
Computer	Networking

Michaelmas/Lent	Term
M/W/F	11:00-12:00
LT1	in	Gates	Building

Slide	Set	5

Evangelia Kalyvianaki
ek264@cl.cam.ac.uk

2017-2018

1

Topic	5	– Transport
Our	goals:
• understand	principles	

behind	transport	layer	
services:
– multiplexing/demultiplex

ing
– reliable	data	transfer
– flow	control
– congestion	control

• learn	about	transport	layer	
protocols	in	the	Internet:
– UDP:	connectionless	transport
– TCP:	connection-oriented	

transport
– TCP	congestion	control

2

Transport Layer
• Commonly	a	layer	at	end-hosts,	between	the	
application	and	network	layer	

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Network
Datalink
Physical

Application Application

Host A Host B
Router

3

Why	a	transport	layer?	

• IP	packets	are	addressed	to	a	host	but	end-to-
end	communication	is	between	application	
processes	at	hosts
– Need	a	way	to	decide	which	packets	go	to	which	
applications	(more multiplexing)

4

Why a transport layer?

Transport
Network
Datalink
Physical

Transport
Network
Datalink
Physical

Application Application

Host A Host B 5

Why a transport layer?

Transport
Network
Datalink
Physical

Application

Host A Host B

Datalink
Physical

brow
ser

telnet

m
m
edia

ftp

brow
ser

IP

many	application
processes

Drivers
+NIC

Operating	
System

6

Why a transport layer?

Host A Host B

Datalink
Physical

brow
ser

telnet

m
m
edia

ftp

brow
ser

IP

many	application
processes

Datalink
Physical

telnet
ftp

IP

HTTP	
server

Transport Transport

Communication	
between	hosts

(128.4.5.6	ßà162.99.7.56)

Communication
between	processes

at	hosts

7

Why	a	transport	layer?	

• IP	packets	are	addressed	to	a	host	but	end-to-end	
communication	is	between	application	processes	
at		hosts
– Need a	way	to	decide	which	packets	go	to	which	
applications	(mux/demux)

• IP	provides	a	weak	service	model	(best-effort)
– Packets	can	be	corrupted,	delayed,	dropped,	
reordered,	duplicated	

– No	guidance	on	how	much	traffic	to	send	and	when
– Dealing	with	this	is	tedious	for	application	developers

8

Role	of	the	Transport	Layer

• Communication	between	application	processes
– Multiplexing	between	application	processes
– Implemented	using	ports

9

Role	of	the	Transport	Layer

• Communication	between	application	processes
• Provide	common	end-to-end	services	for	app	
layer	[optional]
– Reliable,	in-order	data	delivery
– Paced	data	delivery:	flow	and	congestion-control

• too	fast	may	overwhelm	the	network
• too	slow	is	not	efficient

10

Role	of	the	Transport	Layer

• Communication	between	processes
• Provide	common	end-to-end	services	for	app	
layer	[optional]

• TCP	and	UDP	are	the	common	transport	
protocols
– also	SCTP,	MTCP,	SST,	RDP,	DCCP,	…	

11

Role	of	the	Transport	Layer

• Communication	between	processes
• Provide	common	end-to-end	services	for	app	
layer	[optional]

• TCP	and	UDP	are	the	common	transport	
protocols

• UDP	is	a	minimalist,	no-frills	transport	protocol
– only	provides	mux/demux capabilities

12

Role	of	the	Transport	Layer

• Communication	between	processes
• Provide	common	end-to-end	services	for	app	layer	
[optional]

• TCP	and	UDP	are	the	common	transport	protocols
• UDP	is	a	minimalist,	no-frills	transport	protocol
• TCP	is	the	totus porcus protocol

– offers	apps	a	reliable,	in-order,	byte-stream	abstraction
– with	congestion	control	
– but	no performance	(delay,	bandwidth,	...)	guarantees

13

Role	of	the	Transport	Layer

• Communication	between	processes
– mux/demux from	and	to	application	processes
– implemented	using	ports

14

Context:	Applications	and	Sockets

• Socket:	software	abstraction	by	which	an	application	process	
exchanges	network	messages	with	the	(transport	layer	in	the)	
operating	system	
– socketID =	socket(…,	socket.TYPE)
– socketID.sendto(message,	…)		
– socketID.recvfrom(…)

• Two	important	types	of	sockets
– UDP	socket:	TYPE	is	SOCK_DGRAM	
– TCP	socket:	TYPE	is	SOCK_STREAM

