
Lambda-Definable Functions

L11 116

Representing composition

If total function f ∈ Nn
!N is represented by F and total

functions g1, . . . , gn ∈ Nm
!N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ Nm

!N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

because F (G1 a1 . . . am) . . . (Gn a1 . . . am)
=β F g1(a1, . . . , am) . . . gn(a1, . . . , am)
=β f(g1(a1, . . . , am), . . . , gn(a1, . . . , am))
= f ◦ (g1, . . . , gn)(a1, . . . , am)

.

L11 124

Representing composition

If total function f ∈ Nn
!N is represented by F and total

functions g1, . . . , gn ∈ Nm
!N are represented by

G1, . . . , Gn, then their composition
f ◦ (g1, . . . , gn) ∈ Nm

!N is represented simply by

λx1 . . . xm. F (G1 x1 . . . xm) . . . (Gn x1 . . . xm)

This does not necessarily work for partial functions. E.g. totally

undefined function u ∈ N⇀N is represented by U ! λx1.Ω (why?)
and zero1 ∈ N!N is represented by Z ! λx1.0; but zero1 ◦ u is not
represented by λx1. Z(U x1), because (zero1 ◦ u)(n)↑ whereas
(λx1. Z(U x1)) n =β Z Ω =β 0. (What is zero1 ◦ u represented
by?)

L11 125

Primitive recursion
Theorem. Given f ∈ Nn

⇀N and g ∈ Nn+2
⇀N, there

is a unique h ∈ Nn+1
⇀N satisfying

{

h(⃗x, 0) ≡ f (⃗x)

h(⃗x, x + 1) ≡ g(⃗x, x, h(⃗x, x))

for all x⃗ ∈ Nn and x ∈ N.

We write ρn(f , g) for h and call it the partial function
defined by primitive recursion from f and g.

L11 126

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying
{

h(⃗a, 0) = f (⃗a)

h(⃗a, a + 1) = g(⃗a, a, h(⃗a, a))

or equivalently

h(⃗a, a) = if a = 0 then f (⃗a)
else g(⃗a, a− 1, h(⃗a, a− 1))

L11 127

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by

Φ f ,g(h)(⃗a, a) ! if a = 0 then f (⃗a)
else g(⃗a, a− 1, h(⃗a, a− 1))

L11 128

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by. . .

Strategy:

! show that Φ f ,g is λ-definable;
! show that we can solve fixed point equations

X = M X up to β-conversion in the λ-calculus.

L11 129

Representing booleans

True ! λx y. x
False ! λx y. y

If ! λ f x y. f x y

satisfy

" If True M N =β True M N =β M
" If False M N =β False M N =β N

L11 130

Representing test-for-zero

Eq0 ! λx. x(λy. False)True

satisfies

" Eq0 0 =β 0 (λy. False)True
=β True

" Eq0 n + 1 =β n + 1 (λy. False)True
=β (λy. False)n+1 True
=β (λy. False)((λy. False)n True)
=β False

L11 131

Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Have to show how to reduce the “n + 1-iterator” n + 1 to the
“n-iterator” n.

Idea: given f , iterating the function

g f : (x, y) !→ (f(x), x)

n + 1 times starting from (x, x) gives the pair (f n+1(x), f n(x)). So
we can get f n(x) from f n+1(x) parametrically in f and x, by building
g f from f , iterating n + 1 times from (x, x) and then taking the
second component.

Hence. . .
L11 133

Representing ordered pairs

Pair ! λx y f . f x y
Fst ! λ f . f True

Snd ! λ f . f False

satisfy

" Fst(Pair M N) =β Fst(λ f . f M N)
=β (λ f . f M N)True
=β True M N
=β M

" Snd(Pair M N) =β · · · =β N

L11 132

Representing predecessor

Want λ-term Pred satisfying

Pred n + 1 =β n
Pred 0 =β 0

Pred ! λy f x. Snd(y (G f)(Pair x x))
where

G ! λ f p. Pair(f(Fst p))(Fst p)

has the required β-reduction properties. [Exercise]

L11 134

Curry’s fixed point combinator Y

Y ! λ f . (λx. f(x x))(λx. f (x x))

satisfies Y M → (λx. M(x x))(λx. M(x x))
→ M((λx. M(x x))(λx. M(x x)))

hence Y M " M((λx. M(x x))(λx. M(x x))) # M(Y M).

So for all λ-terms M we have

Y M =β M(Y M)

L12 135

Curry’s fixed point combinator Y

Y ! λ f . (λx. f(x x))(λx. f (x x))

satisfies Y M → (λx. M(x x))(λx. M(x x))
→ M((λx. M(x x))(λx. M(x x)))

hence Y M " M((λx. M(x x))(λx. M(x x))) # M(Y M).

