Õ�Ó%Ö

Õ�×

��������� 	�Â7
�ØÅ9!(7#K��&'��"1#¥¸O¹Ùº�»K¯�½l» ± �w�����
ÚcÚ%�!*�8�Û¢&�.%�,=Ü��#K�!�1�����
Ú�ÚK��#��
��Ý��#5&)"¡&/.��Ù<$�
��&�"$�ßÞà¹á½lâ¥ãåä¼.��³���
Ú�ÚK��#��E":9ßÞæ��#5&)"�º�»K¯�½l» ± �w�
�c�!.�����<��!*�+-��&�.³&�.%�X=z��#K�!�$�����
Ú�ÚK��#��¢�,ã�ç`"$&/.����
Ú�ÚK��#��$���!"$#%��&'��&�(7&)���$#
"$��&/.�"
��"1#K�1=lÚK� ":è��!�4&���"$#q":90��9!(7#¼�4&���"$#³¸é¹éº�»5¯'½�» ± ��#5&)"�&/.��¥��(%8���Ú%�c�!�
ê �£ë�ìÀº�»K¯�½l» ± ã

]@^%	�k1}Ki$�c	o	tÁ��%k$d
��i�|%ehk1ububi$_E�%e@d
i,r�	4y%|�	;d
^�	�ic{K	��!k$d
ic�
í7î
$º » ¯�½ » ±�ï ðKñ ê ¯/~ ��� ¨ �t��� ¨ ~ ����± ë ¯'ò ±

kce6j/icubu�i$_Ãet
l�c�b�c	t|ßk,e 	4d`�óicjIi�{7d �b��k1uR_@k��c	�ub	4d!eai1j-k,monEp��7d ^%	�ic{K	��!k$d i�� í î �
	�{��
	te 	�|�d!eakc|�i��Bd
^�ic��ic|%kcu5{%� ic�:	ts�d
��i�|�icj�k
j/��|%s�d
��i�|ß¸Xic|�d i�d ^%	�s4ubi�e 	tr�u��b|�	tkc�heB{%kc|¢i1j-�U¯�e 	�	�	xÁ5�Ã¯'ò ± k1|5r�y5�%��Â ± ���'� 	c�

ô¸�� í î ¯�¸ ± �å¸@��;�õ� âö g�÷ È fhg'~l���¥��_h��d ^éÞø�­¸h�� � ¯�ù ±
ú û¢ü�ýhþåÿ��-ü�ý������	�
����� ü�
�þ���þ��������	���¢ü�ýhþ
]@^�	�_@k��c	tu�	�d��
	�{��
	te 	�|�d
k1d �bic|­r7	xe s�� �b}5	xrE�b|Ed
^�	O{%� 	t���bic�5e�e 	ts�d
��i�|µ��k�vM}5	Ù	4¦¼	ts4d �b�c	tu�vM�%e 	trEj/ic�¢k���|�	Oj�kcs4	�d �!kcs����b|��%�
 ak�eB�ws�kcu�ubvc��d
^��behd
kce!���wehkcs!^%��	t�c	tr�}�v�k"�,|%	�ubv�r7	4j/i�� �,�b|���kXmonEp£e i�d
^%k$dÃ��dÃ��k$d!s!^�	te@d
^�	;j�kcs�	;����k1��	���|¢	xkcs!^�j/�
kc��	;icjlk
���wr7	tiÃeB	xÁ��%	�|%s�	c�I]@^%	�k���|�	ar7	4j/i�� ��k$d
��i�|;i1j%k3monEp��beIs�k1�
�
��	xr`i��7d�}�v�s4i�|%eB�wr7	t� �b|��@d ^%	�	�|�d �b�
	�_ak���	�ub	4d�|�	�d:_6i��!�okceIkÃeB�b|���u�	

84 / 212

Detection of facial features using quadrature wavelets

I An illustration of a practical application of such image operators is
in the automatic localisation of facial features.

I Interestingly, most facial features themselves can be captured using
only a handful of wavelets, since such features are (after all) just
localized undulations having certain positions, spatial frequencies,
orientation, and phases.

I By taking the modulus (sum of the squares of the real and imaginary
parts) of a facial image after convolving it with complex-valued 2D
Gabor wavelets, key facial features (eyes and mouth) are detected
readily; we may call this a quadrature demodulator neural network.
(Note that modulation here is in the x-direction only, for simplicity.)

g(x , y) =

∫

α

∫

β

e−((x−α)2+(y−β)2)/σ2

cos(ω(x − α)) I (α, β) dα dβ

h(x , y) =

∫

α

∫

β

e−((x−α)2+(y−β)2)/σ2

sin(ω(x − α)) I (α, β) dα dβ

A2(x , y) = g 2(x , y) + h2(x , y)

85 / 212

Quadrature demodulator neural networkQ,ttdrature Demodulator Network

2D Gabor
Phasor Modules

Proiected
< r r

Image I (r, y)

az@,y)

Q@,v)

A (x,y)

0 6,y)

86 / 212

Detection of facial features using quadrature wavelets

Left panel: original image. Right panel (clockwise from top left): real part after 2D Gabor wavelet

convolution; imaginary part; modulus; and modulus superimposed on the original (faint) image,

illustrating feature localisation.

87 / 212

Edge detection and selection constrained by shape models

I Integro-differential operators for edge detection can be constrained
so that they find only certain specified families of boundary shapes.

I By computing derivatives of contour integrals along shaped paths,
it is possible to find (say) only circular or parabolic boundary shapes.

88 / 212

Parameterised edge selection by voting; Hough transform

I The white boundaries isolated in the previous slide are the curves
whose parameters were found to maximise the blurred derivatives,
with respect to increasing radius, of contour (“path”) integrals:

arg max(r ,x0,y0)

∣∣∣∣Gσ(r) ∗ ∂

∂r

∮

r ,x0,y0

I (x , y)

2πr
ds

∣∣∣∣

I Voting schemes such as the Hough transform seek to find instances
of shapes, however imperfect, within a certain class of shapes.

I Parameters of curves (like the circles’ r , x0, y0 in the previous slide)
define an accumulator space for grouping together edge evidence.

I Edge evidence might be (qualifying) gradient magnitudes, or the
output of the Canny operator with its thinning/cleaning processes.

I For each edge pixel, increment all the compatible accumulator cells.

I The accumulator cell (like parameters r , x0, y0) for which the greatest
amount of edge evidence can be found, is the “winning” curve.

89 / 212

Active contours for boundary descriptors

I Detection of edges and object boundaries within images can be
combined with constraints that control some parameters of
admissibility, such as the shape of the contour or its “stiffness,”
or the scale of analysis that is being adopted.

I These ideas have greatly enriched the old subject of edge detection,
whilst also enabling the low-level operators we have considered so far
to be directly integrated with high-level goals about shape, such as
geometry, complexity, classification and smoothness, and also with
theory of evidence and data fusion.

I The image of the eye (next slide) contains three active contours:
two defining the inner and outer boundaries of the iris, and one
defining the boundary between the iris and the lower eyelid. These
must be accurately localised in order for the biometric technology of
iris recognition to work.

I Evidence about the local edge structure is integrated with certain
constraints on the boundary’s mathematical form, to get a “best fit”
that minimises some energy function or other “cost” function.

90 / 212

(Active contours for boundary descriptors, con’t)

Active contours are deformable yet constrained shape models.
The “snakes” in the box show radial edge gradients at the iris
boundaries, and active contour approximations (dotted curves).

91 / 212

(Active contours for boundary descriptors, con’t)

I Match a deformable model to an image, by “energy minimisation”

I Used for shape recognition, object tracking, and image segmentation

I A deformable spline (or “snake”) changes its shape under competing
forces: image forces that pull it towards certain object contours; and
internal forces (“stiffness”) that resist excessive deformations

I The trade-off between these forces is adjustable, and adaptable

I External energy reflects how poorly the snake is fitting a contour

I Internal energy reflects how much the snake is bent or stretched

I This sum of energies is minimised by methods like gradient descent,
simulated annealing, and partial differential equations (PDEs)

I Problems: numerical instability, and getting stuck in local minima

I With geodesic active contours (used in medical image computing),
contours may split and merge, depending on the detection of objects
in the image

Demonstration: https://www.youtube.com/watch?v=ceIddPk78yA

92 / 212

https://www.youtube.com/watch?v=ceIddPk78yA

Scale-Invariant Feature Transform (SIFT)

Goals and uses of SIFT:

I Object recognition with geometric invariance to transformations in
perspective, size (distance), position, and pose angle

I Object recognition with photometric invariance to changes in
imaging conditions like brightness, exposure, quality, wavelengths

I Matching corresponding parts of different images or objects
I “Stitching” overlapping images into a seamless panorama
I 3D scene understanding (despite clutter)
I Action recognition (what transformation has happened...)

93 / 212

(Scale-Invariant Feature Transform, con’t)

The goal is to estimate a homography: to find the rotation, translation,
and scale parameters that best relate the contents of two image frames.

Key idea: identifying keypoints that correspond in different images,
and discovering transformations that map them to each other.

I Various kinds of feature detectors can be used, but they should have
an orientation index and a scale index

I Classic approach of Lowe used extrema (maxima and minima) of
difference-of-Gaussian functions in scale space

I Build a Gaussian image pyramid in scale space by successively
smoothing (at octave blurring scales σi = σ02i) and resampling

I Dominant orientations of features, at various scales, are detected
and indexed by oriented edge detectors (e.g. gradient direction)

I Low contrast candidate points and edges are discarded

I The most stable keypoints are kept, indexed, and stored for
“learning” a library of objects or classes

94 / 212

(Scale-Invariant Feature Transform, con’t)

Examples of keypoints (difference-of-Gaussian extrema) detected in an
original image, of which 35% are discarded as low contrast or unstable.

95 / 212

(Scale-Invariant Feature Transform, con’t)

To find stable features invariant to scale, SIFT uses a scale-space approach.
Keypoints are detected by first finding scale-space extrema. This is achieved
by convolving the image with Gaussian filters at different scales of analysis
and differencing the resulting blurred images at neighbouring scales to find
local minima and maxima. Once these extrema (which correspond typically
to edges, corner points, and other places where informative changes occur in
image structure) have been extracted, their gradient direction is calculated by
estimating local derivatives in x and y, yielding a local direction of change.
From these estimates, an orientation histogram of directions can be assigned
to each local region, forming “keypoint descriptors.”

SIFT performs interpolation to localise candidate keypoints with sub-pixel
accuracy and discards keypoints with poor contrast or stability. In order to
achieve invariance to rotation, a keypoint descriptor based on local gradient
directions and magnitude is used. The descriptor is invariant to image rota-
tions since the bins of the orientation histograms are normalised relative to
the dominant gradient orientation in the vicinity of the keypoint.

43

For each local region (four are highlighted here), an orientation histogram
is constructed from the gradient directions as a keypoint descriptor.

96 / 212

(Scale-Invariant Feature Transform, con’t)

I The bins of the orientation histogram are normalised relative to the
dominant gradient direction in the region of each keypoint, so that
rotation-invariance is achieved

I Matching process resembles identification of fingerprints: compare
relative configurations of groups of minutiae (ridge terminations,
spurs, etc), but search across many relative scales as well

I The best candidate match for each keypoint is determined as its
nearest neighbour in a database of extracted keypoints, using the
Euclidean distance metric

I Algorithm: best-bin-first; heap-based priority queue for search order
I The probability of a match is computed as the ratio of that nearest

neighbour distance, to the second nearest (required ratio > 0.8)
I Searching for keys that agree on a particular model pose is based on

Hough Transform voting, to find clusters of features that vote for a
consistent pose

I SIFT does not account for any non-rigid deformations
I Matches are sought across a wide range of scales and positions;

30 degree orientation bin sizes; octave (factor of 2) changes in scale

97 / 212

Summary: philosophy and theology of the SIFT

The Doctrine of Suspicious Coincidences

When the recurrence of patterns just by chance is a highly

improbable explanation, it is unlikely to be a coincidence.
98 / 212

7. Parallel functional streams; reciprocal feedback

I Parallel functional streams exist in the brain, specialised for visual
subdomains such as form, colour, motion, and texture processing.

I There exist 30+ distinct, specialised visual brain areas. These can be
grouped broadly into “dorsal” and “ventral” hierarchies. A further
dichotomy may exist between “conscious” and “unconscious” vision.

99 / 212

(7. Parallel functional streams; reciprocal feedback, con’t)

I It is not unreasonable to ask how results from the division-of-labour
get reunified later. (E.g. analysing a bird in flight: how do its form,
colour, texture, and motion information get “put back together”?)

I Reciprocal pairwise connections exist between many such areas,
highlighted here by blue and red pairings of arrows.

See this 3D scan reconstruction of wiring bundles connecting diverse parts of the human brain:
www.bbc.co.uk/news/video_and_audio/must_see/40487049/the-most-detailed-scan-of-the-wiring-of-the-human-brain 100 / 212

www.bbc.co.uk/news/video_and_audio/must_see/40487049/the-most-detailed-scan-of-the-wiring-of-the-human-brain

Interactions between colour, motion, & texture streams?