15

Ports
• Problem:	deciding	which	app	(socket)	gets	which	packets

– Solution:	port as	a	transport	layer	identifier
• 16	bit	identifier	

– OS	stores	mapping	between	sockets	and	ports
– a	packet	carries	a	source	and	destination	port	number	in	its

transport	layer	header	

• For	UDP	ports	(SOCK_DGRAM)
– OS	stores	(local	port,	local	IP	address)	ßà socket

• For	TCP	ports	(SOCK_STREAM)
– OS	stores	(local	port,	local	IP,	remote	port,	remote	IP)	ßà socket

16

4-bit
Version

4-bit
Header
Length

8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

Options (if any)

IP Payload

17

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL) 8-bit Protocol 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

IP Payload

18

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL)

6 = TCP
17 = UDP 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

header and PayloadTCP	or
UDP

19

4 5 8-bit
Type of Service

(TOS)
16-bit Total Length (Bytes)

16-bit Identification
3-bit
Flags 13-bit Fragment Offset

8-bit Time to
Live (TTL)

6 = TCP
17 = UDP 16-bit Header Checksum

32-bit Source IP Address

32-bit Destination IP Address

16-bit Source Port 16-bit Destination Port

More transport header fields ….

header and PayloadTCP	or
UDP

20

Recap: Multiplexing and Demultiplexing

• Host receives IP packets
– Each IP header has source and destination IP

address
– Each Transport Layer header has source and

destination port number

• Host uses IP addresses and port numbers to direct the
message to appropriate socket

21

More	on	Ports

• Separate	16-bit	port	address	space	for	UDP	and	TCP

• “Well	known”	ports (0-1023):	everyone	agrees	which
services	run	on	these	ports
– e.g.,	ssh:22,	http:80
– helps	client	know	server’s	port

• Ephemeral	ports	(most	1024-65535):		dynamically	selected:	as	the	
source	port	for	a	client	process

22

UDP: User Datagram Protocol

• Lightweight communication between processes
– Avoid overhead and delays of ordered, reliable delivery

• UDP described in RFC 768 – (1980!)
– Destination IP address and port to support demultiplexing
– Optional error checking on the packet contents

• (checksum field of 0 means “don’t verify checksum”)

SRC port DST port

checksum length

DATA 23

Why	a	transport	layer?	

• IP	packets	are	addressed	to	a	host	but	end-to-
end	communication	is	between	application	
processes	at		hosts
– Need a	way	to	decide	which	packets	go	to	which	
applications	(mux/demux)

• IP	provides	a	weak	service	model	(best-effort)
– Packets	can	be	corrupted,	delayed,	dropped,	
reordered,	duplicated	

24

25

Principles	of	Reliable	data	transfer
• important	in	app.,	transport,	link	layers
• top-10	list	of	important	networking	topics!

l In	a	perfect	world,	reliable	
transport	is	easy

But	the	Internet	default	is	best-effort

l All	the	bad	things	best-effort	can	
do
l a	packet	is	corrupted	(bit	errors)
l a	packet	is	lost	
l a	packet	is	delayed	(why?)
l packets	are	reordered	(why?)
l a	packet	is	duplicated	(why?)

26

Principles	of	Reliable	data	transfer
• important	in	app.,	transport,	link	layers
• top-10	list	of	important	networking	topics!

• characteristics	of	unreliable	channel	will	determine	complexity	of	reliable	data	transfer	protocol	
(rdt)

27

Principles	of	Reliable	data	transfer
• important	in	app.,	transport,	link	layers
• top-10	list	of	important	networking	topics!

• characteristics	of	unreliable	channel	will	determine	complexity	of	reliable	data	transfer	protocol	
(rdt)

rdt_rcv(
)

udt_rcv()

28

Reliable	data	transfer:	getting	started

send
side

receive
side

rdt_send(): called	from	above,	
(e.g.,	by	app.).	Passed	data	to	
deliver	to	receiver	upper	layer

udt_send(): called	by	rdt,
to	transfer	packet	over	

unreliable	channel	to	receiver

rdt_rcv(): called	by	rdt to	
deliver	data	to	upper

rdt_rcv()

udt_rcv()

udt_rcv(): called	when	packet	
arrives	on	rcv-side	of	channel

29

Reliable	data	transfer:	getting	started

We’ll:
• incrementally	develop	sender,	receiver	sides	of	

reliable	data	transfer	protocol	(rdt)
• consider	only	unidirectional	data	transfer

– but	control	info	will	flow	on	both	directions!

