
λ-Terms, M

are built up from a given, countable collection of

! variables x, y, z, . . .

by two operations for forming λ-terms:

! λ-abstraction: (λx.M)
(where x is a variable and M is a λ-term)

! application: (M M′)
(where M and M′ are λ-terms).

Some random examples of λ-terms:

x (λx.x) ((λy.(x y))x) (λy.((λy.(x y))x))

L9 105

β-Reduction

Recall that λx.M is intended to represent the function f
such that f(x) = M for all x. We can regard λx.M as a
function on λ-terms via substitution: map each N to
M[N/x].

So the natural notion of computation for λ-terms is given
by stepping from a

β-redex (λx.M)N

to the corresponding

β-reduct M[N/x]

L10 109

β-Conversion M =β N

is the binary relation inductively generated by the rules:

M =α M′

M =β M′
M→ M′

M =β M′
M =β M′

M′ =β M

M =β M′ M′ =β M′′

M =β M′′
M =β M′

λx.M =β λx.M′

M =β M′ N =β N ′

M N =β M′ N ′

L10 111

Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

[Proof omitted.]

L10 112

Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. Two show that two terms are β-convertible, it
suffices to show that they both reduce to the same term.
More precisely: M1 =β M2 iff ∃M (M1 ! M " M2).

L10 112

Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. M1 =β M2 iff ∃M (M1 ! M " M2).

Proof. =β satisfies the rules generating !; so M ! M′ implies
M =β M′. Thus if M1 ! M " M2, then M1 =β M =β M2 and so
M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 ! M " M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: M1 M M2 M′ M3

L10 112

Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. M1 =β M2 iff ∃M (M1 ! M " M2).

Proof. =β satisfies the rules generating !; so M ! M′ implies
M =β M′. Thus if M1 ! M " M2, then M1 =β M =β M2 and so
M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 ! M " M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: M1 M M2 M′ M3

L10 112

Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. M1 =β M2 iff ∃M (M1 ! M " M2).

Proof. =β satisfies the rules generating !; so M ! M′ implies
M =β M′. Thus if M1 ! M " M2, then M1 =β M =β M2 and so
M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 ! M " M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem: M1 M M2

C-R

M′ M3

M′2

L10 112

Church-Rosser Theorem
Theorem. ! is confluent, that is, if M1 " M ! M2,
then there exists M′ such that M1 ! M′ " M2.

Corollary. M1 =β M2 iff ∃M (M1 ! M " M2).

Proof. =β satisfies the rules generating !; so M ! M′ implies
M =β M′. Thus if M1 ! M " M2, then M1 =β M =β M2 and so
M1 =β M2.

Conversely, the relation {(M1, M2) | ∃M (M1 ! M " M2)}
satisfies the rules generating =β: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser
theorem. Hence M1 =β M2 implies ∃M (M1 ! M′ " M2).

L10 112

β-Normal Forms
Definition. A λ-term N is in β-normal form (nf) if it
contains no β-redexes (no sub-terms of the form
(λx.M)M′). M has β-nf N if M =β N with N a β-nf.

L10 113

β-Normal Forms
Definition. A λ-term N is in β-normal form (nf) if it
contains no β-redexes (no sub-terms of the form
(λx.M)M′). M has β-nf N if M =β N with N a β-nf.

Note that if N is a β-nf and N ! N ′, then it must be that N =α N ′

(why?).

Hence if N1 =β N2 with N1 and N2 both β-nfs, then N1 =α N2. (For

if N1 =β N2, then by Church-Rosser N1 ! M′ " N2 for some M′,

so N1 =α M′ =α N2.)

So the β-nf of M is unique up to α-equivalence if it
exists.

L10 113

Non-termination
Some λ terms have no β-nf.

E.g. Ω ! (λx.x x)(λx.x x) satisfies

" Ω→ (x x)[(λx.x x)/x] = Ω,

" Ω# M implies Ω =α M.

So there is no β-nf N such that Ω =β N.

L10 114

Non-termination
Some λ terms have no β-nf.

E.g. Ω ! (λx.x x)(λx.x x) satisfies

" Ω→ (x x)[(λx.x x)/x] = Ω,

" Ω# M implies Ω =α M.

So there is no β-nf N such that Ω =β N.

A term can possess both a β-nf and infinite chains of
reduction from it.

E.g. (λx.y)Ω→ y, but also (λx.y)Ω→ (λx.y)Ω→ · · · .

L10 114

Non-termination
Normal-order reduction is a deterministic strategy for
reducing λ-terms: reduce the “left-most, outer-most” redex
first.