It even works for cats: https://youtu.be/S4IHB3qK1KU
101 / 212

https://youtu.be/S4IHB3qK1KU

8a. Structure from texture

I Most surfaces are covered with texture, of one sort or another

I Texture is both an identifying feature, and a cue to surface shape

I If one can assume uniform statistics along the surface itself, then
textural foreshortening or stretching reveals 3D surface shape

I As implied by its root, linking it with (woven) textiles, texture is
defined by the existence of statistical correlations across the image

I From grasslands to textiles, the unifying notion is quasi-periodicity

I Variations from uniform periodicity reveal 3D shape, slant, distance

--- .- ._.-
c - ' . -

C- > -

c . _

. l - f
L I

102 / 212

(Structure from texture, con’t)

I Quasi-periodicity can be detected best by Fourier-related methods
I The eigenfunctions of Fourier analysis (complex exponentials) are

periodic, with a specific scale (frequency) and wavefront orientation
I Therefore they excel at detecting a correlation distance and direction
I They can estimate the “energy” within various quasi-periodicities

I Texture also supports figure/ground segmentation by dipole statistics
I The examples below can be segmented (into figure vs ground) either

by their first-order statistics (size of the texture elements), or by
their second-order statistics (dipole orientation)

t n I | | . , l:xture rs also a uselul cue to lmage segmentatlon by parslng tne I
local regions which are relatively homogeneous in their textural pr
Here are some illustrations:

'
z\]:iz:""i i: ""i:i=;"ig;'; F)' "'"2*?:;1;11;i"}ei"ffi*#riffin:ls*lffi
E;ii*:i$.rit"il

j.. ...\rl i: \'..
'
: I i. i.\\'i .:

'..,. ' - ; :li
. { - r \ r \ \ . 1 l s r . \ - . i - i . . r 1) \ \ \ \ \ \ \

. t l . ' . \ ') . \ l . i : - . r \
\ \ " ' \ ' - - -) \ : \ \ ' \ \ \

:l iil r \ri \'.\\.\r.1 i li ir i ii i:.. S.ii

a5**11vi;)ar\i
:i.\. \ i : ::i\W : .i:,i:ri:: :i ;i.:i ;

ii\\iNiiiiil,:ir:\
Nl\t$$rsrlNs\

can one measure something as ill-defined as a tttextural signature?t' '

ture, anyway?

rplied by the root of the word, which links it to textiles, texture is dr
re existence of certain statistical correlati,or?s across the image. T\es
most anything, from quasi-periodic undulations as one might see iXl

'series analysis, correlation, moments) and Fourier analysis. These
from the fact that the eigenfunctions of the Fourier transform, cor

'til/ lt
lirrtffi,rt

ES

ral
or in woven fabrics, to repetitive but

detection of quasi-periodicity is best
leep and multi-faceted links between

punctate features. l

done by Fourier methods . '.

many topics in statistics (ru

highly
scenes, such as woodlandr, grasslands,mountain ranges and othe

a diistinctive identifying \, have such properties which give them
,ture. The unifying notion in all of these exarsrples is quasi-periodici
;itiveness. of some features. i

nentials (sinusoids in quadrature), are of course periodic but also h

103 / 212

(Structure from texture, con’t)

I Images can be segmented into “figure” vs “ground” regions using
Gabor wavelets of varying frequencies and orientations

I The modulus of Gabor wavelet coefficients reveals texture energy
variation in those frequencies and orientations across the image

I This can be a strong basis for image segmentation (outlined regions)

104 / 212

(Structure from texture, con’t)

I Resolving textural spectra simultaneously with location information
is limited by the Heisenberg Uncertainty Principle, and this trade-off
is optimised by Gabor wavelets

I Texture segmentation using Gabor wavelets can be a basis for
extracting the shape of an object to recognise it. (Left image)

I Phase analysis of iris texture using Gabor wavelets is a powerful
basis for person identification. (Right image)

105 / 212

(Structure from texture, con’t)

Inferring depth from texture gradients can have real survival value...

106 / 212

8b. Colour information

Two compelling paradoxes are apparent in how humans process colour:
1. Perceived colours hardly depend on the wavelengths of illumination

(colour constancy), even with dramatic changes in the wavelengths
2. But the perceived colours depend greatly on the local context

The brown tile at the centre of the illuminated upper face of the cube,
and the orange tile at the centre of the shadowed front face, are actually
returning the same light to the eye (as is the tan tile lying in front)

107 / 212

(Colour information, con’t)

Colour is a nearly ubiquitous property of surfaces, and it is useful both for
object identification and for segmentation. But inferring colour properties
(“spectral reflectances”) of object surfaces from images seems impossible,
because generally we don’t know the spectrum of the illuminant.

I Let I (λ) be the wavelength composition of the illuminant
I Let O(λ) be the spectral reflectance of the object at some point

(the fraction of light scattered back as a function of wavelength λ)
I Let R(λ) be the actual wavelength mixture received by the camera at

the corresponding point in the image, say for (400nm < λ < 700nm)

Clearly, R(λ) = I (λ)O(λ). The problem is that we wish to infer the
“object colour” O(λ), but we only know R(λ), the mixture received.

To give the problem a slightly more formal presentation:

Let /()) represent the wavelength composition of the illuminant (i.e. the
amount of energy it contains as a function of wavelength), across the
visible spectrum from about 400 nanometers to 700 nm).

Let O()) represent the inherent spectral reflectance of the object at a
particular point: the fraction of incident light that is scattered back from
its surface there, &s a function of the incident light's wavelength).

Let n()) represent the actual wavelength mixture received by the camera
at the corresponding point in the image of the scene.

{00 ir pt 7-- ?bon,n ldo nnt

) ()) .

eflec
actu,

/ ()

solv

))c
al r
he,
ure
be

o
r(

()

:al
bh
SU

/ (

tr:
t l

)as

rly

t-)

l t

Iea

ibl

a \

L

:

)ec

, \) ,

m€

rsit

f:
\ / l

)OSS

C(

ct
la

\)

V€

p
()

l ())
tss
rR
can

lpo

c

)

R
(ir
)w
' € t

))

t)

)

n(
w
) /
L \ ,

,rly
Irtt

kr
SS

.I

rR

ear
lou
ly
lesr
rIIt

le
rk

CL
col
on.
un
fro

em is that we wish to infer the "object
function of wavelength, O())), but we

th mixture received by our sensor. So
ow could this problem of inferring O())

rbl
a
ng

,h

o
t)

h

op

a
'e

:t
av
CC

ne
tce

wa
ire
?

'h

]C

W

ir

prc
AS

ele
tlv

T]
ban

l l r

)d i
ed?

I@'

One simple idea that has been proposed is to try actually to measure /())
directly, by searching for highly specular (shiny, metallic, glassy) regions in an
image where the reflected light might be a fairly faithful copy of I()). This
might be a glint from someone's glasses or from a shiny doorknob. Then at
all other points in the image we need only to divide the n()) we receive there
by our other specular "measurement" of I (I), and we can then compute the

desired O()) across the image.

Clearly, this method has several weakness: (1) there may be no specular sur-

faces in the image; (2) those that there are may themselves affect somewhat

the wavelength composition that they reflect (..g. metals which have a brassy
colour); and (3) the method is neither robust nor stable, since global inferences
about scene interpretation depend critically upon uncertain measurements at

(what may b. just) a single tiny point in the image.

i)o(D

108 / 212

(Colour information, con’t)

An algorithm for computing O(λ) from R(λ) was proposed by Dr E Land
(founder of Polaroid Corporation). He named it the Retinex Algorithm
because he regarded it as based on biological vision (RETINa + cortEX).

It is a ratiometric algorithm:

1. Obtain the red/green/blue value (r , g , b) of each pixel in the image

2. Find the maximal values (rmax , gmax , bmax) across all the pixels

3. Assume that the scene contains some objects that reflect “all” the
red light, others that reflect “all” the green, and others “all” the blue

4. Assume that those are the origins of the values (rmax , gmax , bmax),
thereby providing an estimate of I (λ)

5. For each pixel, the measured values (r , g , b) are assumed to arise
from actual object spectral reflectance (r/rmax , g/gmax , b/bmax)

6. With this renormalisation, we have discounted the illuminant

7. Alternative variants of the Retinex exist which estimate O(λ) using
only local comparisons across colour boundaries, assuming only local
constancy of the illuminant spectral composition I (λ), rather than
relying on a global detection of (rmax , gmax , bmax)

109 / 212

(Colour information, con’t)

Colour assignments are very much a matter of calibration, and of making
assumptions. Many aspects of colour are “mental fictions”.

For example, why does perceptual colour space have a seamless, cyclic
topology (the “colour wheel”), with red fading into violet fading into
blue, when in wavelength terms that is moving in opposite directions
along a line (λ→ 700nm red) versus (blue 400nm ← λ)?

The next slide is a purely monochromatic (black-and-white) picture. But
you can cause it to explode into compelling colours by re-calibrating your
brain, using the subsequent false colour image (2 slides ahead):

1. Stare at the blue disk in the false colour image for about 10 seconds,
without moving your eyes. (Finger on key, ready to “flip back”)

2. Flip back to the monochromatic image, while continuing to fixate on
that same central point

3. As long as you don’t move your eyes, you should see very rich and
compelling and appropriate colours in the monochromatic image

4. The spell will be broken, your brain’s original calibration restored,
once you move your eyes

110 / 212

111 / 212

112 / 212

8c. Structure from stereo vision

An important source of information about the 3D structure of the
surrounding (near) visual world is stereo vision, using stereo algorithms

I Having 2 (or more) cameras, or 2 eyes, with a base of separation,
allows the capture of simultaneous images from different positions

I Such images have differences called stereoscopic disparity, which
depend on the 3D geometry of the scene, and on camera properties

I 3D depth information can be inferred by detecting those differences,
which requires solving the correspondence problem

113 / 212

(Structure from stereo vision, con’t)

Of course, alternative methods exist for estimating depth. For example,
the “Kinect” gaming device projects an infrared (IR, invisible) laser grid
into the scene, whose resulting pitch in the image sensed by an IR camera
is a cue to depth and shape, as we saw in discussing shape from texture.
Here we consider only depth computation from stereoscopic disparity.

I Solving the correspondence problem can require very large searches
for matching features under a large number of possible permutations

I We seek a relative registration which generates maximum correlation
between the two scenes acquired with the spatial offset, so that their
disparities can then be detected and measured

I The multi-scale image pyramid is helpful here

I It steers the search by a coarse-to-fine strategy to maximise its
efficiency, as only few features are needed for a coarse-scale match

I The permutation-matching space of possible corresponding points is
greatly attenuated, before refining the matches iteratively, ultimately
terminating with single-pixel precision matches

114 / 212

(Structure from stereo vision, con’t)

I If the optical axes of the 2 cameras converge at a point, then objects
in front or behind that point in space will project onto different parts
of the two images. This is sometimes called parallax

I The disparity becomes greater in proportion to the distance of the
object in front, or behind, the point of fixation

I Clearly it depends also on the convergence angle of the optical axes
I Even if the optical axes parallel each other (“converged at infinity”),

there will be disparity in the image projections of nearby objects
I Disparity also becomes greater with increased spacing between the

two cameras, as that is the base of triangulation

can be infered from the available retinal measurements r?()) without explic-

it ly knowing /()).

8.3 Stereo information

Important information about depth can be obtained from the use of two (ot

more) cameras, in the same way that humans achieve stereoscopic depth vision
by virtue of having two eyes. Objects in front or behind of the point in space at

which the two optical axes intersect (as determined by the angle between them,

which is controlled by camera movements or eye movementt), will project into

different relative parts of the two images. This is calle d stereoscopic disparity.

1234 B9 10 1 1 1213

Edge peaks in image L

This "error signal" becomes greater in proportion to the distance of the object

in front or behind the point of fixation, and so it can be calibrated to obtain
a depth cue. It also becomes greater with increased spacing between the two

eyes or cameras) since that is the "base of triangulation." (That is why the

German Army in WWI introduced V-shaped binocular "trench periscopes" to

increase stereoscopic visual acuity, for breaking camouflage by increasing the
effectiue spacing between the viewer's two eyes to almost a meter.)

The essence of making use of such stereoscopic disparity cues is the need to

solve the Correspondence Problem. In order to infer that the cylinder is in a

d i f fe rentp* ikgroundobjec ts in thetwof ramesshown,
it is first necessary to detect the correspondence of the background objects

in the two frames, or at least of their edges. This puts the two frames "into
registration," so that the disparity of the foreground object can be detected.

32

Edge peaks in image R

115 / 212

(Structure from stereo vision, con’t)

In the simplifying case that the optical axes are parallel, once the
correspondence problem has been solved, plane geometry enables
calculation of how the depth d of any given point depends on:

I camera focal length f

I base distance b between the optical centres of their lenses

I disparities (α, β) in the image projections of some object point (P)
in opposite directions relative to the optical axes, outwards

Note: P is “at infinity” if (α, β) = 0

Unfortunately, current algorithms for solving the Correspondence Problem
tend to require very large searches for matching features under a large number
of possible permutations. It is difficult to know which set of features in the two
frames to select for comparison in evaluating the degree of alignment, when
trying to find that relative registration which generates maximum correlation

between the two background scenes.

I(rocal
lensth)

d={b/ (c r+p)

Namely: d = fb/(α + β)

116 / 212

(Structure from stereo vision, con’t)

In World War I, stereo trench periscopes were used not only to peer
“safely” over the parapets, but by increasing the base of triangulation
(increasing the angle of the V-shape), to try to “break camouflage”.

Imagine the visual world of “hunter spiders” that have got eight eyes...
117 / 212

8d. Optical flow; detecting and estimating motion

I Optical flow is the apparent motion of objects in a visual scene
caused by relative motion between an observer and the scene.

I It assists scene understanding, segmentation, 3D object recognition,
stereo vision, navigation control, collision and obstacle avoidance.

I Motion estimation computes local motion vectors that describe the
transformation between frames in a video sequence. It is a variant
of the correspondence problem, illustrated by this vector field:

118 / 212

Information from motion vision

Few vision applications involve just static image frames. That is basically
vision “off-line;” – but the essence of an effective visual capability is its
real-time use in a dynamic environment. Among the challenges are:

I Need to infer 3D object trajectories from 2D image motion.
I Need to make local measurements of velocity, which may differ in

different image regions in complex scenes with many moving objects.
Thus, a velocity vector field needs to be assigned over an image.

I It may be necessary to assign more than one velocity vector to any
given local image region (as occurs in “motion transparency”).

I Need to disambiguate object motion from contour motion, so that
we can measure the velocity of an object regardless of its form.

I We may need to detect a coherent overall motion pattern across
many small objects or regions separated from each other in space.

I May need complex inferences about form and object identity, from
merely a few moving points. See classic Johansson demonstration of
easily identifiable human activity from just a few sparse points:
http://www.youtube.com/watch?v=r0kLC-pridI - even gender and age:
https://www.youtube.com/watch?v=4E3JdQcmIAg (- is he a Neanderthal?)

119 / 212

http://www.youtube.com/watch?v=r0kLC-pridI
https://www.youtube.com/watch?v=4E3JdQcmIAg

Main classes of motion detection and estimation models

I Intensity gradient models: Assume that the local time-derivative in
image intensities at a point is related to the local spatial gradient in
I (x , y , t) image intensities because of some object velocity ~v :

−∂I (x , y , t)

∂t
= ~v · ~∇I (x , y , t)

Then the ratio of the local image time-derivative to the spatial
gradient ~∇I (x , y , t) is an estimate of the local image velocity
(in the direction of the gradient).

I Dynamic zero-crossing models: Measure image velocity by finding
first the edges and contours of objects (using the zero-crossings of
a blurred Laplacian operator!), and then take the time-derivative of
the Laplacian-Gaussian-convolved image:

− ∂

∂t

[
∇2Gσ(x , y) ∗ I (x , y , t)

]

in the vicinity of a Laplacian zero-crossing. The amplitude is an
estimate of speed, and the sign of this quantity determines the
direction of motion relative to the normal to the contour.

120 / 212

Spatio-temporal spectral methods for motion estimation

I Motion can also be detected and measured by Fourier methods.

I This approach exploits the fact that motion creates a covariance in
the spatial and temporal spectra of the time-varying image I (x , y , t),
whose 3-dimensional (spatio-temporal) Fourier transform is defined:

F (ωx , ωy , ωt) =

∫

x

∫

y

∫

t

I (x , y , t)e−i(ωx x+ωy y+ωt t)dx dy dt

I Rigid motion in an area has a 3D spectral consequence: the local 3D
spatio-temporal spectrum, rather than filling up 3-space (ωx , ωy , ωt),
collapses onto a 2D inclined plane which includes the origin.

