
Lambda calculus

L9 103



Notions of computability

◮ Church (1936): λ-calculus

◮ Turing (1936): Turing machines.

Turing showed that the two very different approaches
determine the same class of computable functions. Hence:

Church-Turing Thesis. Every algorithm [in intuitive sense
of Lect. 1] can be realized as a Turing machine.

L9 104





λ-Terms, M

are built up from a given, countable collection of

◮ variables x, y, z, . . .

by two operations for forming λ-terms:

◮ λ-abstraction: (λx.M)
(where x is a variable and M is a λ-term)

◮ application: (M M′)
(where M and M′ are λ-terms).

Some random examples of λ-terms:

x (λx.x) ((λy.(x y))x) (λy.((λy.(x y))x))

L9 105



λ-Terms, M

Notational conventions:

◮ (λx1 x2 . . . xn.M) means
(λx1.(λx2 . . . (λxn.M) . . .))

◮ (M1 M2 . . . Mn) means (. . . (M1 M2) . . . Mn)
(i.e. application is left-associative)

◮ drop outermost parentheses and those enclosing the
body of a λ-abstraction. E.g. write
(λx.(x(λy.(y x)))) as λx.x(λy.y x).

◮ x # M means that the variable x does not occur
anywhere in the λ-term M.

L9 105



Free and bound variables

In λx.M, we call x the bound variable and M the body of
the λ-abstraction.

An occurrence of x in a λ-term M is called

◮ binding if in between λ and .
(e.g. (λx.y x) x)

◮ bound if in the body of a binding occurrence of x
(e.g. (λx.y x) x)

◮ free if neither binding nor bound
(e.g. (λx.y x)x).

L9 106



Free and bound variables
Sets of free and bound variables:

FV(x) = {x}
FV(λx.M) = FV(M)− {x}
FV(M N) = FV(M)∪ FV(N)

BV(x) = ∅

BV(λx.M) = BV(M)∪ {x}
BV(M N) = BV(M)∪ BV(N)

If FV(M) = ∅, M is called a closed term, or combinator.

L9 106



Free and bound variables

Sets of free and bound variables:

FV(x) = {x}
FV(λx.M) = FV(M)−{x}
FV(M N) = FV(M)∪ FV(N)

BV(x) = ∅

BV(λx.M) = BV(M)∪ {x}
BV(M N) = BV(M)∪ BV(N)

If FV(M) = ∅, M is called a closed term, or combinator.

L9 106



α-Equivalence M =α M′

λx.M is intended to represent the function f such that

f(x) = M for all x.

So the name of the bound variable is immaterial: if
M′ = M{x′/x} is the result of taking M and changing all
occurrences of x to some variable x′ # M, then λx.M and
λx′.M′ both represent the same function.

For example, λx.x and λy.y represent the same function
(the identity function).

L9 107



α-Equivalence M =α M′

is the binary relation inductively generated by the rules:

x =α x

z # (M N) M{z/x} =α N{z/y}

λx.M =α λy.N

M =α M′ N =α N ′

M N =α M′ N ′

where M{z/x} is M with all occurrences of x replaced by
z.

L9 107



α-Equivalence M =α M′

For example:

λx.(λxx′ .x) x′ =α λy.(λx x′ .x)x′

because (λz x′.z)x′ =α (λx x′.x)x′

because λz x′.z =α λx x′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′.

L9 107



α-Equivalence M =α M′

For example:

λx.(λxx′ .x) x′ =α λy.(λx x′ .x)x′

because (λz x′.z)x′ =α (λx x′.x)x′

because λz x′.z =α λx x′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′.

L9 107



α-Equivalence M =α M′

For example:

λx.(λxx′ .x) x′ =α λy.(λx x′ .x)x′

because (λz x′.z)x′ =α (λx x′.x)x′

because λz x′.z =α λx x′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′.

L9 107



α-Equivalence M =α M′

For example:

λx.(λxx′ .x) x′ =α λy.(λx x′ .x)x′

because (λz x′.z)x′ =α (λx x′.x)x′

because λz x′.z =α λx x′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′.

L9 107



α-Equivalence M =α M′

For example:

λx.(λxx′ .x) x′ =α λy.(λx x′ .x)x′

because (λz x′.z)x′ =α (λx x′.x)x′

because λz x′.z =α λx x′.x and x′ =α x′

because λx′.u =α λx′.u and x′ =α x′

because u =α u and x′ =α x′.

