LLambda-Definable Functions



Representing composition

If total function f € IN"—IN is represented by F and total
functions g1,..., 9, € IN"=IN are represented by
G1,..., Gy, then their composition

fo(g1,-.-,9n) € N™=IN is represented simply by

AX1 oo X F(G1X1...%) oo . (G X1 oo X))

because F(Giai...am)...(Gpa1...a,)
—B Fgl(alr raﬂ*t) gn(alr s Om)
—B f(gl(all am) °Ign(alr°°°lam))
= fo(gl,...,gn)(al,...,am)
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Representing composition

If total function f € IN"—IN is represented by F and total
functions g1,..., 9, € IN"=IN are represented by
Gy, ..., Gy, then their composition

fo (gl, .,9n) € IN™=IN is represented simply by

AX1 oo X F(G1X1...%) oo . (G X1 oo X))

This does not necessarily work for partial functions. E.g. totally

undefined function # € IN—IN is represented by U = Ax1.Q) (why?)

and zero! € N—=N is represented by Z = Ax1.0; but zerol o 1 is not
represented by Axq.Z (U x1), because (zero! o u)(n)1 whereas
(Ax1. Z(U x1))n =5 ZQ =g 0. (What is zero' o u represented

by?)
(See Ex.12)
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Primitive recursion

Theorem. Given f € N"~IN and ¢ € N"T2-IN, there
is a unique h € IN"T1 ~IN satisfying

"h(X,0) = (%)
(h(Z,x+1) = g(F x h(X,x))

/\

for all ¥ € IN" and x € IN.

We write p"( f, g) for h and call it the partial function
defined by primitive recursion from f and g.
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T2-1N is represented by a A-term G,

we want to show A-definability of the unique
h € N"T15IN satisfying

'h(d,0) = f(d)
(h(d,a+1) =g(a,ah(d, a))

or equivalently

h(d,a) =if a =0 then f(d)
else g(d,a —1,h(d,a — 1))
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T2-1N is represented by a A-term G,

we want to show A-definability of the unique
h € N"t'SIN satisfying | h = @y (h)

where ® ¢, € (N"T1-IN)—(IN"T'-IN) is given by

®.(h)(d,a) =if a=0 then f(d)
else ¢g(d,a —1,h(d,a — 1))
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Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T2-1N is represented by a A-term G,

we want to show A-definability of the unique
h € N"t'SIN satisfying | h = @y (h)

where ® ¢, € (N"T1-IN)— (IN"T'-IN) is given by. . .
Strategy:

> show that @, is A-definable;

» show that we can solve fixed point equations
X = M X | up to B-conversion in the A-calculus.

L11 129



Representing booleans

True = Axy.x
False = Axy.y
If = Afxy.fxy

satisfy

» If TrueM N =g TrueM N =g M
» If False M N =3 False M N =g N
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Representing test-for-zero

Eq, = Ax.x(Ay.False) True ]
satisfies
» Eqy0 =g 0(Ay.False) True
=B True

» Eqyn+1 =g n41(Ay.False) True
=z (Ay.False)"™! True
=g (Ay.False)((Ay. False)” True)
—g False
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Representing predecessor

Want A-term Pred satisfying

Predn+1 =g n
PredQ B Q

Have to show how to reduce the “n 4+ 1-iterator” n + 1 to the
“n-iterator” n.

Idea: given f, iterating the function
gr: (v y) — (f(x), x)

n + 1 times starting from (x, x) gives the pair (f**1(x), f*(x)). So
we can get f"(x) from f"t1(x) parametrically in f and x, by building
gr from f, iterating n + 1 times from (x,x) and then taking the
second component.

Hence. ..
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Representing ordered pairs

Pair = Axvyf.fxy
Fst = Af.f True
Snd = Af. fFalse

satisfy
> Fst(PairM N) =g Fst(Af.f M N)
=g (Af.f M N) True
=g True M N
> Snd(PairMN) =g-:-- =4 N

L11
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Representing predecessor

Want A-term Pred satisfying

Predn+1 =4 n

Predg —B Q

Pred = Ay f x.Snd(y (G f) (Pair x x))

where

G = Af p.Pair(f(Fst p))(Fst p)

has the required fB-reduction properties.
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Curry’s fixed point combinator Y
Y2 AL (Ax. f(xx))(Ax. f(xx))

YM =45 M(YM)
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Ruscell set .
R= (o] 9xex)) R = Xx. neb(aax)

Rmecells Fourmdox
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Ruscell set .
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Ruscell sek .
R= (o] 9xex)) R = Xx. neb(aax)

Rmecells Fourmdox

ReR & 1 (ReR) RR =, nst (R E)

Yk = RR -—O\x wfc(xx))()ﬂc VuF(:(oc%))
Y£ = (O F@0))( - F@o)
X = M. (e Eo)(Aas fax)



Curry’s fixed point combinator Y
Y2 AL (Ax. f(xx))(Ax. f(xx)) J

satisfies YM  —  (Ax. M(xx))(Ax. M(xx))

L12 135



Curry’s fixed point combinator Y
Y2 AL (Ax. f(xx))(Ax. f(xx))

)

satisfiess YM — (Ax.M(xx))(Ax.M(xx))

— M((Ax.M(xx))(Ax.M(xx)))

hence YM — M((Ax.M(xx))(Ax.M(xx))) « M(Y M).

