L9

Re. o A-Terms, M

are built up from a given, countable collection of
» variables x, v, z, . ..

by two operations for forming A-terms:

» A-abstraction: (Ax.M)
(where x is a variable and M is a A-term)

» application: (M M)
(where M and M’ are A-terms).

Some random examples of A-terms:

x (Axx) ((Ay.(xy))x) (Ay.((Ay.(xy))x))
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Recall that Ax.M is intended to represent the function f
such that f(x) = M for all x. We can regard Ax.M as a

function on A-terms via substitution: map each N to
M |N/x]|.

So the natural notion of computation for A-terms is given
by stepping from a

B-redex (Ax.M)N
to the corresponding
B-reduct M |[N/x]
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p-Conversion M =g N

is the binary relation inductively generated by the rules:

M=,M M — M’ M =g M
M=gM M=gM M =g M
M=gM M =gM" M=gM
M :'3 M” Ax.M Iﬁ Ax.M'
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if My « M — M,,
then there exists M’ such that M; — M’ « M. J

[Proof omitted.]
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if My « M — M,,
then there exists M’ such that M; — M’ « M. J

Corollary. Two show that two terms are B-convertible, it
suffices to show that they both reduce to the same term.

More precisely: My =g M, iff AM (My — M « M,).
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if My « M — M,,
then there exists M’ such that M; — M’ « M. J

Corollary. M1 —B Mz iff AM (M1 —» M «— Mz)

Proof. =g satisfies the rules generating —; so M — M’ implies
M =8 M’. Thus if My — M « M>, then My =8 M =g M, and so
M =B M.

Conversely,
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if M « M — M,,
then there exists M’ such that M; — M’ « M.

Corollary. M1 —B Mz iff AM (M1 —» M «— Mz)

Proof. =g satisfies the rules generating —; so M — M’ implies

M =8 M’. Thus if My — M « M>, then My =8 M =g M, and so
M =B M.

Conversely, the relation { (M1, M) | AM (My - M « M3)}

satisties the rules generating =g: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser

theorem: Mq{—— M «— My, —» M’ «— M;
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if M « M — M,,
then there exists M’ such that M; — M’ « M.

Corollary. M1 —B Mz iff AM (M1 —» M «— Mz)

Proof. =g satisfies the rules generating —; so M — M’ implies

M =8 M’. Thus if My — M « M>, then My =8 M =g M, and so
M =B M.

Conversely, the relation { (M1, M) | AM (My - M « M3)}

satisties the rules generating =g: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser

theorem: Mq;—— M «— My, —» M’ «— M;
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Church-Rosser Theorem

Theorem. —» is confluent, that is, if M « M — M,,
then there exists M’ such that M; — M’ « M.

Corollary. M1 —B Mz iff AM (M1 —» M «— Mz)

Proof. =g satisfies the rules generating —; so M — M’ implies
M =8 M’. Thus if My — M « M>, then My =8 M =g M, and so
M =B M.

Conversely, the relation { (M1, M) | AM (My - M « M3)}
satisties the rules generating =g: the only difficult case is closure of
the relation under transitivity and for this we use the Church-Rosser

theorem. Hence My =g M implies AM (M1 — M’ « M).
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B-Normal Forms

Definition. A A-term N is in S-normal form (nf) if it

contains no B-redexes (no sub-terms of the form
(Ax.M)M’). M has B-nf N if M =g N with N a -nf.

v
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Definition. A A-term N is in S-normal form (nf) if it
contains no B-redexes (no sub-terms of the form

(Ax.M)M’). M has B-nf N if M =g N with N a B-nf.

o

Note that if N is a B-nf and N — N’, then it must be that N =, N’
(why?).

Hence if Ny =g N> with Ny and N; both B-nfs, then N1 =, Nb. (For
if N1 =g Ny, then by Church-Rosser Ny — M’ «— N for some M’,
SO I\Ll :::l¥ ]»4ﬂ' :::l¥ Z\LZ.)

So the B-nf of M is unique up to a-equivalence if it
exists.
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Non-termination

Some A terms have no S-nf.
Eg Q= (Ax.xx)(Ax.x x) satisfies

» O — (xx)[(Axxx)/x] = Q,

» () — M implies () =, M.
So there is no B-nf N such that (3 =g N.
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Some A terms have no S-nf.
Eg Q= (Ax.xx)(Ax.xx) satisfies

» O — (xx)[(Axxx)/x] = Q,

» () — M implies (2 =, M.
So there is no B-nf N such that (3 =g N.