I Motion is detected by applying spatio-temporal filters to an image
sequence and observing that filters whose centre frequencies are
co-planar in this 3-space are activated together.

I The azimuth and elevation of that inclined spectral plane correspond
respectively to the direction and speed of the motion.

121 / 212

Spectral co-planarity theorem

Translational image motion has a 3D spatio-temporal Fourier spectrum
that is non-zero only on a plane through the origin of frequency-space.
Coordinates of the unit normal to this spectral plane correspond to the
speed and direction of motion.

1. Let I (x , y , t) be a continuous image in space and time.
Let F (ωx , ωy , ωt) be its 3D spatio-temporal Fourier transform:

F (ωx , ωy , ωt) =

∫

x

∫

y

∫

t

I (x , y , t)e−i(ωx x+ωy y+ωt t)dx dy dt.

We wish to detect local image velocity ~v = (vx , vy) in I (x , y , t).

2. Uniform motion ~v implies space shifts with time shifts to :

I (x , y , t) = I (x − vx to , y − vy to , t − to).

3. Taking the 3D spatio-temporal Fourier transform of both sides, and
applying the shift theorem, gives

F (ωx , ωy , ωt) = e−i(ωx vx to + ωy vy to + ωtto)F (ωx , ωy , ωt).

122 / 212

(Spectral co-planarity theorem, con’t)

4. The last equation above can only be true if F (ωx , ωy , ωt) = 0
everywhere the exponential factor doesn’t equal 1.

5. This means F (ωx , ωy , ωt) is non-zero only on the 3D spectral plane

ωx vx + ωy vy + ωt = 0 (or on parallel copies of it separated by 2π).

6. The elevation, or slope of this plane relative to the spatial frequency
plane (ωx , ωy), corresponds to the speed of motion:

speed =
√

v 2
x + v 2

y

7. The azimuth, or direction of tilt of this plane projected as a ray into
the spatial frequency plane (ωx , ωy), corresponds to the direction of
the motion:

direction = tan−1 (vy/vx)

Thus we see that observing a geometrical relationship (i.e. co-planarity)
among the spatio-temporal filter frequencies that are energetic during an
image sequence, reveals motion, and estimates its speed and direction.

123 / 212

Spatio-temporal correlation models for motion detection

Image motion is detected by observing a correlation of the local image
signal I (x , y , t) across an interval of space and an interval of time τ .
Finding the pair of these intervals which maximizes the correlation
between I (x , y , t) and I (x − vxτ, y − vyτ, t − τ) determines the two
components of image velocity vx and vy that we desire to know. Such
elementary motion detectors have been studied extensively in the fly.

124 / 212

Optical flow: elementary motion detectors in flying insects
(and for other autonomous vehicles like driverless cars?)

125 / 212

9. Surfaces and reflectance maps

How can we infer the shape and reflectance properties of a surface from
measurements of brightness in an image?

This is complicated because many factors besides shape determine how
(and where) objects scatter light.

I Surface albedo is the fraction of the illuminant that is re-emitted
from a surface in all directions. Thus it relates to how “light” or
“dark” is the surface, and this may vary locally across it

I The amount of light reflected is the product of two factors: the
surface albedo, times a geometric factor that depends on angles

126 / 212

(Surfaces and reflectance maps, con’t)

I A Lambertian surface (also called diffusely reflecting, or “matte”)
reflects light equally well in all directions

I Examples of Lambertian surfaces include: snow, non-glossy paper,
ping-pong balls, magnesium oxide, projection screens, ...

I The amount of light reflected from a Lambertian surface depends on
the angle of incidence of the light (by Lambert’s famous cosine law),
but not on the angle of emission (the viewing angle)

I A specular surface is mirror-like. It obeys Snell’s law (the angle of
incidence of light is equal to its angle of reflection from the surface),
and it does not scatter light into other angles

I Most metallic surfaces are specular. But more generally, surfaces lie
somewhere on a continuum between Lambertian and specular

I Special cases arise from certain kinds of dust. The surface of the
moon (called unsurprisingly a lunar surface) reflects light depending
on the ratio of cosines of angle of incidence and angle of emission

I That is why a full moon looks more like a penny than like a sphere;
its brightness does not fade, approaching the boundary (!)

127 / 212

(Surfaces and reflectance maps, con’t)

Geometric summary of Lambertian, versus specular, properties of surfaces

128 / 212

(Surfaces and reflectance maps, con’t)

The reflectance map is a function φ(i , e, g) which relates intensities in
the image to surface orientations of objects. It specifies the fraction of
incident light reflected per unit surface area, per unit solid angle, in the
direction of the camera; thus it has units of flux/steradian

It is a function of three variables:
I i is the angle of the illuminant, relative to the surface normal N
I e is the angle of a ray of light re-emitted from the surface
I g is the angle between the emitted ray and the illuminant

.->q'l:r)--?rxi

The definitions of the angles i, €, and g

129 / 212

(Surfaces and reflectance maps, con’t)

There are many types of reflectance maps φ(i , e, g), each of which is
characteristic of certain surfaces and imaging environments

I Lambertian surface: reflectance function is φ(i , e, g) = cos(i)
(It looks equally bright viewed from all directions; the amount of
reflected light depends only on the angle of illumination)

I Specular surface: φ(i , e, g) is especially simple: φ(i , e, g) = 1 when
i = e and both are coplanar with the surface normal N, so g = i + e
(Snell’s law for a perfect mirror); otherwise φ(i , e, g) = 0

I For “lunar” surfaces such as the feldspar dusts on the moon, the
reflectance function φ(i , e, g) depends only upon the ratio of the
cosines of the angles of incidence and emission: cos(i)/ cos(e),
but not upon their relative angle g , nor upon the surface normal N

I In case you wondered, this is why the full moon looks like a penny
rather than a sphere. Even though it is illuminated by a point source
(the sun, behind you), it does not fade in brightness approaching its
limb (boundary) as the surface normal N tilts, because still i = −e

130 / 212

(Surfaces and reflectance maps, con’t)

Typically, surfaces have both specular and matte properties. For example,
facial skin may vary from Lambertian (powdered) to specular (oily). The
purpose of powdering one’s face is to specify s and n in this expression:

φ(i , e, g) =
s(n + 1)(2 cos(i) cos(e)− cos(g))n

2
+ (1− s) cos(i)

I Linear combination of two terms, with weights s and (1− s)

I The first term on the right side is the specular component

I The second term on the right side is the Lambertian component

I s is the fraction of light emitted specularly

I n represents the sharpness (in angle) of the specular peak

I For glossy paint, typically the exponent n may be about 20

I Obviously as n grows very large, the exponentiated trigonometric
function approaches a delta function, representing Snell’s law for
mirrors: a very sharp power function of angle

131 / 212

(Surfaces and reflectance maps, con’t)

Typically there is not just one point source of illumination, but rather a
multitude of sources (such as the extended light source provided by a
bright overcast sky). In a cluttered scene, much of the light received by
objects has been reflected from other objects (and coloured by them...)
One needs almost to think of light not in terms of ray-tracing but in terms
of thermodynamics: a “gas” of photons in equilibrium inside a room

: is not just one point source of illurnination, but
(such as the extended light source providecl by t-,
tered scene) rnuch of the light received by objcc
rer objects (and coloured by them...) One needs
terms of ray-tracing but in terms of thermodyt
quilibrium inside a room.

re 10-8.
rc t, of l,l r r:
() ovcr all

*-t'

r)Pi

Irr [he casc of i] I t extetrt lccl l igtrt soll l 'oe, wc
bicl irerctional rcflectancc dist,r ibuf ion futtc:f ion

irrciclerrt r l i recf iotts.

t t t t tst , i t t t , (rgrtr t , ('

a l I (l t , l t t ' ' sout ' ('o

t,

Clearly, the only way to infer the nature and geometry of surface
properties from image properties is to build-in certain assumptions about
the nature of the surfaces from other kinds of evidence. This requires us
to consider the general problem of inference and integration of evidence

132 / 212

(Surfaces and reflectance maps, con’t)

Computing “shape-from-shading” requires the disambiguation of:
I geometry of the illuminant (e.g. is it a point source, or extended?

If a point source, where is it?) Are there several light sources?
I reflectance properties of the surface. What is its reflectance map?
I geometry of the surface (its underlying shape). Are shadows cast?
I rotations of the surface relative to perspective angle and illuminant
I variations in material and surface reflectance properties across space
I variations in surface albedo (“greyness”)

We must reason about hypotheses using data and assumptions:

133 / 212

(Surfaces and reflectance maps, con’t)

Sometimes the only consistent solution is to assume simply that the
surface albedo really is different. In this image, tile A is emitting the
same light as tile B. But the requirements of illumination context and
shading make it impossible to see them as having the same albedo

134 / 212

(Surfaces and reflectance maps, con’t)

The inference of a surface shape (a relief map, or an object-centred
description of a surface) from shading information is an inherently
ill-posed problem because the data necessary for the computation is not
known. One has to introduce ancillary assumptions about the surface
material composition, its albedo and reflectance map, the illumination of
the scene and its geometry, before such inferences become possible.

It is almost as though the assumptions (like angle of illumination) are
more important than the available image data. The computational nature
of the inference task then becomes one of constraint satisfaction. Often
there are rivalrous (e.g. is it a dome or a crater?) alternative solutions:
http://www.michaelbach.de/ot/fcs_hollow-face/index.html 135 / 212

http://www.michaelbach.de/ot/fcs_hollow-face/index.html

10. Shape representation and codon shape grammars

Closed boundary contours can be represented completely by their
curvature map θ(s) as a function of position s along the perimeter:

θ(s) = lim
∆s→0

1

r(s)

where the local radius of curvature r(s) is defined as the limiting radius
of the circle that best “fits” the contour at position s, as arc ∆s → 0.
Curvature sign, +/−, depends on whether the circle is inside, or outside,
the figure. For open contours, other conventions determine the sign. The
figure’s concavities are linked with minima; its convexities with maxima.

136 / 212

(Shape representation and codon shape grammars, con’t)

The purpose of computing shape descriptions like curvature maps θ(s)
(which might result from fitting active contours, for example), is to build
a compact classification grammar for recognising common shapes.

By the Fundamental Theorem of Curves, a curvature map θ(s) together
with a “starting point” tangent t(so) specifies a shape fully. Some nice
properties of curvature-map descriptions are:

1. The description is position-independent (i.e., object-centred).

2. The description is orientation-independent (rotating the shape in the
plane does not affect its curvature map).

3. The description represents mirror-reversed shapes just by changing
the sign of s, so the perimeter is traversed in the opposite direction:

θ(s)→ θ(−s)

4. Scaling property: Changing the size of a shape just scales θ(s) by a
constant (K is reciprocal to the size change factor):

θ(s)→ Kθ(s)

137 / 212

(Shape representation and codon shape grammars, con’t)

The goal is to construct an hierarchical taxonomy of closed 2D shapes,
based on the extrema of curvature. Their possible combinations are very
restricted by the requirement of closure, leading to a codon grammar of
shapes (analogous to the ordered triples of the nucleotide bases A,G,C,T
which specify the 20 amino acids).

Note that since curvature is a signed quantity (depending on whether the
fitting circle is inside or outside the shape), the minimum and maximum
of curvature may mean the same radius. For open contours, they depend
on sign conventions and the direction of travel. We are interested in the
extrema of curvature: minima, maxima, and zeroes (the inflexion points).

There are just six primitive codon types: all curve segments lying between
minima of curvature must have 0, 1 or 2 points of zero curvature, further
classified by whether a zero is encountered before (“−”) or after (“+”)
reaching the maximum curvature in the chosen direction of traversal.
Dots show zeroes of curvature (inflexions); slashes indicate the minima:

CODON CONSTRAINTS 267

relation between these descriptors is preserved in the 2D image. This property
follows because the inflection of a 3D curve is preserved under projection, guarantee
ing that at least the ordinal relations between minima, maxima, and zeroes of
curvature will be preserved under projection. Our scheme thus provides a very
primitive representation for a part, simply in terms of the ordinal relations of the
extrema of curvature. This approach yields six different basic primitive shapes, or
codons (see Fig. 4).

In order to define the codon types, it is first necessary to define maxima and
minima of curvature. These definitions require that a convention be adopted for the
sign of curvature. Consider Fig. 3. There are two directions along which the profile
of the face may be traversed. In the upward direction (left) the minima of curvature
(slashes) correspond to the points where the curve rotates at the greatest rate in the
clockwise direction. If the same curve is traversed in the opposite direction, however,
then the maxima and minima reverse. Our convention thus places “figure” to the left
of the direction of traversal. When the figure is on the left, then the profile indeed
looks like a face because the minima of curvature divide the curve into the natural
parts-namely forehead, nose, mouth, and chin. (Note that the opposite view yields
the “vase” of Rubin’s famous figure-ground illusion observed as early as 1819 by
Turton [14].) Thus, knowing which side is the figure determines the choice of
orientation on a curve, or, conversely, choosing an orientation determines which side
is the figure by convention. Minima are then typically associated with the concavities
of the figure, whereas maxima are convexities.

To define our basic primitive codons, we first note that all curve segments lying
between minima of curvature must have zero, one, or two points of zero curvature. If
there are no zeroes (i.e., inflections), then the segment is designated as a type 0
codon (see Fig. 4). Those with two zeroes are called type 2 codons. If a segment has
exactly one zero, then the zero may be encountered either before (type l-) or after
(type 1’) reaching the maximum point of the segment during traversal in the chosen
orientation.

The type 0 codons may be further subdivided into O+, 0 - and (co) to yield six
basic codon types. Consider Fig. 3 once again. Note that as the ellipse is traversed in
different directions, the minima of curvature change as expected. In the lower ellipse,
which corresponds to a “hole” with figure outside, the minima have negative
curvature, because the direction of rotation is clockwise. (Thus, the slashes suggest a
part boundary by our rule, which will be repaired later when we discuss “holes.“) In
the upper ellipse, however, the minima have positive curvature (the rotation is
always counterclockwise). Thus, the type 0 codon can be subdivided into 0’ and 0 -
with the superscript indicating the sign of curvature. Note that the 0 - codon can
constitute a part boundary, whereas the type O+ codon must appear only as a shape

/V-JtPO?
ocl 0+ 0- 1+ 1- 2

FIG. 4. The primitive codon types. Zeroes of curvature are indicated by dots, minima by slashes. The
straight line (co) is a degenerate case included for completeness, although it is not treated in the text.