! left-most: reduce M before N in M N, and then
! outer-most: reduce (λx.M)N rather than either of

M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the β-nf
of M if it possesses one.

L10 115

Lambda-Definable Functions

L11 116

Encoding data in λ-calculus

Computation in λ-calculus is given by β-reduction. To
relate this to register/Turing-machine computation, or to
partial recursive functions, we first have to see how to
encode numbers, pairs, lists, . . . as λ-terms.

We will use the original encoding of numbers due to
Church. . .

L11 117

Church’s numerals
0 ! λ f x.x
1 ! λ f x. f x
2 ! λ f x. f(f x)

...
n ! λ f x. f(· · · (f

︸ ︷︷ ︸

n times

x) · · ·)

Notation:

⎧

⎪
⎨

⎪
⎩

M0N ! N

M1N ! M N

Mn+1N ! M(Mn N)

so we can write n as λ f x. f nx and we have n M N =β Mn N .

L11 118

Church’s numerals
0 ! λ f x.x
1 ! λ f x. f x
2 ! λ f x. f(f x)

...
n ! λ f x. f(· · · (f

︸ ︷︷ ︸

n times

x) · · ·)

Notation:

⎧

⎪
⎨

⎪
⎩

M0N ! N

M1N ! M N

Mn+1N ! M(Mn N)

so we can write n as λ f x. f nx and we have n M N =β Mn N .

L11 118

λ-Definable functions
Definition. f ∈ Nn

⇀N is λ-definable if there is a closed
λ-term F that represents it: for all (x1, . . . , xn) ∈ Nn and
y ∈ N

! if f(x1, . . . , xn) = y, then F x1 · · · xn =β y

! if f(x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

For example, addition is λ-definable because it is represented by
P " λx1 x2.λ f x. x1 f(x2 f x):

P m n =β λ f x. m f(n f x)

=β λ f x. m f(f nx)

=β λ f x. f m(f nx)

= λ f x. f m+nx

= m + n
L11 119

λ-Definable functions
Definition. f ∈ Nn

⇀N is λ-definable if there is a closed
λ-term F that represents it: for all (x1, . . . , xn) ∈ Nn and
y ∈ N

! if f(x1, . . . , xn) = y, then F x1 · · · xn =β y

! if f(x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

For example, addition is λ-definable because it is represented by
P " λx1 x2.λ f x. x1 f(x2 f x):

P m n =β λ f x. m f(n f x)

=β λ f x. m f(f nx)

=β λ f x. f m(f nx)

= λ f x. f m+nx

= m + n
L11 119

Computable = λ-definable
Theorem. A partial function is computable if and only if it
is λ-definable.

We already know that

Register Machine computable
= Turing computable
= partial recursive.

Using this, we break the theorem into two parts:

! every partial recursive function is λ-definable
! λ-definable functions are RM computable

L11 120

λ-Definable functions
Definition. f ∈ Nn

⇀N is λ-definable if there is a closed
λ-term F that represents it: for all (x1, . . . , xn) ∈ Nn and
y ∈ N

! if f(x1, . . . , xn) = y, then F x1 · · · xn =β y

! if f(x1, . . . , xn)↑, then F x1 · · · xn has no β-nf.

This condition can make it quite tricky to find a λ-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are λ-definable.

L11 121

Basic functions

! Projection functions, projn
i ∈ Nn

!N:

projn
i (x1, . . . , xn) " xi

! Constant functions with value 0, zeron ∈ Nn
!N:

zeron(x1, . . . , xn) " 0

! Successor function, succ ∈ N!N:

succ(x) " x + 1

L11 122

Basic functions are representable

! projn
i ∈ Nn

!N is represented by λx1 . . . xn.xi

! zeron ∈ Nn
!N is represented by λx1 . . . xn.0

! succ ∈ N!N is represented by

Succ " λx1 f x. f(x1 f x)

since

Succ n =β λ f x. f(n f x)

=β λ f x. f(f n x)

= λ f x. f n+1 x

= n + 1

L11 123

Basic functions are representable

! projn
i ∈ Nn

!N is represented by λx1 . . . xn.xi

! zeron ∈ Nn
!N is represented by λx1 . . . xn.0

! succ ∈ N!N is represented by

Succ " λx1 f x. f(x1 f x)

since

Succ n =β λ f x. f(n f x)

=β λ f x. f(f n x)

= λ f x. f n+1 x

= n + 1

L11 123

	lecture-10
	lecture-11