A term can possess both a B-nf and infinite chains of
reduction from it.

Eg (Ax.y)Q — y, but also (Ax.y)Q) — (Axy)QQ — - --.
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Normal-order reduction is a deterministic strategy for
reducing A-terms: reduce the “left-most, outer-most” redex

first.

» left-most: reduce M before N in M N, and then

» outer-most: reduce (Ax.M)N rather than either of
M or N.

(cf. call-by-name evaluation).

Fact: normal-order reduction of M always reaches the B-nf
of M if it possesses one.
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LLambda-Definable Functions



Computation in A-calculus is given by B-reduction. To
relate this to register/Turing-machine computation, or to
partial recursive functions, we first have to see how to
encode numbers, pairs, lists, ...as A-terms.

We will use the original encoding of numbers due to
Church. ..
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Church’s numerals

= Afxx
= Afx.fx
& Afxf(fx)

IN = O

I
||[>

n times

Aff( (F)-e)

Notation:

so we can write n as A f x.f"x and we have

L11

MON 2N
MIN 2MN
M"tIN = M(M"N)

QMNZ'[;M"N.
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Church’s numerals

0 = Afxx

1 2 Afxfx

2 = Afxif(fx) Eﬁ&ﬂfmﬁg
; \(JCJF_)I-_____J

n = Afxf((fx))

n times

MON 2N
Notation:{ MIN 2 MN
M"tIN = M(M"N)

so we can write n as Af x.f"x and we have n M N =g M" N |
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A-Definable functions

Definition. f € IN"—~IN is A-definable if there is a closed
A-term F that represents it: for all (xq,...,x,) € IN" and

y €N
> if f(x1,...,%:) =y, then Fxq---x, =py
> if f(x1,...,%,)T, then Fxq -+ x, has no B-nf.

For example, addition is A-definable because it is represented by

P = Axyxp A f x.x1 f(x2 fx):
Pmn=gAfx.mf(nfx)
—p Af xom f(f"x)
=g Afx. f"(f"x)
= Af x.f""x

= m-+n
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A-Definable functions

Definition. f € IN"—~IN is A-definable if there is a closed
A-term F that represents it: for all (xq,...,x,) € IN" and
y €N

> if f(x1,...,%,) =y, then Fxq-+-x, =g ¥

> if f(x1,...,%,)T, then Fxq -+ x, has no B-nf.

For example, addition is A-definable because it is represented by
P = Axyxp A f x.x1 f(x2 fx):
Pmn=gAfx.mf(nfx)

e =p Af x.m f(f"x)
s og mnalu =g Af x. f"(f"x)

b} n'r\o(MU{h'm\g $@}\fyc.fm_|'"ac

t™h N —m-+n
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Theorem. A partial function is computable if and only if it
is A-definable. J

We already know that

Register Machine computable
Turing computable
= partial recursive.

Using this, we break the theorem into two parts:

» every partial recursive function is A-definable
» A-definable functions are RM computable
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Definition. f € IN”"—~IN is A-definable if there is a closed
A-term F that represents it: for all (x1,...,x,) € IN" and

y €N
> if f(x1,...,%,) =y, then Fxq-+-x, =B Y
»/if f(x1,...,%x,)T, then Fxq -« x, has no B-nf.
This condition can make it quite tricky to find a A-term
representing a non-total function.

For now, we concentrate on total functions. First, let us
see why the elements of PRIM (primitive recursive
functions) are A-definable.
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Basic functions
» Projection functions, proj; € IN"—IN:

proj? (X1, ..., Xy) = X;

» Constant functions with value 0, zero” € IN*"—IN:

zero™ (X1, ..., Xy) = 0

» Successor function, succ € IN—IN:

succ(x) = x+1
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L11

Basic functions are representable

» proj? € IN"—IN is represented by Axq ...x,.x;
» zero” € IN"=IN is represented by Axq ...x,.0

» succ € IN—=IN is represented by

since

Succ = Axg fFx.f(x1 f x)

Succn =g Af x. f(n f x)
=5 Af % f(f" %)
= Afx f"lx
=n—+1
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Basic functions are representable

» proj? € IN"—IN is represented by Axq ...x,.x;
» zero” € IN"—=IN is represented by Axq ...x,.0
» succ € IN—=IN is represented by

Succ = Axg fFx.f(x1 f x)

since

Succn =g Af x. f(n f x)
=5 Af % f(f" %)
= Afx f"lx
=n—+1

(7\3@1{;’1- x,{ (f1) also reflore,ge\/\l‘g Succ >
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