So for all A-terms M we have

L12

YM =5 M(Y M)
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Tur iv\q's Pisced point  combin edor

DL AA
whove, A = Xig.\ﬁ(ix\lﬂ




Tur iv\q's Pisced point  combin edor

DS AA
whove, A = Aig.\ﬁ(ix\ﬂ

OM = AAM = (Xmg,\gz@u}ﬁ)l\l\/\



Tur iv\q's fixced point  Combinedor

DS AA
whove, A = Aig.\ﬁ(ix\ﬂ

OM = AAM = (Mg,\é»(m@)kl\/\
= M(AAM)
= W (OM)



Representing primitive recursion

If f € IN"=IN is represented by a A-term F and
g € IN"T2-IN is represented by a A-term G,

we want to show A-definability of the unique
h € N"™ >IN satisfying |h = @ (h)

where @ ¢, € (N*"T1-IN)—(IN"T1-IN) is given by

®:.(h)(d,a) =Zif a=0 then f(d)
else ¢g(d,a —1,h(d,a — 1))

We now know that h can be represented by

Y(AzXx. If(Eqyx)(FX)(GX (Predx)(zX (Predx)))).

L12
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Recall that the class PRIM of primitive recursive functions
is the smallest collection of (total) functions containing the
basic functions and closed under the operations of
composition and primitive recursion.

Combining the results about A-definability so far, we have:
every f € PRIM is A-definable.

So for A-definability of all recursive functions, we just have
to consider how to represent minimization. Recall. ..
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Minimization
Given a partial function f € IN*T1 N, define
u"f € N"~IN by
1" f(X¥) = least x such that f(¥,x) = 0 and
foreachi =0,...,x — 1, f(X,1)
is defined and > 0
(undefined if there is no such x)

S0 M‘“f (;L: ?(z|0) wihare I
gl g (2C)x) Salsfes

3(-72)7‘)=;5‘F(3?)7‘)=0\‘WM X
dse (%) x+I)

L12 138




Minimization
Given a partial function f € IN"T1 <IN, define
u"f € N"~IN by
1" f(X¥) = least x such that f(¥,x) = 0 and
foreachi =0,...,x — 1, f(¥,1)
is defined and > 0
(undefined if there is no such x)

Can express u” f in terms of a fixed point equation:

' f(x¥) = g(¥,0) where g satisfies | g = ¥¢(g)
with ¥ € (IN"T' <IN )— (IN"*'~IN) defined by

Y (g)(X,x) =if f(X,x) =0 then x else g(X,x + 1)
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Representing minimization

Suppose f € IN"T1-IN (totally defined function) satisfies
Vdada (f(d,a) = 0), so that u"f € IN"=IN is totally
defined.

Thus for all @ € N”, p"f(d) = g(d,0) with g = ¥¢(g)
and ¥¢(g)(d,a) given by

if (f(d,a) =0) then a else g(d,a—+1).

So if f is represented by a A-term F, then p"f is
represented by

AXY(AzXx. If(Eqy(FXx)) x (zX (Succx))) X0
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Fact: every partial recursive f € IN”"—~IN can be expressed
in a standard form as f = go (#"h) for some

g, h € PRIM. (Follows from the proof that computable =
partial-recursive.)

Hence every (total) recursive function is A-definable.

More generally, every partial recursive function is
A-definable, but matching up 1 with AB—nf makes the
representations more complicated than for total functions:

see [Hindley, J.R. & Seldin, J.P. (CUP, 2008), chapter 4.]

L12 140



Computable = A-definable

Theorem. A partial function is computable if and only if it
is A-definable. J

We already know that computable = partial recursive => A-definable.
So it just remains to see that A-definable functions are RM
computable. To show this one can

» code A-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

» write a RM interpreter for (normal order) B-reduction.
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Computable = A-definable

Theorem. A partial function is computable if and only if it
is A-definable. J

We already know that computable = partial recursive => A-definable.
So it just remains to see that A-definable functions are RM
computable. To show this one can

» code A-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

» write a RM interpreter for (normal order) B-reduction.
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Computable = A-definable

Theorem. A partial function is computable if and only if it
is A-definable. J

We already know that computable = partial recursive => A-definable.
So it just remains to see that A-definable functions are RM
computable. To show this one can

» code A-terms as numbers (ensuring that operations for
constructing and deconstructing terms are given by RM
computable functions on codes)

» write a RM interpreter for (normal order) B-reduction.

The details are straightforward, if tedious.
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