So for all λ-terms M we have

Y M =β M(Y M)

L12 135

Curry’s fixed point combinator Y

Y ! λ f . (λx. f(x x))(λx. f (x x))

satisfies Y M → (λx. M(x x))(λx. M(x x))
→ M((λx. M(x x))(λx. M(x x)))

hence Y M " M((λx. M(x x))(λx. M(x x))) # M(Y M).

So for all λ-terms M we have

Y M =β M(Y M)

L12 135

Representing primitive recursion

If f ∈ Nn
!N is represented by a λ-term F and

g ∈ Nn+2
!N is represented by a λ-term G,

we want to show λ-definability of the unique
h ∈ Nn+1

!N satisfying h = Φ f ,g(h)

where Φ f ,g ∈ (Nn+1
!N)!(Nn+1

!N) is given by

Φ f ,g(h)(⃗a, a) ! if a = 0 then f (⃗a)
else g(⃗a, a− 1, h(⃗a, a− 1))

We now know that h can be represented by

Y(λz⃗xx. If(Eq0 x)(F x⃗)(G x⃗ (Pred x)(z x⃗ (Pred x)))).
L12 136

Representing primitive recursion

Recall that the class PRIM of primitive recursive functions
is the smallest collection of (total) functions containing the
basic functions and closed under the operations of
composition and primitive recursion.

Combining the results about λ-definability so far, we have:
every f ∈ PRIM is λ-definable.

So for λ-definability of all recursive functions, we just have
to consider how to represent minimization. Recall. . .

L12 137

Minimization
Given a partial function f ∈ Nn+1

⇀N, define
µn f ∈ Nn

⇀N by
µn f (⃗x) ! least x such that f (⃗x, x) = 0 and

for each i = 0, . . . , x− 1, f (⃗x, i)
is defined and > 0
(undefined if there is no such x)

Can express µn f in terms of a fixed point equation:

µn f (⃗x) ≡ g(⃗x, 0) where g satisfies g = Ψ f (g)

with Ψ f ∈ (Nn+1
⇀N)!(Nn+1

⇀N) defined by

Ψ f(g)(⃗x, x) ≡ if f (⃗x, x) = 0 then x else g(⃗x, x + 1)

L12 138

Minimization
Given a partial function f ∈ Nn+1

⇀N, define
µn f ∈ Nn

⇀N by
µn f (⃗x) ! least x such that f (⃗x, x) = 0 and

for each i = 0, . . . , x− 1, f (⃗x, i)
is defined and > 0
(undefined if there is no such x)

Can express µn f in terms of a fixed point equation:

µn f (⃗x) ≡ g(⃗x, 0) where g satisfies g = Ψ f (g)

with Ψ f ∈ (Nn+1
⇀N)!(Nn+1

⇀N) defined by

Ψ f(g)(⃗x, x) ≡ if f (⃗x, x) = 0 then x else g(⃗x, x + 1)

L12 138

Representing minimization

Suppose f ∈ Nn+1
!N (totally defined function) satisfies

∀⃗a∃a (f (⃗a, a) = 0), so that µn f ∈ Nn
!N is totally

defined.

Thus for all a⃗ ∈ Nn, µn f (⃗a) = g(⃗a, 0) with g = Ψ f(g)
and Ψ f(g)(⃗a, a) given by
if (f (⃗a, a) = 0) then a else g(⃗a, a + 1).

So if f is represented by a λ-term F, then µn f is
represented by

λ⃗x.Y(λz x⃗ x. If(Eq0(F x⃗ x)) x (z x⃗ (Succ x))) x⃗ 0

L12 139

Recursive implies λ-definable

Fact: every partial recursive f ∈ Nn
⇀N can be expressed

in a standard form as f = g ◦ (µnh) for some
g, h ∈ PRIM. (Follows from the proof that computable =

partial-recursive.)

Hence every (total) recursive function is λ-definable.

More generally, every partial recursive function is
λ-definable, but matching up ↑ with ̸ ∃β−nf makes the
representations more complicated than for total functions:
see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]

L12 140

Computable = λ-definable
Theorem. A partial function is computable if and only if it
is λ-definable.

We already know that computable = partial recursive⇒ λ-definable.
So it just remains to see that λ-definable functions are RM
computable. To show this one can

$ code λ-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

$ write a RM interpreter for (normal order) β-reduction.

The details are straightforward, if tedious.

L12 141

Computable = λ-definable
Theorem. A partial function is computable if and only if it
is λ-definable.

We already know that computable = partial recursive⇒ λ-definable.
So it just remains to see that λ-definable functions are RM
computable. To show this one can

$ code λ-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

$ write a RM interpreter for (normal order) β-reduction.

The details are straightforward, if tedious.

L12 141

Computable = λ-definable
Theorem. A partial function is computable if and only if it
is λ-definable.

We already know that computable = partial recursive⇒ λ-definable.
So it just remains to see that λ-definable functions are RM
computable. To show this one can

$ code λ-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

$ write a RM interpreter for (normal order) β-reduction.

The details are straightforward, if tedious.

L12 141

	lecture-11
	lecture-12