138 / 212

(Shape representation and codon shape grammars, con’t)

Note that because curvature is a signed quantity, the loci of its minima
depend on what we take to be “figure” vs “ground”. For open contours
like these face profiles (alternatively Rubin’s Vase profiles), if we regard
“figure” as “to left”, then loci of minima depend on direction of traversal:

There are 3 possible Codon Pairs (string type depending on direction):

139 / 212

(Shape representation and codon shape grammars, con’t)

There are 5 possible Codon Triples, and 9 possible Codon Quads:

140 / 212

(Shape representation and codon shape grammars, con’t)

Constraints on codon strings for closed curves are very strong. While
sequences of (say) 6 codons have 56 = 15, 625 possible combinations,
these make only 33 generic shapes.

Ordinal relations among singular points of curvature (maxima, minima,
and zeroes) remain invariant under translations, rotations, and dilations.

The inflexion (a zero of curvature) of a 3D curve is preserved under 2D
projection, thereby guaranteeing that the ordinal relations among the
extrema of curvature will also be preserved when projected to an image.

Thus we can acquire a very compact lexicon of elementary shapes, and
we can construct an object classification algorithm as follows:

1. use active contours to fit a deformable snake to an object’s outline

2. extract its codon string from its curvature map θ(s) by traversing
the outline given after convergence of the active contours algorithm

3. use this codon string as an index to a labelled lexicon of shapes

4. object is then classified by shape, with invariance to many factors.

141 / 212

Volumetric descriptions of 3D shape

One scheme for bridging the gap between 2D image (appearance-based)
and 3D model-based descriptions is called the “2.5-dimensional sketch”.
Surface normals are computed and assigned to each point in the image,
like a pin-cushion, indicating 3D shape.

142 / 212

(Volumetric descriptions of 3D shape, con’t)

Superquadrics represent objects as the unions and/or intersections of
generalized superquadric closed surfaces, which are the loci of points in
(x , y , z)-space that satisfy parametric equations of this form:

Axα + Byβ + Czγ = R

Spheres have (α, β, γ) = (2, 2, 2) and A = B = C . Other examples:
I cylinders: (α, β, γ) = (2, 2, 100) and A = B
I rectangular solids: (α, β, γ) = (100, 100, 100)
I prolate spheroids (shaped like zeppelins): (α, β, γ) = (2, 2, 2) and

(say) A = B but C < (A,B)
I oblate spheroids (shaped like tomatoes): (α, β, γ) = (2, 2, 2) and

(say) A = B but C > (A,B)
Rotations of such objects in 3D produce cross-terms in (xy , xz , yz).
Parameters (A,B,C) determine object dimensions. Origin-centred.

These simple, parametric models for solids, augmented by Boolean
relations for conjoining them, allow the generation of object-centered,
“volumetric” descriptions of many objects (instead of an image-based
description) by just listing parameters (α, β, γ,A,B,C) and relations,
rather like the codon descriptors for closed 2D shapes.

143 / 212

11. Vision as model building

I role of context in determining a model
I percepts as hypotheses generated for testing
I rivalrous and paradoxical percepts, and visual

illusions: “bugs” or “features” of a system?

144 / 212

Vision as perceptual inference and hypothesis testing

I Low-level visual percepts, built from extracted features, must be
iteratively compared with high-level models to derive hypotheses
about the visual world

I This iterative cycle of model-building for hypothesis generation and
testing is sometimes called the hermeneutical cycle

I It fits the key anatomical observation that mammalian brains have
massive feedback projections from the visual cortex back down to
the thalamus, meeting the upcoming data stream from the eyes

5

Dr Chris Town

Constructivism

© Stephen E. Palmer, 2002

Tilted room illusion

Dr Chris Town

Constructivism

© Stephen E. Palmer, 2002

Unconscious Inference: the process of recovering
environmental information by logically combining
retinal information with heuristic assumptions.

Tilted room illusion:
If you assume that the
walls and floor of the
room are vertical and
horizontal, then you
must be tilted —and you
feel that way!

Dr Chris Town

• Likelihood Principle: ”we will perceive the object that is most
likely to be the cause of our sensory stimulation” (Helmholtz)

• Hypothesis Testing: “we may think of sensory stimulation as
providing data for hypotheses concerning the state of the external world”
(Richard Gregory)

Dr Chris Town

“The intelligent eye”: Richard Gregory

Dr Chris Town
200
4

Vision as a Cycle of Perception

Signal

features

Compare
with model
hypotheses

and estimate
likelihoods

Generate
new model
hypotheses
and derive

expectations

Symbolic

features

Bottom-up
path

Top-down path

Analysis and recognition - Induction

Synthesis and verification - Deduction

Hermeneutical
cycle

The Hermeneutical cycle for iterative interpretation in a generative (hypothesise and
test) approach.

Dr Chris Town

Vision as Graphics

Richard Gregory argues this sort of illusion happens because we are not
used to seeing hollow faces, and therefore our beliefs and expectations
are applied to make best sense of the data.
-> top-down rather than bottom-up (as in the Marr theory)

145 / 212

12. Lessons from visual illusions, neural trauma, & deficits

I Normal human vision is often not veridical. Illusions are standard.
I Illusions can reveal top-down processing; the role of expectation; and

interactions between cooperative and competitive neural processes.
I In the “cafe wall illusion” below, all long lines are actually parallel.
I Are illusions features or bugs? Should we design them into systems?

146 / 212

Neurones (in cats) actually respond to illusory contours

“Illusory contours and cortical neuron responses”, Science 224 (1984), pp. 1260-1262.
147 / 212

Illusory contours can even drive some high-level inferences

148 / 212

Lessons from neurological trauma and deficits

Strokes and battlefield injuries sometimes have astonishing consequences,
with aphasias and agnosias indicating highly specialised brain areas.

I Facial prosopagnosia: lost ability to recognise faces. Vision appears
normal otherwise, but faces cease to be represented or processed.

I Achromatopsia: cortical loss of colour vision, but “black-and-white”
(achromatic) vision is apparently normal.

I Astereognosia: loss of ability to perceive three-dimensionality.

I Simultanagnosia: inability to perceive simultaneously more than one
thing at a time (e.g. multiple elements in a display).

I Neglect and hemi-inattention syndromes: one side of any object is
always neglected. Such patients dress themselves only on (say) their
right side, and always bump into things with their left side; and will
draw a clock face with all the numbers 1 - 12 in the right half only.

I Xanthopsia: perception that all objects are covered with gold paint.

What sort of “computer” is the brain, that it can display these types of
faults when traumatised? What do these phenomena reveal about the
nature of the brain’s architecture, data structures, and algorithms?

149 / 212

13. Bayesian inference in vision

It is almost impossible to perform most computer vision tasks in a purely
“bottom-up” fashion. The data are just too impoverished by themselves
to support the task of object recognition

This section reviews the basic ideas behind Bayesian inference, which is a
method fundamental to probability theory, statistics, and machine learning.
Its purpose is to provide a means for integratin g prior information (such as
general knowledge about the sorts of things that populate the world, their
properties and relationships, the metaphysics of objects, etc...) with empirical
information gathered from incoming image data. This principle is expressed
in the form of a basic rule for relating conditional probabilities in which the
ttantecedent" and t'consequent" are interchanged. The value of this method
for computer vision is that it provides a framework for continually updating
one's theory of u'hat one is looking at, by integrating continuously incoming
evidence r,vith the best avtrilable inference or interpretation so far.

,ffi

\ - \
)

t !

I

A *

/4

v)

40

Ziltt

a

t ^

/

h

150 / 212

(Bayesian inference in vision, con’t)

The Bayesian view focuses on the use of priors, which allow vision to be
steered heavily by a priori knowledge about the world and the things
which populate it.

For example, probabilistic priors can express the notions that:

I some events, objects, or interpretations are much more probable
than others

I matter cannot just disappear, but it does routinely become occluded

I objects rarely change their actual surface colour

I uniform texturing on a complex surface shape is a more likely
interpretation than highly non-uniform texturing on a simple or
planar surface

I a rigid rotation in three dimensions is a “better explanation” for
deforming boundaries (if consistent with them) than wild actual
boundary deformations in the object itself

Being able to integrate formally such learned or even “metaphysical”
assumptions about the world is one way in which Bayesian inference
facilitates a “top-down” or AI-oriented, expert-system-oriented, approach.

151 / 212

(Bayesian inference in vision, con’t)

Bayes’ rule is a formalism for combining prior knowledge or beliefs with
empirical observations. It is at once a theory of explanation, a method
for drawing inferences from data, a procedure for the integration of
evidence, and a protocol for decision-making.

If H represents an hypothesis about the “state of the world” (e.g. the
object in an image) and D represents the available image data, then the
explanatory conditional probabilities p(H|D) and p(D|H) are related to
each other and to their unconditional likelihoods p(H) and p(D) as:

p(H|D) =
p(D|H)p(H)

p(D)

For example, a human agricultural expert, or an artificial expert system,
has knowledge of the form p(D|H): Given a plant (or some hypothetical
disease state) H, there is a corresponding conditional probability p(D|H)
of observing certain image data D. However, typically the task goal of
computer vision and pattern recognition is to calculate just the inverse of
that conditional probability: given image data D, what is the probability
p(H|D) that the hypothesis (of plant or disease state H) is true?

152 / 212

(Bayesian inference in vision, con’t)

I Bayes’ rule specifies the formal procedure for calculating inferences
p(H|D), given the observations, the unconditional probabilities, and
the prior expert knowledge p(D|H)

I It thereby offers a clean and simple interface between a knowledge
base and incoming visual data

I A key feature is that it provides a formal mechanism for repeatedly
updating our assessment of a visual hypothesis as more data arrives
incrementally

I We can apply the rule recursively, using the latest posterior estimate
p(H|D) as the new prior p(H) for interpreting the next set of data

I Thus we learn from visual data and experience, and we can build up
visual knowledge about a domain of the world: we learn to see

I In AI, this aspect is important because it allows the systematic and
real-time construction of interpretations that can be continuously
updated as more data arrive in a time series, such as in a sequence
of video or of spoken sounds that we wish to understand

153 / 212

Statistical decision theory

In many applications, we need to perform pattern classification on the
basis of some vector of acquired features from a given object or image.

The task is to decide whether or not this feature vector is consistent with
a particular class or object category. Thus the problem of classification
amounts to a “same / different” decision about the presenting feature
vector, compared with vectors characteristic of certain object classes.

Usually there is some similarity between “different” patterns, and some
dissimilarity between “same” patterns. The four possible combinations of
“ground truths” and decisions creates a decision environment:

1. Hit: Actually same; decision “same”

2. Miss: Actually same; decision “different”

3. False Alarm: Actually different; decision “same”

4. Correct Reject: Actually different; decision “different”

We would like to maximize the probability of outcomes 1 and 4, because
these are correct decisions. We would like to minimize the probability of
outcomes 2 and 3, because these are incorrect decisions

154 / 212

Statistical Decision Theory

Dissimilarity Metric (Hamming Distance, HD)

P
ro

ba
bi

lit
y

D
en

si
ty

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
1

2
3

4
5

6

Criterion

Authentics Imposters

Rate of Rejecting Authentics

Rate of Accepting Authentics

Rate of Rejecting Imposters

Rate of Accepting Imposters

Accept if HD < Criterion

Reject if HD > Criterion

155 / 212

(Statistical decision theory, con’t)

I In the two-state decision problem, the feature vectors or data are
regarded as arising from two overlapping probability distributions

I They might represent the features of two object classes, or they
might represent the similarity scores for “same” vs “different”

I When a decision is made, based upon the observed similarity and
some acceptability threshold, the probabilities of the four possible
outcomes can be computed as the four cumulatives under these
two probability distributions, to either side of the decision criterion

I These four probabilities correspond to the shaded areas in last figure

I The computed error probabilities can be translated directly into a
confidence level which can be assigned to any decision that is made

I Moving the decision criterion (dashed line) has coupled effects:
I Increasing the “Hit” rate also increases the “False Alarm” rate
I Decreasing the “Miss” rate also decreases the “Correct Reject” rate

I These dependencies map out the Receiver Operating Characteristic

I Each point (∗) on the ROC curve (next fig.) represents a particular
choice for the decision criterion, or threshold of acceptance

156 / 212

Receiver Operator Characteristic (“ROC curve”)
Decision Strategies

False Alarm Rate

H
it

R
at

e

0.0 0.5 1.0

0.
0

0.
5

1.
0

Strategy

Curve

Conservative

Liberal

More conservative:
Raise the Acceptance Criterion

More liberal:
Lower the Acceptance Criterion

157 / 212

(Statistical decision theory, con’t)

Obviously we would like the ROC curve to be as “bowed” as possible,
approaching into the upper left corner, as that maximises the Hit Rate
and minimises the False Alarm Rate.

Regardless of where our decision criterion is placed, the fundamental
decidability of the decision task (or the detectability in a detection task)
is measured by the quantity d ′, which is monotonically related to the
length of the “arrow” in the “bow” (how bowed the ROC curve is):

d ′ =
|µ2 − µ1|√
1
2 (σ2

2 + σ2
1)

where the two distributions are characterized by their means µ1 and µ2

and their standard deviations σ1 and σ2. The metric d ′ is also called
discriminability. It is related to other σ-normalisations, such as Z -scores.

An improvement in d ′ can result either from pushing the distributions
further apart, or from making one or both of them narrower. The bigger
d ′ is, the better; a pattern recognition problem with high decidability will
have a large d ′, so the ROC curve approaches the upper-left corner.

158 / 212

(Statistical decision theory, con’t)

0
20

00
60

00
10

00
0

14
00

0
18

00
0

22
00

0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
10

20
30

40
50

60
70

80
90

10
0

12
0

Hamming Distance

C
ou

nt

Decision Environment for Iris Recognition: same vs different eyes

d’ = 11.36

mean = 0.089

stnd dev = 0.042

mean = 0.456

stnd dev = 0.018

222,743 comparisons of different iris pairs
340 comparisons of same iris pairs

Theoretical curves: binomial family

Theoretical cross-over point: HD = 0.342

Theoretical cross-over rate: 1 in 1.2 million

C

159 / 212

(Statistical decision theory, con’t)

Decidability d ′ ≥ 3 is normally considered good. The distributions shown
originally to illustrate had d ′ = 2. The empirical ones for iris recognition
(previous figure) had d ′ ≈ 11.

Because reliability of pattern recognition depends on the between-class
variance being larger than the within-class variance, R. Fisher defined the
“separation between two distributions” as the ratio of their between-class
variance to their within-class variance. This definition is related to d ′.

Another metric is the total area under the ROC curve, which ideally → 1.
Other relevant metrics include the total probability of error for a chosen
decision criterion, as illustrated by the combined shaded areas below:

p(x |C1)p(C1)

p(x |C2)p(C2)

R1 R2x 160 / 212

Bayesian pattern classifiers

Consider a two-class pattern classification problem, such as OCR (optical
character recognition) involving only two letters, a and b. We compute
some set of features x from the image data, and we wish to build a
Bayesian classifier that will assign a given pattern to one of two classes,
C1 ≡ a or C2 ≡ b, corresponding to the two letter instances.