L9 107



α-Equivalence M =α M′

Fact: =α is an equivalence relation (reflexive, symmetric
and transitive).

We do not care about the particular names of bound variables, just
about the distinctions between them. So α-equivalence classes of
λ-terms are more important than λ-terms themselves.

◮ Textbooks (and these lectures) suppress any notation for
α-equivalence classes and refer to an equivalence class via a
representative λ-term (look for phrases like “we identify terms up
to α-equivalence” or “we work up to α-equivalence”).

◮ For implementations and computer-assisted reasoning, there are
various devices for picking canonical representatives of
α-equivalence classes (e.g. de Bruijn indexes, graphical
representations, . . . ).

L9 107



β-Reduction

Recall that λx.M is intended to represent the function f
such that f(x) = M for all x. We can regard λx.M as a
function on λ-terms via substitution: map each N to
M[N/x].

So the natural notion of computation for λ-terms is given
by stepping from a

β-redex (λx.M)N

to the corresponding

β-reduct M[N/x]

L10 109



Substitution N[M/x]
x[M/x] = M
y[M/x] = y if y ̸= x

(λy.N)[M/x] = λy.N[M/x] if y # (M x)
(N1 N2)[M/x] = N1[M/x] N2[M/x]

L9 108



Substitution N[M/x]
x[M/x] = M
y[M/x] = y if y ̸= x

(λy.N)[M/x] = λy.N[M/x] if y # (M x)
(N1 N2)[M/x] = N1[M/x] N2[M/x]

Side-condition y # (M x) (y does not occur in M and
y ̸= x) makes substitution “capture-avoiding”.

E.g. if x ̸= y
(λy.x)[y/x] ̸= λy.y

L9 108



Substitution N[M/x]
x[M/x] = M
y[M/x] = y if y ̸= x

(λy.N)[M/x] = λy.N[M/x] if y # (M x)
(N1 N2)[M/x] = N1[M/x] N2[M/x]

Side-condition y # (M x) (y does not occur in M and
y ̸= x) makes substitution “capture-avoiding”.

E.g. if x ̸= y ̸= z ̸= x

(λy.x)[y/x] =α (λz.x)[y/x] = λz.y

In fact N "→ N[M/x] induces a totally defined function
from the set of α-equivalence classes of λ-terms to itself.

L9 108















β-Reduction

One-step β-reduction, M→ M′:

(λx.M)N → M[N/x]

M→ M′

λx.M → λx.M′

M→ M′

M N → M′ N

M→ M′

N M→ N M′

N =α M M→ M′ M′ =α N ′

N → N ′

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



β-Reduction

E.g.
((λy.λz.z)u)y

(λx.x y)((λy.λz.z)u) (λz.z)y y

(λx.x y)(λz.z)

L10 109



Many-step β-reduction, M ! M′:

M =α M′

M ! M′

(no steps)

M→ M′

M ! M′

(1 step)

M ! M′ M′ → M′′

M ! M′′

(1 more step)

E.g.

(λx.x y)((λy z.z)u) ! y

(λx.λy.x)y ! λz.y

L10 110



β-Conversion M =β N

Informally: M =β N holds if N can be obtained from M
by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′ . v x)y)
→ u(λy′ . v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

L10 111



β-Conversion M =β N

Informally: M =β N holds if N can be obtained from M
by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′ . v x)y)
→ u(λy′ . v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

L10 111



β-Conversion M =β N

Informally: M =β N holds if N can be obtained from M
by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′ . v x)y)
→ u(λy′ . v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

L10 111



β-Conversion M =β N

Informally: M =β N holds if N can be obtained from M
by performing zero or more steps of α-equivalence,
β-reduction, or β-expansion (= inverse of a reduction).

E.g. u ((λx y. v x)y) =β (λx. u x)(λx. v y)

because (λx. u x)(λx. v y)→ u(λx. v y)

and so we have

u ((λx y. v x)y) =α u ((λx y′ . v x)y)
→ u(λy′ . v y) reduction
=α u(λx. v y)
← (λx. u x)(λx. v y) expansion

L10 111



β-Conversion M =β N

is the binary relation inductively generated by the rules:

M =α M′

M =β M′
M→ M′

M =β M′
M =β M′

M′ =β M

M =β M′ M′ =β M′′

M =β M′′
M =β M′

λx.M =β λx.M′

M =β M′ N =β N ′

M N =β M′ N ′

L10 111


	lecture-9
	lecture-10