Whatever are the extracted features x (perhaps they are as simple as
height/width ratio), after collecting these measurements from a large
number of samples of letters a and b, we can plot a histogram of how
these measurements are distributed for each of the classes. In general,
these histograms will overlap, but clearly the smaller x is, the more likely
it is that this sample came from class C1, other things being equal.

161 / 212

(Bayesian pattern classifiers, con’t)

What do we mean by “other things being equal?” Suppose that instances
of class C2 are 100 times more frequent (more probable) than class C1.

Would we then still say that, given a slightly smallish sampled value x ,
the letter class is more likely to have been C1 than C2?

No. As Bayesians we must take into account the baseline rates. Define
the prior probabilities P(C1) and P(C2) as their two relative frequencies
(summing to 1).

If we had to guess which character had appeared without even seeing it,
we would always just guess the one with the higher prior probability.

For example, since in fact an ‘a’ is about 4 times more frequent than a ‘b’
in English, and these are the only two options in this two-class inference
problem, we would set the priors P(a) = 0.8 and P(b) = 0.2 then.

162 / 212

(Bayesian pattern classifiers, con’t)

I For each class separately, we can measure how likely any particular
feature sample value x will be, by empirical observation of examples

I (Note that this requires knowing the “ground truth” of examples)

I This gives us P(x |Ck) for all the classes Ck

I We get the unconditional probability P(x) of any measurement x by
summing P(x |Ck) over all the classes, weighted by their frequencies:

P(x) =
∑

k

P(x |Ck)P(Ck)

I Now we have all the terms needed to compute posterior probabilities
P(Ck |x) of class membership, given some data observation x , taking
into account the priors P(Ck) and the “class conditional likelihoods”
P(x |Ck) of the observations x :

P(Ck |x) =
P(x |Ck)P(Ck)

P(x)

163 / 212

(Bayesian pattern classifiers, con’t)

Thus we have a principled, formal way to perform pattern classifications
on the basis of available data and our knowledge of class baseline rates,
and how likely the data would be for each of the classes.

We can minimise the total probability of misclassification if we assign
each observation x to the class with the highest posterior probability.

Assign x to class Ck if:

P(Ck |x) > P(Cj |x) ∀j 6= k

Since the denominator P(x) in Bayes’ Rule is independent of Ck , we can
rewrite this minimum misclassification criterion simply as:

Assign x to class Ck if:

P(x |Ck)P(Ck) > P(x |Cj)P(Cj) ∀j 6= k

If we now plot the quantities in this inequality relation as a function of x ,
we see that the minimum misclassification criterion amounts to imposing
a decision boundary where the two curves cross each other (arrow):

164 / 212

(Bayesian pattern classifiers, con’t)

Because the costs of the two different types of errors are not always
equal, we may not necessarily want to place our decision criterion at the
point where the two curves cross, even though that would minimise the
total error. If the decision boundary we choose is instead as indicated by
the vertical line, so R1 and R2 are the regions of x on either side of it,
then the total probability of error (which is the total shaded area) is:

P(error) = P(x ∈ R2,C1) + P(x ∈ R1,C2)

= P(x ∈ R2|C1)P(C1) + P(x ∈ R1|C2)P(C2)

=

∫

R2

P(x |C1)P(C1)dx +

∫

R1

P(x |C2)P(C2)dx

165 / 212

14. Discriminant functions and decision boundaries

If we construct some set of functions yk (x) of the data x , one function
for each class Ck , such that classification decisions are made by assigning
an observation x to class Ck if

yk (x) > yj (x) ∀j 6= k ,

those functions yk (x) are called discriminant functions.

The decision boundaries between data regions Rj and Rk are defined by
loci in the (normally multi-dimensional) data x at which yk (x) = yj (x).

Natural discriminant functions to choose are the posterior probabilities:

yk (x) = P(Ck |x)

Equivalently, since the denominator P(x) in Bayes’ Rule is independent
of k, we could choose as the discriminant functions:

yk (x) = P(x |Ck)P(Ck)

166 / 212

(Discriminant functions and decision boundaries, con’t)

This figure shows how in even just the case of two-dimensional data, the
decision boundaries separating four Gaussian densities (corresponding to
four classes) can be rather complex. (Note how the areas corresponding
to decision region R4 are not simply connected.)

167 / 212

15. Discriminative versus generative methods in vision

I Discriminative methods learn a function yk (x) = P(Ck |x) that maps
input features x to class labels Ck . They require large training data
covering all expected kinds of variation. Examples of such methods:

I artificial neural networks
I support vector machines
I boosting methods
I linear discriminant analysis

I Generative methods learn a likelihood model P(x |Ck) expressing the
probability that data features x would be observed in instances of
class Ck , which can then be used for classification using Bayes’ Rule.

I Generalise well and need less training data, but models get complex
I Popular for tasks such as analysis and synthesis of facial expressions
I Generative models have predictive power as they allow the generation

of samples from the joint distribution P(x ,Ck). Examples include:
I probabilistic mixture models
I most types of Bayesian networks
I active appearance models
I Hidden Markov models, Markov random fields

168 / 212

Convolutional neural networks

I Feedforward artificial neural networks, inspired by the visual cortex
I Perform image classification using multiple layers of small collections

of neurons, having “receptive fields” in the image
I Tiling and overlapping of outputs aim to achieve shift invariance
I Often include pooling layers, convolutional layers, fully connected

layers, and point non-linearities in or after each layer
I Use little pre-processing; filters learned without human intervention
I Output is a classification decision, with robust invariances over image

input transformations (e.g. variations in handwritten characters)

169 / 212

Example: convolutional neural network for OCR (LeCun)

Optical Character Recognition systems have many applications:

I postal sorting, bank cheque routing
I automated number plate recognition
I book and manuscript digitisation
I text-to-speech synthesis for the blind
I handwriting recognition for portable device interfaces

Handwritten fonts require methods from Machine Learning to cope with
all writing variations (size, slant, stroke thickness), distortions, and noise.
A classic convolutional NN for OCR was developed by Yann LeCun:

• Generative methods learn a likelihood model P (x|Ck) expressing the prob-
ability that data features x would be observed in the case of class Ck, which
can then be used for classification using Bayes’ rule. Generative models
have predictive power as they allow one to generate samples from the joint
distribution P (x, Ck), and they are therefore popular for tasks such as the
analysis and synthesis of facial expressions. Examples include probabilis-
tic mixture models, most types of Bayesian networks, active appearance
models, Hidden Markov models, and Markov random fields.

Generative models often generalise well and may therefore require less train-
ing data, but the models themselves may become more complex than is re-
quired for classification, especially with larger numbers of classes. Construct-
ing such a model often requires specific domain expertise (e.g. for the design
of a Bayesian network). On specific (supervised) learning tasks, discriminative
methods usually perform better and are more efficient, but the training data
needs to be large enough to span the expected modes of variation in the data.

15 Applications of learning and statistical methods in vision

15.1 Optical character recognition (OCR); Convolutional neural networks

OCR systems have been developed for numerous applications including postal
and bank cheque routing, book digitisation, automated number plate recog-
nition, text-to-speech synthesis for the blind, and handwriting recognition for
portable device interfaces. Modern approaches make heavy use of machine
learning to allow recognition of multiple fonts and to cope with distortions,
noise, and variations in size, slant, and line thickness.

One of the most effective approaches to OCR is LeCun’s convolutional neu-
ral network (conv. net) illustrated above. It takes a 32x32 pixel image as its
input. The first stage of the network is a convolutional layer consisting of 6

84

170 / 212

(Example: convolutional neural network for OCR, con’t)

• Generative methods learn a likelihood model P (x|Ck) expressing the prob-
ability that data features x would be observed in the case of class Ck, which
can then be used for classification using Bayes’ rule. Generative models
have predictive power as they allow one to generate samples from the joint
distribution P (x, Ck), and they are therefore popular for tasks such as the
analysis and synthesis of facial expressions. Examples include probabilis-
tic mixture models, most types of Bayesian networks, active appearance
models, Hidden Markov models, and Markov random fields.

Generative models often generalise well and may therefore require less train-
ing data, but the models themselves may become more complex than is re-
quired for classification, especially with larger numbers of classes. Construct-
ing such a model often requires specific domain expertise (e.g. for the design
of a Bayesian network). On specific (supervised) learning tasks, discriminative
methods usually perform better and are more efficient, but the training data
needs to be large enough to span the expected modes of variation in the data.

15 Applications of learning and statistical methods in vision

15.1 Optical character recognition (OCR); Convolutional neural networks

OCR systems have been developed for numerous applications including postal
and bank cheque routing, book digitisation, automated number plate recog-
nition, text-to-speech synthesis for the blind, and handwriting recognition for
portable device interfaces. Modern approaches make heavy use of machine
learning to allow recognition of multiple fonts and to cope with distortions,
noise, and variations in size, slant, and line thickness.

One of the most effective approaches to OCR is LeCun’s convolutional neu-
ral network (conv. net) illustrated above. It takes a 32x32 pixel image as its
input. The first stage of the network is a convolutional layer consisting of 6

84

I Input is a 32× 32 pixel image, containing some digit or character
I In the training phase, 100,000s of examples of each target are used
I Training is supervised back-propagation: target output is set to +1,

all others to −1. Errors back-propagate to adaptable feature maps
I Neurons in a feature map have 5× 5 kernels, convolved with input
I Trained to extract a particular visual feature, regardless of position
I Subsequent feature maps achieve size, slant, and style invariances
I Neurons in the final layer identify the input as one of the targets

171 / 212

(Example: convolutional neural network for OCR, con’t)

The output oij of each neuron at position (i , j) applies a nonlinear (e.g.,
hyperbolic tangent) activation function fact to the sum of its input pixels
times its trained weights wmn, added to another (trained) bias term w0:

oij = fact(w0 +
∑

m

∑

n

wmn I(i−m),(j−n))

This figure illustrates three different handwritten instances of the digit 4
being recognised by this CNN. The smaller images show outputs of the
convolutional (C) and subsampling (S) feature maps at different layers of
the network.

feature maps. The neurons in each feature map have 25 adaptable weights cor-
responding to the elements of a 5x5 kernel which is convolved with the input
image, plus an adaptable bias weight. Each feature map therefore has 28x28
(32 − 5 + 1 = 28) neurons, all of which share the same 26 weights. In this
way, the 6 feature maps can be trained to extract a particular visual feature,
independently of its position. As with other types of feed-forward neural net-
work, the outputs oij of each first layer neuron i are the result of applying an
activation function fact (a normalising ogival function such as the hyperbolic
tangent, tanh) to the sum of its inputs (pixels in the input image I) multiplied
by each of its weights wmn after adding an additional bias term w0:

oij = fact(w0 +
∑

m

∑

n
wmnIi−m,j−n)

(note how the double summation is equivalent to a 2D discrete convolution.).
The use of convolutional layers with shared weights was inspired by receptive
field profiles as found in biological visual systems, which we studied earlier.
Shifting the input image results in a corresponding shift in the output of the
feature maps.

There are 10 outputs corresponding to the digits 0-9, and the 10 neurons
of the final layer are fully connected to each of the preceding 100 neuron out-
puts. During the training phase using the “back-propagation” method, the
corresponding target output is manually set to +1 and all other outputs are
set to −1. The training set may contain 10s or 100s of thousands of ex-
amples of each character (differing in style, boldness, slant, size, and with
additive noise or shading to produce robust classifiers). The figure below
illustrates three different handwritten instances of the digit 4 being recog-
nised by a convolutional neural network; the smaller images show outputs of
the convolutional (C) and subsampling (S) feature maps at different layers
of the network. Further examples (including animations) can be found at
http://yann.lecun.com/exdb/lenet/.

85

More examples are shown at: http://yann.lecun.com/exdb/lenet/

172 / 212

http://yann.lecun.com/exdb/lenet/

16. Face detection, recognition, and interpretation

Some variations in facial appearance (L.L. Boilly: Réunion de Têtes Diverses)
173 / 212

(Face detection, recognition, and interpretation, con’t)

Detecting faces and recognising their identity is a “Holy Grail” problem
in computer vision. It is difficult for all the usual reasons:

I Faces are surfaces on 3D objects (heads), so facial images depend
on pose and perspective angles, distance, and illumination

I Facial surfaces have relief, so some parts (e.g. noses) can occlude
other parts. Hair can also create random occlusions and shadows

I Surface shape causes shading and shadows to depend upon the angle
of the illuminant, and whether it is an extended or a point source

I Faces have variable specularity (dry skin may be Lambertian,
whereas oily or sweaty skin may be specular). As always, this
confounds the interpretation of the reflectance map

I Parts of faces can move around relative to other parts (eye or lip
movements; eyebrows and winks). We have 7 pairs of facial muscles.
People use their faces as communicative organs of expression

I People put things on their faces (e.g. glasses, cosmetics, cigarettes),
change their facial hair (moustaches, eyebrows), and age over time

174 / 212

(Face detection, recognition, and interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

These are different persons, in genetically identical (monozygotic) pairs:

175 / 212

(Face detection, recognition, and interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

Persons who share 50% of their genes (parents and children; full siblings;
double cousins) sometimes look almost identical (apart from age cues):

176 / 212

(Face detection, recognition, and interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

...and these are completely unrelated people, in Doppelgänger pairs:Photos by François Brunelle of unrelated doppelgängers

177 / 212

(Face detection, recognition, and interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

Same person, fixed pose and expression; varying illumination geometry:

BELHUMEUR ET AL.: EIGENFACES VS. FISHERFACES: RECOGNITION USING CLASS SPECIFIC LINEAR PROJECTION 715

3 EXPERIMENTAL RESULTS

In this section, we present and discuss each of the afore-
mentioned face recognition techniques using two different
databases. Because of the specific hypotheses that we
wanted to test about the relative performance of the consid-
ered algorithms, many of the standard databases were in-
appropriate. So, we have used a database from the Harvard
Robotics Laboratory in which lighting has been systemati-
cally varied. Secondly, we have constructed a database at
Yale that includes variation in both facial expression and
lighting. 1

3.1 Variation in Lighting
The first experiment was designed to test the hypothesis
that under variable illumination, face recognition algo-
rithms will perform better if they exploit the fact that im-
ages of a Lambertian surface lie in a linear subspace. More
specifically, the recognition error rates for all four algo-
rithms described in Section 2 are compared using an im-
age database constructed by Hallinan at the Harvard Ro-
botics Laboratory [14], [15]. In each image in this data-
base, a subject held his/her head steady while being illu-
minated by a dominant light source. The space of light
source directions, which can be parameterized by spheri-
cal angles, was then sampled in 15$ increments. See Fig. 3.
From this database, we used 330 images of five people (66
of each). We extracted five subsets to quantify the effects
of varying lighting. Sample images from each subset are
shown in Fig. 4.

Subset 1 contains 30 images for which both the longitudi-
nal and latitudinal angles of light source direction are
within 15$ of the camera axis, including the lighting

1. The Yale database is available for download from http://cvc.yale.edu.

direction coincident with the camera’s optical axis.
Subset 2 contains 45 images for which the greater of the

longitudinal and latitudinal angles of light source di-
rection are 30$ from the camera axis.

Subset 3 contains 65 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 45$ from the camera axis.

Subset 4 contains 85 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 60$ from the camera axis.

Subset 5 contains 105 images for which the greater of the
longitudinal and latitudinal angles of light source di-
rection are 75$ from the camera axis.

For all experiments, classification was performed using a
nearest neighbor classifier. All training images of an indi-

Fig. 3. The highlighted lines of longitude and latitude indicate the light
source directions for Subsets 1 through 5. Each intersection of a lon-
gitudinal and latitudinal line on the right side of the illustration has a
corresponding image in the database.

Fig. 4. Example images from each subset of the Harvard Database used to test the four algorithms.

178 / 212

(Face detection, recognition, and interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

Effect of variations in pose angle (easy and hard), and distance:

179 / 212

(Face detection, recognition, and interpretation, con’t)

Classic problem: within-class variation (same person, different conditions)
can exceed the between-class variation (different persons).

Changes in appearance over time (sometimes artificial and deliberate)

180 / 212

Paradox of Facial Phenotype and Genotype

Facial appearance (phenotype) of everyone changes over time with age;
but monozygotic twins (identical genotype) track each other as they age.

Therefore at any given point in time, they look more like each other than
they look like themselves at either earlier or later periods in time

181 / 212

(Face detection, recognition, and interpretation, con’t)

Detecting and recognising faces raises all the usual questions encountered
in other domains of computer vision:

I What is the best representation to use for faces?

I Should this be treated as a 3D problem (object-based, volumetric),
or a 2D problem (image appearance-based)?

I How can invariances to size (hence distance), location, pose, and
illumination be achieved? (A given face should acquire a similar
representation under such transformations, for matching purposes.)

I What are the generic (i.e. universal) properties of all faces that we
can rely upon, in order to reliably detect the presence of a face?

I What are the particular features that we can rely upon to distinguish
among faces, and thus determine the identity of a given face?

I What is the best way to handle “integration of evidence”, and
incomplete information, and to make decisions under uncertainty?

I How can machine learning develop domain expertise, either about
faces in general (e.g. pose transformations), or facial distinctions?

182 / 212

Viola-Jones face detection algorithm

Paradoxically, face detection is a harder problem than recognition, and
performance rates of algorithms are poorer. (It seems paradoxical since
detection precedes recognition; but recognition performance is measured
only with images already containing faces.) The best known way to find
faces is the cascade of classifiers developed by Viola and Jones (2004).

shift the detector window by more than one pixel at a time depending on the
current window size, and the scale would be increased by some constant (say
20%) at each iteration over the image, but the number of evaluations will still
be about 105 per image.

Modern approaches to face detection make use of a number of image pro-
cessing and machine learning techniques to deal with these challenges. The
currently most popular method is due to Viola and Jones (2004), who popu-
larised the use of the AdaBoost (“Adaptive Boosting,” formulated by Freund
and Schapire) machine learning algorithm to train a cascade of feature clas-
sifiers for object detection and recognition. Boosting is a supervised machine
learning framework which works by building a “strong classifier” as a com-
bination of (potentially very simple) “weak classifiers.” As illustrated in the
figure below, a Viola-Jones face detector consists of classifiers based on simple
rectangular features (which can be viewed as approximating Haar wavelets)
and makes use of an image representation known as the integral image (also
called summed area table) to compute such features very efficiently.

The resulting boosted classifier is a weighted combination of thresholded
responses to a set of rectangular features that, like Haar basis functions, differ
in complexity (e.g. the features may consist of 2, 3 or 4 rectangular regions),
scale, position, and orientation (horizontal or vertical, though some implemen-
tations also incorporate diagonal features). Formally, a weak classifier hj(x)

97

183 / 212

(Viola-Jones face detection algorithm, con’t)

Key idea: build a strong classifier from a cascade of many weak classifiers
− all of whom in succession must agree on the presence of a face

I A face (in frontal view) is presumed to have structures that should
trigger various local “on-off” or “on-off-on” feature detectors

I A good choice for such feature detectors are 2D Haar wavelets
(simple rectangular binary alternating patterns)

I There may be 2, 3, or 4 rectangular regions (each +1 or −1) forming
feature detectors fj , at differing scales, positions, and orientations

I Applying Haar wavelets to a local image region only involves adding
and subtracting pixel values (no multiplications; hence very fast)

I A given weak classifier hj (x) consists of a feature fj , a threshold θj

and a polarity pj ∈ ±1 (all determined in training) such that

hj (x) =

{
−pj if fj < θj

pj otherwise

I A strong classifier h(x) takes a linear combination of weak classifiers,
using weights αj learned in a training phase, and considers its sign:

h(x) = sign(
∑

j

αj hj)

184 / 212

(Viola-Jones face detection algorithm, con’t)

I At a given level of the cascade, a face is “provisionally deemed to
have been detected” at a certain position if h(x) > 0

I Only those image regions accepted by a given layer of the cascade
(h(x) > 0) are passed on to the next layer for further consideration

I A face detection cascade may have 30+ layers, yet the vast majority
of candidate image regions will be rejected early in the cascade.

shift the detector window by more than one pixel at a time depending on the
current window size, and the scale would be increased by some constant (say
20%) at each iteration over the image, but the number of evaluations will still
be about 105 per image.

Modern approaches to face detection make use of a number of image pro-
cessing and machine learning techniques to deal with these challenges. The
currently most popular method is due to Viola and Jones (2004), who popu-
larised the use of the AdaBoost (“Adaptive Boosting,” formulated by Freund
and Schapire) machine learning algorithm to train a cascade of feature clas-
sifiers for object detection and recognition. Boosting is a supervised machine
learning framework which works by building a “strong classifier” as a com-
bination of (potentially very simple) “weak classifiers.” As illustrated in the
figure below, a Viola-Jones face detector consists of classifiers based on simple
rectangular features (which can be viewed as approximating Haar wavelets)
and makes use of an image representation known as the integral image (also
called summed area table) to compute such features very efficiently.

The resulting boosted classifier is a weighted combination of thresholded
responses to a set of rectangular features that, like Haar basis functions, differ
in complexity (e.g. the features may consist of 2, 3 or 4 rectangular regions),
scale, position, and orientation (horizontal or vertical, though some implemen-
tations also incorporate diagonal features). Formally, a weak classifier hj(x)

97

185 / 212

(Viola-Jones face detection algorithm, con’t)

I Training uses the AdaBoost (“Adaptive Boosting”) algorithm
I This supervised machine learning process adapts the weights αj such

that early cascade layers have very high true accept rates, say 99.8%
(as all must detect a face; hence high false positive rates, say 68%)

I Later stages in the cascade, increasingly complex, are trained to be
more discriminating and therefore have lower false positive rates

I More and more 2D Haar wavelet feature detectors are added to each
layer and trained, until performance targets are met

I The cascade is evaluated at different scales and offsets across an
image using a sliding window approach, to find any (frontal) faces

I With “true detection” probability di in the i th layer of an N-layer
cascade, the overall correct detection rate is: D =

∏N
i=1 di

I With “erroneous detection” probability ei at the i th layer, the overall
false positive rate is E =

∏N
i=1 ei (as every layer must falsely detect)

I Example: if we want no false detections, with 105 image subregions
so E < 10−5, in a 30-layer cascade we train for ei = 10−5/30 ≈ 0.68
which shows why each layer can use such weak classifiers!

I Likewise, to achieve a decent overall detection rate of D = 0.95
requires di = 0.951/30 ≈ .9983 (very happy to call things “faces”)

186 / 212

(Viola-Jones face detection algorithm, con’t)

Performance on a local group photograph:

consists of a feature fj, a threshold θj and a parity pj ∈ ±1 such that

hj(x) =




1 if pjfj < pjθj
−1 otherwise

and the resulting strong classifier using weights aj is

h(x) = sign(
∑

j

ajhj)

By combining such classifiers into a hierarchical cascade made up of increas-
ingly complex classifiers, good detection accuracy can be achieved at relatively
low false positive levels. The cascade is also very efficient, since each stage
(layer) is computationally very simple to apply to an image region and only
those regions which are accepted by a given layer of the cascade (h(x) > 0)
are passed on to the next layer for consideration. Training is done in such
a way that early cascade layers have very high true accept rates (with cor-
respondingly high false positive rates) in order to quickly reject those image
regions that are very unlikely to represent a face. Later stages are trained to
be more discriminating and consequently have increasingly lower target false
positive rates. Each stage is trained by adding rectangle features until the
target detection and false positive rates are met.

A fully trained face detection cascade may have over 30 layers, yet the vast
majority of candidate image regions will only be considered by the first few of
these. To perform face detection, the cascade is evaluated at different scales
and offsets within an image using a sliding window approach. The following
figure illustrates what the sliding window finds in a local group photo:

98
187 / 212

2D Appearance-based face recognition: Gabor wavelets

We saw that 2D Gabor wavelets can make remarkably compact codes for
faces, among many other things. In this sequence, even using only about
100 Gabor wavelets, not only the presence of a face is obvious, but also
its gender, rough age, pose, expression, and perhaps even identity:

Number of Wavelets

116 216 original16 52

���������
	���
������
��������������� �!�!"$#%��&'��(%��&)�!*,+-��&/.0*1� 23��� �4#5&6#5(7�,8!����":9;+��$<$��=��4&'�
>@?BA CED:F�GIHKJMLON-PBHRQ3PBN�J7DBS�TUS�VXWYGID:Z�[6J�\
]@^�	`_a	��b�c^�d!e6fhg�i1jlk�monEpqkc� 	or7���
	ts4d ubvX�
	�uwk$d 	xr�d
i�d
^�	;u�i7s�kcuKy%uzd
	��@�
	te {5i�|%eB	xe�icj�d
^�	�m;k1}Kic�6y%uzd
	��!ea~l������m;k1}Kic�@_@k��c	�ub	4d
j/��|%s�d
��i�|%e�k1�
	X|�i1d,ic� d ^%ic�ci�|%k1u��Id ^��%e����,{�ubv���|���d ^%k1dt�-j/i���k��c�b�c	t|�j�k1�,��ubv���i1jom;kc}5i���_@k��c	tu�	�d
et����d��we�|�i1d,{5i�e e �b}�u�	�d i
s�k1uws4�%ubk1d 	�k�_a	��b�c^�d`fhg@}�v0k�e ���,{�ub	,{��
i1�:	ts4d �bic|0icj�d ^%	�m;kc}5i��`_@k��c	tu�	�d`~-�c�3ic|�d i�d ^�	,�b��k1�c	�����|0j�k�s�dt��k�j�k1�,�bu�v�i1j6r7�5k1u
_ak���	�ub	4d
e�������@�~ �������t� �~ ���h ^5kce�d i�}K	0s4ic|5eB�wr7	��
	tr��¡]@^�	¢_@k��c	�ub	4d£�~ �1¤ �be�d
^�	¥r7�%k1uh_@k��c	tu�	�d�icj3d
^�	¢_ak���	�ub	4d,~ � ����¦§ ~ � �!¨ �~ �c¤�© ��ª g�« ¬ �¥n­�zd
^���®�°¯ �~ ��� ¨ ���t� ¨ �~ ���6±:² �l_6	�stk1|³_h�
�zd
	µ´ § ��¨K�� ©�¶ �·� �,�¥��|³i1d
^�	���_6i��
r%e��I�c�b�c	�|�¸�¹�ºR»¼¯'½�» ±
k1|%r³k�monEp®�®�¾�t~ ��� ¨ ����� ¨B~ ���h ��d ^�	�ic{7d
����kcu�_a	��b�c^�d
e�j/ic��¸Od ^%k1d��,�b|����,�b¿�	�d ^�	�	�|�	t� ��v��b|À	tÁK�À¯'Â ± kc� 	�������	�|³}�v
f g � § ¸¼¨ �~ � � © ���)dÃs�kc|¢}5	�e ^�i$_h|�d ^%k1d �~ � �-�ÅÄ ¬3Æ ��ÇRÈ�É g�« ¬ ~ �c¤ ��_h^%	��
	�� g�« ¬ � § ~ � �!¨B~ �1¤�© �

ÊÌËYÍ
Î ÏÎ

ÐË
Ë Ñ

ÒoÓ�Ô�Õ�Ó%Ö

Õ�×

��������� 	�Â7
�ØÅ9!(7#K��&'��"1#¥¸O¹Ùº�»K¯�½l» ± �w�����
ÚcÚ%�!*�8�Û¢&�.%�,=Ü��#K�!�1�����
Ú�ÚK��#��
��Ý��#5&)"¡&/.��Ù<$�
��&�"$�ßÞà¹á½lâ¥ãåä¼.��³���
Ú�ÚK��#��E":9ßÞæ��#5&)"�º�»K¯�½l» ± �w�
�c�!.�����<��!*�+-��&�.³&�.%�X=z��#K�!�$�����
Ú�ÚK��#��¢�,ã�ç`"$&/.����
Ú�ÚK��#��$���!"$#%��&'��&�(7&)���$#
"$��&/.�"
��"1#K�1=lÚK� ":è��!�4&���"$#q":90��9!(7#¼�4&���"$#³¸é¹éº�»5¯'½�» ± ��#5&)"�&/.��¥��(%8���Ú%�c�!�
ê �£ë�ìÀº�»K¯�½l» ± ã

]@^%	�k1}Ki$�c	o	tÁ��%k$d
��i�|%ehk1ububi$_E�%e@d
i,r�	4y%|�	;d
^�	�ic{K	��!k$d
ic�
í7î
$º » ¯�½ » ±�ï ðKñ ê ¯/~ ��� ¨ �t��� ¨ ~ ����± ë ¯'ò ±

kce6j/icubu�i$_Ãet
l�c�b�c	t|ßk,e 	4d`�óicjIi�{7d �b��k1uR_@k��c	�ub	4d!eai1j-k,monEp��7d ^%	�ic{K	��!k$d i�� í î �
	�{��
	te 	�|�d!eakc|�i��Bd
^�ic��ic|%kcu5{%� ic�:	ts�d
��i�|�icj�k
j/��|%s�d
��i�|ß¸Xic|�d i�d ^%	�s4ubi�e 	tr�u��b|�	tkc�heB{%kc|¢i1j-�U¯�e 	�	�	xÁ5�Ã¯'ò ± k1|5r�y5�%��Â ± ���'� 	c�

ô¸�� í î ¯�¸ ± �å¸@��;�õ� âö g�÷ È fhg'~l���¥��_h��d ^éÞø�­¸h�� � ¯�ù ±
ú û¢ü�ýhþåÿ��-ü�ý������	�
����� ü�
�þ���þ��������	���¢ü�ýhþ
]@^�	�_@k��c	tu�	�d��
	�{��
	te 	�|�d
k1d �bic|­r7	xe s�� �b}5	xrE�b|Ed
^�	O{%� 	t���bic�5e�e 	ts�d
��i�|µ��k�vM}5	Ù	4¦¼	ts4d �b�c	tu�vM�%e 	trEj/ic�¢k���|�	Oj�kcs4	�d �!kcs����b|��%�
 ak�eB�ws�kcu�ubvc��d
^��behd
kce!���wehkcs!^%��	t�c	tr�}�v�k"�,|%	�ubv�r7	4j/i�� �,�b|���kXmonEp£e i�d
^%k$dÃ��dÃ��k$d!s!^�	te@d
^�	;j�kcs�	;����k1��	���|¢	xkcs!^�j/�
kc��	;icjlk
���wr7	tiÃeB	xÁ��%	�|%s�	c�I]@^%	�k���|�	ar7	4j/i�� ��k$d
��i�|;i1j%k3monEp��beIs�k1�
�
��	xr`i��7d�}�v�s4i�|%eB�wr7	t� �b|��@d ^%	�	�|�d �b�
	�_ak���	�ub	4d�|�	�d:_6i��!�okceIkÃeB�b|���u�	

I Gabor wavelets capture image structure as combined undulations
I Parameterisation: 2D positions, sizes, orientations, and phases
I Facial features like eyes, lips, and noses are represented with just a

handful of wavelets, without requiring explicit models for such parts
I Can track changes of expression locally. Example: gaze = phase
I A deformable elastic graph made from such an encoding can preserve

matching, while tolerating some changes in pose and expression
188 / 212

(2D Appearance-based face recognition: Gabor wavelets)

Phase-Quadrant Demodulation Code

[0, 0] [1, 0]

[1, 1][0, 1]

Re

Im

Computed feature vectors in a face code can be local 2D Gabor wavelet
amplitude or phase information. Bits in the “face code” are set by the
quadrant in which the phasor lies, for each aspect of facial structure.

189 / 212

2D Appearance-based face recognition: “eigenfaces”

An elegant method for 2D appearance-based face recognition combines
Principal Components Analysis (PCA) with machine learning and algebra,
to compute a linear basis (like the Fourier basis) for representing any face
as a combination of empirical eigenfunctions, called eigenfaces.

I A database of face images (at least 10,000) that are pre-normalised
for size, position, and frontal pose is “decomposed” into its Principal
Components of statistical variation, as a sequence of orthonormal
eigenfunctions whose eigenvalues are in descending order

I This is a classical framework of linear algebra, associated also with
the names Karhunen-Loève Transform, or the Hotelling Transform,
or Dimensionality Reduction and subspace projection

I Optimised for truncation: finding the best possible (most accurate)
representation of data using any specified finite number of terms

I Having extracted from a face gallery the (say) 20 most important
eigenfaces of variation (in sequence of descending significance),
any given presenting face is projected onto these, by inner product

I The resulting (say) 20 coefficients then constitute a very compact
code for representing, and recognising, the presenting face

I 15 such representational eigenfaces are shown in the next slide
190 / 212

(2D Appearance-based face recognition: “eigenfaces”)

The top left face is a particular linear combination of the eigenfaces
191 / 212

(2D Appearance-based face recognition: “eigenfaces”)

I Performance is often in the range of 90% to 95% accuracy

I Databases can be searched very rapidly, as each face is represented
by a very compact feature vector of only about 20 numbers

I A major limitation is that significant (early, low-order) eigenfaces
emerging from the statistical analysis arise just from normalisation
errors of size (head outlines), or variations in illumination angle

I Like other 2D representations for faces, the desired invariances for
transformations of size (distance), illumination, and pose are lacking

I Both the Viola-Jones face detection algorithm, and these 2D
appearance-based face recognition algorithms, sometimes deploy
“brute force” solutions (say at airport Passport control) such as
acquiring images from a large (3× 3) or (4× 4) array of cameras for
different pose angles, each allowing some range of angles

192 / 212

Three-dimensional approaches to face recognition

Face recognition algorithms now aim to model faces as three-dimensional
objects, even as dynamic objects, in order to achieve invariances for pose,
size (distance), and illumination geometry. Performing face recognition in
object-based (volumetric) terms, rather than appearance-based terms,
unites vision with model-building and graphics.

To construct a 3D representation of a face, it is necessary to extract both
a shape model (below right), and a texture model (below left). The term
“texture” here encompasses albedo, colouration, and 2D surface details.

16.6 Three-dimensional approaches to face recognition

Current efforts in face recognition seek to model faces as three-dimensional
objects, even as dynamic objects, in order to achieve invariance both to pose
angle and illumination geometry. Of course, this requires solving the ill-posed
problems of infering shape from shading, interpreting albedo versus variations
in Lambertian and specular surface properties, structure from motion, etc.
On page 4 we examined how difficult this problem is, and how remarkable it
is that we humans seem to be so competent at it. The synthesis of vision
as model-building and graphics, to perform face recognition in object-based
terms, rather than appearance-based terms, is now a major focus of this field.

In order to construct a 3D representation of a face (so that, for example,
its appearance can be predicted at different pose angles as we saw on page 4),
it is necessary to extract separately both a shape model and a texture model
(texture encompasses albedo, colouration, any 2D surface details, etc).

The 3D shape model (above right) is extracted by various means, which
may include laser range-finding (with millimetre resolution); stereo cameras;
projection of structured light (grid patterns whose distortions reveal shape); or
extrapolation from a multitude of images taken from different angles (often a
4×4 matrix). The size of the data structure can be in the gigabyte range, and
significant time is required for the computation. Since the texture model is
linked to coordinates on the shape model, it is possible to project the texture
(tone, colour, features, etc) onto the shape and thereby generate models of
the face in different poses. Clearly sensors play an important role here for
extracting the shape model, but it is also possible to do this even from a single
photograph if sufficiently strong Bayesian priors are also marshalled, assuming
an illumination geometry and universal aspects of head and face shape.

103

193 / 212

(Three-dimensional approaches to face recognition)

Extracting the 3D shape model can be done by various means:

I laser range-finding, even down to millimetre resolution

I calibrated stereo cameras

I projection of structured IR light (grid patterns whose distortions
reveal shape, as with Kinect)

I extrapolation from multiple images taken from different angles

The size of the resulting 3D data structure can be in the gigabyte range,
and significant time can be required for the computation.

Since the texture model is linked to coordinates on the shape model, it is
possible to “project” the texture (tone, colour, features) onto the shape,
and thereby to generate predictive models of the face in different poses.

Clearly sensors play an important role here for extracting shape models,
but it is also possible to do this even from just a single photograph if
sufficiently strong Bayesian priors are also marshalled, assuming an
illumination geometry and some universal aspects of head and face shape.

194 / 212

(Three-dimensional approaches to face recognition)

Texture Extraction
& Facial Expression

Reconstruction
of Shape & Texture Cast Shadow New Illumination Rotation

InitializationOriginal 3D Reconstruction

An impressive demo of using a single 2D photograph (top left) to morph
a 3D face model after manual initialisation, building a 3D representation
of the face that can be manipulated for differing pose angles, illumination
geometries, and even expressions, can be seen here:

http://www.youtube.com/watch?v=nice6NYb_WA

195 / 212

http://www.youtube.com/watch?v=nice6NYb_WA

(Three-dimensional approaches to face recognition)

Description from the Blanz and Vetter paper,
Face Recognition Based on Fitting a 3D Morphable Model:

“...a method for face recognition across variations in pose, ranging from
frontal to profile views, and across a wide range of illuminations,
including cast shadows and specular reflections. To account for these
variations, the algorithm simulates the process of image formation in 3D
space, using computer graphics, and it estimates 3D shape and texture of
faces from single images. The estimate is achieved by fitting a statistical,
morphable model of 3D faces to images. The model is learned from a set
of textured 3D scans of heads. Faces are represented by model
parameters for 3D shape and texture.”

196 / 212

Face algorithms compared with human performance

The US National Institute for Standards and Technology (NIST) runs
periodic competitions for face recognition algorithms, over a wide range
of conditions. Uncontrolled illumination and pose remain challenging.
In a recent test, three algorithms had ROC curves above (better than)
human performance at non-familiar face recognition (the black curve).
But human performance remains (as of 2018) better on familiar faces.

Performance of humans and seven algorithms on the difficult face pairs (Fig. 3a) and easy face pairs (Fig. 3b) shown

algorithms outperform humans on the difficult face pairs at most or all combinations of verification

(cf., [20] NJIT, [21] CMU for details on two of the three algorithms). Humans out-perform the other four

face pairs. All but one algorithm performs more accurately than humans on the easy face pairs. (A color

figure is provided in the Supplemental Material.)

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

False Accept Rate

V
e
r
if

ic
a
ti

o
n

 R
a
te

NJIT

CMU

Viisage

Human Performance

Algorithm A

Algorithm B

Algorithm C

Algorithm D

Chance Performance

197 / 212

Major breakthrough with CNNs: deep-learning ‘FaceNet’

Machine learning approaches focused on scale (“Big Data”) are having a
profound impact in Computer Vision. In 2015 Google demonstrated large
reductions in face recognition error rates (by 30%) on two very difficult
databases: YouTube Faces (95%), and Labeled Faces in the Wild (LFW)
database (99.63%), which remain as accuracy records. But when tested
on larger (“MegaFace”) datasets, accuracy fell to about 75%.

198 / 212

(Major breakthrough with CNNs: deep-learning ‘FaceNet’)

I Convolutional Neural Net with 22 layers and 140 million parameters
I Big dataset: trained on 200 million face images, 8 million identities
I 2,000 hours training (clusters); about 1.6 billion FLOPS per image
I Euclidean distance metric (L2 norm) on embeddings f (xi) learned for

cropped, but not pre-segmented, images xi using back-propagation
I Used triplets of images, one pair being from the same person, so

that both the positive (same face) and negative (different person)
features were learned by minimising a loss function L:

L =
∑

i

[
‖ f (xa

i)− f (xp
i) ‖2 − ‖ f (xa

i)− f (xn
i) ‖2

]

...

Batch

DEEP ARCHITECTURE L2 Triplet
Loss

E
M
B
E
D
D
I
N
G

Figure 2. Model structure. Our network consists of a batch in-
put layer and a deep CNN followed by L2 normalization, which
results in the face embedding. This is followed by the triplet loss
during training.

Anchor

Positive

Negative

Anchor
Positive

Negative
LEARNING

Figure 3. The Triplet Loss minimizes the distance between an an-
chor and a positive, both of which have the same identity, and
maximizes the distance between the anchor and a negative of a
different identity.

in the end-to-end learning of the whole system. To this end
we employ the triplet loss that directly reflects what we want
to achieve in face verification, recognition and clustering.
Namely, we strive for an embedding f(x), from an image
x into a feature space Rd, such that the squared distance
between all faces, independent of imaging conditions, of
the same identity is small, whereas the squared distance be-
tween a pair of face images from different identities is large.

Although we did not a do direct comparison to other
losses, e.g. the one using pairs of positives and negatives,
as used in [14] Eq. (2), we believe that the triplet loss is
more suitable for face verification. The motivation is that
the loss from [14] encourages all faces of one identity to be
projected onto a single point in the embedding space. The
triplet loss, however, tries to enforce a margin between each
pair of faces from one person to all other faces. This al-
lows the faces for one identity to live on a manifold, while
still enforcing the distance and thus discriminability to other
identities.

The following section describes this triplet loss and how
it can be learned efficiently at scale.

3.1. Triplet Loss

The embedding is represented by f(x) ∈ Rd. It em-
beds an image x into a d-dimensional Euclidean space.
Additionally, we constrain this embedding to live on the
d-dimensional hypersphere, i.e. ‖f(x)‖2 = 1. This loss is
motivated in [19] in the context of nearest-neighbor classifi-
cation. Here we want to ensure that an image xai (anchor) of
a specific person is closer to all other images xpi (positive)
of the same person than it is to any image xni (negative) of
any other person. This is visualized in Figure 3.

Thus we want,

‖xai − xpi ‖22 + α < ‖xai − xni ‖22, ∀ (xai , xpi , xni) ∈ T , (1)

where α is a margin that is enforced between positive and
negative pairs. T is the set of all possible triplets in the
training set and has cardinality N .

The loss that is being minimized is then L =

N∑

i

[
‖f(xai)− f(xpi)‖

2
2 − ‖f(xai)− f(xni)‖

2
2 + α

]
+
.

(2)
Generating all possible triplets would result in many

triplets that are easily satisfied (i.e. fulfill the constraint
in Eq. (1)). These triplets would not contribute to the train-
ing and result in slower convergence, as they would still
be passed through the network. It is crucial to select hard
triplets, that are active and can therefore contribute to im-
proving the model. The following section talks about the
different approaches we use for the triplet selection.

3.2. Triplet Selection

In order to ensure fast convergence it is crucial to select
triplets that violate the triplet constraint in Eq. (1). This
means that, given xai , we want to select an xpi (hard pos-
itive) such that argmaxxp

i
‖f(xai)− f(xpi)‖

2
2 and similarly

xni (hard negative) such that argminxn
i
‖f(xai)− f(xni)‖22.

It is infeasible to compute the argmin and argmax
across the whole training set. Additionally, it might lead
to poor training, as mislabelled and poorly imaged faces
would dominate the hard positives and negatives. There are
two obvious choices that avoid this issue:

• Generate triplets offline every n steps, using the most
recent network checkpoint and computing the argmin
and argmax on a subset of the data.

• Generate triplets online. This can be done by select-
ing the hard positive/negative exemplars from within a
mini-batch.

Here, we focus on the online generation and use large
mini-batches in the order of a few thousand exemplars and
only compute the argmin and argmax within a mini-batch.

To have a meaningful representation of the anchor-
positive distances, it needs to be ensured that a minimal
number of exemplars of any one identity is present in each
mini-batch. In our experiments we sample the training data
such that around 40 faces are selected per identity per mini-
batch. Additionally, randomly sampled negative faces are
added to each mini-batch.

Instead of picking the hardest positive, we use all anchor-
positive pairs in a mini-batch while still selecting the hard
negatives. We don’t have a side-by-side comparison of hard
anchor-positive pairs versus all anchor-positive pairs within
a mini-batch, but we found in practice that the all anchor-
positive method was more stable and converged slightly
faster at the beginning of training.

I The embeddings create a compact (128 byte) code for each face
I Simple threshold on Euclidean distances among these embeddings

then gives decisions of “same” vs “different” person
199 / 212

(Major breakthrough with CNNs: deep-learning ‘FaceNet’)

|

Paper Graphs
File Edit View Insert Format Data Tools Add­ons Help Accessibility All changes saved in Drive

$ % 123

Arial 10

10,000,000 100,000,000 1,000,000,000
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%
50.0%
55.0%
60.0%
65.0%
70.0%
75.0%
80.0%
85.0%
90.0%
95.0%

Multi­Add (FLOPS)

Ac
cu
ra
cy
 @

10
­3
 R
ec
al
l

trix_2014.46­Tue_b vc_29
Debug Comments Share

dkalenichenko@google.com

NNS2

NNS1

NN2

NN1

Figure 4. FLOPS vs. Accuracy trade-off. Shown is the trade-off
between FLOPS and accuracy for a wide range of different model
sizes and architectures. Highlighted are the four models that we
focus on in our experiments.

5.1. Computation Accuracy Trade-off

Before diving into the details of more specific experi-
ments lets discuss the trade-off of accuracy versus number
of FLOPS that a particular model requires. Figure 4 shows
the FLOPS on the x-axis and the accuracy at 0.001 false
accept rate (FAR) on our user labelled test-data set from
section 4.2. It is interesting to see the strong correlation be-
tween the computation a model requires and the accuracy it
achieves. The figure highlights the five models (NN1, NN2,
NN3, NNS1, NNS2) that we discuss in more detail in our
experiments.

We also looked into the accuracy trade-off with regards
to the number of model parameters. However, the picture
is not as clear in that case. For example, the Inception
based model NN2 achieves a comparable performance to
NN1, but only has a 20th of the parameters. The number
of FLOPS is comparable, though. Obviously at some point
the performance is expected to decrease, if the number of
parameters is reduced further. Other model architectures
may allow further reductions without loss of accuracy, just
like Inception [16] did in this case.

5.2. Effect of CNN Model

We now discuss the performance of our four selected
models in more detail. On the one hand we have our tradi-
tional Zeiler&Fergus based architecture with 1×1 convolu-
tions [22, 9] (see Table 1). On the other hand we have Incep-
tion [16] based models that dramatically reduce the model
size. Overall, in the final performance the top models of
both architectures perform comparably. However, some of
our Inception based models, such as NN3, still achieve good
performance while significantly reducing both the FLOPS
and the model size.

The detailed evaluation on our personal photos test set is

NN2 NN1 NNS1 NNS2

1E­61E­61E­6 1E­51E­51E­5 1E­41E­41E­4 1E­31E­31E­3 1E­21E­21E­2 1E­11E­11E­1 1E01E01E0

1E­11E­11E­1

5E­15E­15E­1

1E01E01E0

FARFARFAR

VA
L

VA
L

VA
L

Figure 5. Network Architectures. This plot shows the com-
plete ROC for the four different models on our personal pho-
tos test set from section 4.2. The sharp drop at 10E-4 FAR
can be explained by noise in the groundtruth labels. The mod-
els in order of performance are: NN2: 224×224 input Inception
based model; NN1: Zeiler&Fergus based network with 1×1 con-
volutions; NNS1: small Inception style model with only 220M
FLOPS; NNS2: tiny Inception model with only 20M FLOPS.

architecture VAL

NN1 (Zeiler&Fergus 220x220) 87.9%± 1.9
NN2 (Inception 224x224) 89.4%± 1.6
NN3 (Inception 160x160) 88.3%± 1.7
NN4 (Inception 96x96) 82.0%± 2.3
NNS1 (mini Inception) 82.4%± 2.4
NNS2 (tiny Inception) 51.9%± 2.9

Table 3. Network Architectures. This table compares the per-
formance of our model architectures on the hold out test set (see
section 4.1). Reported is the mean validation rate VAL at 10E-3
false accept rate. Also shown is the standard error of the mean
across the five test splits.

shown in Figure 5. While the largest model achieves a dra-
matic improvement in accuracy compared to the tiny NNS2,
the latter can be run 30ms / image on a mobile phone and
is still accurate enough to be used in face clustering. The
sharp drop in the ROC for FAR < 10−4 indicates noisy
labels in the test data groundtruth. At extremely low false
accept rates a single mislabeled image can have a significant
impact on the curve.

5.3. Sensitivity to Image Quality

Table 4 shows the robustness of our model across a wide
range of image sizes. The network is surprisingly robust
with respect to JPEG compression and performs very well
down to a JPEG quality of 20. The performance drop is
very small for face thumbnails down to a size of 120x120

Different variants of the Convolutional Neural Net and model sizes were
generated and run, revealing the trade-off between FLOPS and accuracy
for a particular point on the ROC curve (False Accept Rate = 0.001)

200 / 212

2017 IARPA (US DoD) Face Recognition Competition

I Major NIST test commissioned by several US intelligence agencies

I Search a gallery of “cooperative portrait photos” of ∼ 700K faces...

I ... using non-ideal probes: face photos without quality constraints:
I persons unaware of, and not cooperating with, the image acquisition
I variations in head pose, facial expression, illumination, occlusion
I reduced image resolution (e.g. photos taken from a distance)

I Face image databases were“web-scraped, ground-truthed”

I Competitors: 16 commercial and academic entries, all trained on
vast databases using advanced machine learning algorithms (CNNs)
to learn invariances for pose, expression, illumination, occlusion

I Metrics and benchmarks of the competition:
I 1-to-1 verification with lowest False non-Match Rate (FnMR) when

the False Match Rate (FMR) threshold is set to FMR = 0.001
I identification accuracy: lowest FnMR when FMR = 0.001 while

searching a gallery of ∼ 700,000 images
I identification speed: fastest search of ∼ 700,000 identities while

FnMR remains good

201 / 212

Highlights of 2017 Face Recognition Competition results

I identification accuracy: FnMR = 0.204 achieved at FMR = 0.001
I successful indexing instead of exhaustive search through a gallery:

matches retrieved from 700K image gallery in just 0.6 milliseconds!
(One process, running on a single core of a c. 2016 server-class CPU)

I sub-linear scaling of search time: a 30-fold increase in gallery size
incurs only a 3-fold increase in search duration, for fastest entry

I (obviously humans don’t perform sequential searches through a
memory bank of previously seen faces in order to recognise a face)

I but building the fast-search index on 700,000 images takes 11 hours

202 / 212

Decision Error Trade-off curves, 2017 face recognition

Thispublicationisavailablefreeofchargefrom:https://doi.org/10.6028/NIST.IR.8197

F
R

P
C

-
FA

C
E

R
E

C
O

G
N

IT
IO

N
P

R
IZ

E
C

H
A

L
L

E
N

G
E

6

ibug

voco

cybe

morp

ayon

neur

smil

digi

rank

hbin

inno

deep

3div

visi

yitu

ntec

0.09

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1e−05 1e−04 1e−03 1e−02 1e−01 1e+00

False match rate (FMR)

Fa
ls

e
no

n−
m

at
ch

 r
at

e
(F

N
M

R
)

Dataset: WILD
FNMR @ FMR=0.001
and Algorithm

0.89 ibug_0_gpu

0.86 vocord_0_gpu

0.83 cyberextruder_0_cpu

0.77 morpho_0_gpu

0.76 ayonix_0_cpu

0.72 neurotechnology_0_cpu

0.68 smilart_0_gpu

0.67 digitalbarriers_0_cpu

0.60 rankone_0_cpu

0.56 innovatrics_0_gpu

0.50 hbinno_0_cpu

0.49 deepsense_0_cpu

0.42 3divi_0_cpu

0.40 visionlabs_0_cpu

0.35 yitu_0_cpu

0.22 ntechlab_0_cpu

Figure 2: For the FRPC verification algorithms, the graph shows show error tradeoff characteristics for comparisons of wild images.

2017/
11/

22
10:03:52

ID
E

N
T

IFIC
A

T
IO

N
IN

T
O

P
R

R
A

N
K

S
F

R
O

M
D

A
TA

B
A

SE
O

F
SIZ

E
N

V
E

R
IFIC

A
T

IO
N

FN
IR

(N
,R

,T)
“False

negative
identification

rate”
FN

M
R

(T
)

“False
non-m

atch
rate”

FPIR
(N

,T)
“False

positive
identification

rate”
FM

R
(T

)
“False

m
atch

rate”

203 / 212

NIST also made DET curves for face versus iris recognition

I Because of much greater entropy, IrisCode FMR was 100,000 x lower
I IrisCode FnMR was also 10 x lower than face recognition algorithmsROCs for face + iris.
Identification mode, N = 1.6M, MBE face test 2010, IREX III iris test 2011. Detainee
populations, face = single FBI Mugshot, iris = single eye DoD.

LeadingLeading
FACE

Algorithms

Miss Rate
x10 False Positive

Leading
IRIS

False Positive
x100,000

Algorithms

False Positive Identification Rate, aka “False Alarm Rate”
204 / 212

NISTIR 8197 Face Recognition Competition (Nov. 2017)

This
publication

is
available

free
ofcharge

from
:https://doi.org/10.6028/N

IST.IR
.8197

FRPC - FACE RECOGNITION PRIZE CHALLENGE 24

References

[1] Artem Babenko and Victor Lempitsky. Efficient indexing of billion-scale datasets of deep descriptors. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

[2] Patrick Grother and Mei Ngan. Interagency report 8009, performance of face identification algorithms. Face Recogni-
tion Vendor Test (FRVT), May 2014.

[3] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A database for
studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts,
Amherst, October 2007.

[4] Masato Ishii, Hitoshi Imaoka, and Atsushi Sato. Fast k-nearest neighbor search for face identification using bounds
of residual score. In 2017 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pages
194–199, Los Alamitos, CA, USA, May 2017. IEEE Computer Society.

[5] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with gpus. CoRR, abs/1702.08734,
2017.

[6] Ira Kemelmacher-Shlizerman, Steven M. Seitz, Daniel Miller, and Evan Brossard. The megaface benchmark: 1 million
faces for recognition at scale. CoRR, abs/1512.00596, 2015.

[7] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In British Machine Vision Conference, 2015.

[8] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face recognition and
clustering. CoRR, abs/1503.03832, 2015.

[9] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to human-level perfor-
mance in face verification. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’14, pages 1701–1708, Washington, DC, USA, 2014. IEEE Computer Society.

2017/11/22 10:03:52
IDENTIFICATION IN TOP R RANKS FROM DATABASE OF SIZE N VERIFICATION
FNIR(N, R, T) “False negative identification rate” FNMR(T) “False non-match rate”

FPIR(N, T) “False positive identification rate” FMR(T) “False match rate”

205 / 212

Affective computing: interpreting facial emotion

Humans use their faces as visually expressive organs, cross-culturally

206 / 212

Many areas of the human brain are concerned with recognising and
interpreting faces, and social computation is believed to have been the
primary computational load in the evolution of our brains, because of its
role in reproductive success

��������	
��
��	
��������
���
��
���
����
������
����
������������������	�����������
��������
���!"#$%&�#���!!!!$$�!!�!!!�!��’(��)�*�����

$��(�� +!�!+�!%�+#��,

�������
��
�� ������
��
���$%��(�$�.�!������������	
��
��������������/���	����������

���
�0
�1��)�
����0�����-���2��1��)�
����0����

����	

���
����������

�����
3��
�����4�50���
��
��(�6���
���
���

 �����5���
�
���	����)������6����2�7��4�8

�0

��9��:;�8��1���������<����=��>
������<�?��@��

,

����)��
����
�&��

����)�

����)��
 !
�-
�������

����)��
 !
�-
.����%�%

����)��
 !
�-
���"

����)��
 !
�-
��%��%

����)��
 !
�-
��))�

����)��
����%#
�&��

����)�

��)����

����)��

����)��
 !
�-
�������

����)��
 !
�-
.����%�%

����)��
 !
�-
���"

����)��
 !
�-
��%��%

����)��
 !
�-
��))�

207 / 212

Affective computing: classifying identity and emotion

208 / 212

(Affective computing: interpreting facial emotion)

MRI scanning has revealed much about brain areas that interpret facial
expressions. Affective computing aims to classify visual emotions as
articulated sequences using Hidden Markov Models of their generation.
Mapping the visible data to action sequences of the facial musculature
becomes a generative classifier of emotions.

209 / 212

Facial Action Coding System (FACS)

I FACS is a taxonomy of human facial expressions

I It specifies 32 atomic facial muscle actions called Action Units (AU)
executed by the seven articulating pairs of facial muscles

I Classically humans display six basic emotions: anger, fear, disgust,
happiness, sadness, surprise, through prototypical expressions

I Ethnographic studies suggest these are cross-cultural universals

I FACS also specifies 14 Action Descriptors (ADs): e.g. head pose,
gaze direction, thrust of the jaw, mandibular actions

I Message judgement decodes meanings of these objective encodings

I Analysis is subtle: e.g. distinguishing polite versus amused smiles

I Promising applications:
I understanding human mental state; attributing feelings
I detecting intentions, detecting deceit
I affective computing; understanding nonverbal communication
I building emotion interfaces
I prediction of human behaviour

210 / 212

(Facial Action Coding System FACS, con’t)

I Pre-processing: face detection; normalisation; facial point tracking

I Feature extraction, e.g. 2D Gabor features (usually 8 orientations,
and 5 to 9 frequencies) are powerful to detect facial landmarks, and
for representing wrinkling and bulging actions

I Appearance-based, geometry, motion, or hybrid approaches

I Spatio-temporal appearance features in video, versus static frames

I AU temporal segmentation, classification, and intensity estimation

I Coding the dynamic evolution between facial displays in videos

I Generative models (used with active appearance models) aim to infer
emotional state by modeling the muscular actions that generated it

I Discriminative methods fit deformable models and train a classifier

I Hidden Markov Models trained on articulated facial expressions

211 / 212

Facial Expression and Analysis: algorithm tests

I Just like the Face Recognition Competitions, there are FERA:
Facial Expression and Analysis Challenges (2011, 2015, 2017)

I Metrics used: Occurrence detection, and Intensity estimation

I Facial action detection measured with varying head pose

I Disappointing results so far (2017), compared to face recognition:
I Occurence detection accuracy: ∼ 0.57
I Intensity estimation accuracy: ∼ 0.44

I Limitations: training sets were often non-spontaneous expressions;
small datasets; large subject differences; environmental influences

I Building database ‘ground truths’: more than 100 hours of training
is required to become a human expert FACS coder

I Manual scoring: each minute of video requires about an hour

I Facial AU analysis remains an underdeveloped field with many open
issues but enormous potential for more fluid HCI interfaces

212 / 212