• use	finite	state	machines	(FSM)		to	specify	sender,	
receiver

state
1

state
2

event	causing	state	transition
actions	taken	on	state	transition

state: when	in	this	“state”
next	state	uniquely	
determined	by	next	

event

event
actions

30

KR	state	machines	– a	note.
Beware
Kurose	and	Ross	has	a	confusing/confused	attitude	to	

state-machines.
I’ve	attempted	to	normalise	the	representation.
UPSHOT:	these	slides	have	differing	information	to	the	

KR	book (from	which	the	RDT	example	is	taken.)
in	KR	“actions	taken”	appear	wide-ranging,	my	

interpretation	is	more	specific/relevant.

State
name

State
name

Relevant	event	causing	state	transition
Relevant	action	taken	on	state	transitionstate: when	in	this	“state”

next	state	uniquely	
determined	by	next	

event event
actions

31

Rdt1.0:	reliable	transfer	over	a	reliable	channel

• underlying	channel	perfectly	reliable
– no	bit	errors
– no	loss	of	packets

• separate	FSMs	for	sender,	receiver:
– sender	sends	data	into	underlying	channel
– receiver	read	data	from	underlying	channel

IDLE udt_send(packet)
rdt_send(data)

rdt_rcv(data)IDLE
udt_rcv(packet)

sender receiver

Event

Action

32

Rdt2.0:	channel	with	bit	errors

• underlying	channel	may	flip	bits	in	packet
– checksum	to	detect	bit	errors

• the question:	how	to	recover	from	errors:
– acknowledgements	(ACKs): receiver	explicitly	tells	sender	that	

packet	received	is	OK
– negative	acknowledgements	(NAKs): receiver	explicitly	tells	sender	

that	packet	had	errors
– sender	retransmits	packet	on	receipt	of	NAK

• new	mechanisms	in	rdt2.0 (beyond	rdt1.0):
– error	detection
– receiver	feedback:	control	msgs (ACK,NAK)	receiver->sender

Dealing	with	Packet	Corruption	

Time
Sender Receiver

1

2

.

.

.
2

þ

ý

ack

nack

33

34

rdt2.0:	FSM	specification

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet)	&&	
notcorrupt(packet)

udt_rcv(reply)	&&	isACK(reply)

udt_send(packet)

udt_rcv(reply)	&&
isNAK(reply)

udt_send(NAK)

udt_rcv(packet)	&&	
corrupt(packet)

Waiting
for	reply

IDLE

sender

receiver
rdt_send(data)

L

Note:	the	sender	holds	a	copy	
of	the	packet	being	sent	until	
the	delivery	is	acknowledged.

35

rdt2.0:	operation	with	no	errors

L

IDLE Waiting
for	reply

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet)	&&	
notcorrupt(packet)

udt_rcv(reply)	&&	isACK(reply)

udt_send(packet)

udt_rcv(reply)	&&
isNAK(reply)

udt_send(NAK)

udt_rcv(packet)	&&	
corrupt(packet)

rdt_send(data)

36

rdt2.0:	error	scenario

L

IDLE Waiting
for	reply

IDLE

udt_send(packet)

rdt_rcv(data)
udt_send(ACK)

udt_rcv(packet)	&&	
notcorrupt(packet)

udt_rcv(reply)	&&	isACK(reply)

udt_send(packet)

udt_rcv(reply)	&&
isNAK(reply)

udt_send(NAK)

udt_rcv(packet)	&&	
corrupt(packet)

rdt_send(data)

37

rdt2.0	has	a	fatal	flaw!
What	happens	if	ACK/NAK	

corrupted?
• sender	doesn’t	know	what	

happened	at	receiver!
• can’t	just	retransmit:	possible	

duplicate

Handling	duplicates:	
• sender	retransmits	current	

packet	if	ACK/NAK	garbled
• sender	adds	sequence	number

to	each	packet
• receiver	discards	(doesn’t		

deliver)	duplicate	packet

Sender	sends	one	packet,	
then	waits	for	receiver	
response

stop	and	wait

Dealing	with	Packet	Corruption	

Time
Sender Receiver

1

1

þ

ý

What if	the	ACK/NACK	is	corrupted?

Packet	
#1	or	#2?

2

Data	and	ACK packets	carry	sequence	numbers
38

39

rdt2.1:	sender,	handles	garbled	ACK/NAKs

IDLE

sequence=0
udt_send(packet)

rdt_send(data)

Waiting
For	reply udt_send(packet)

udt_rcv(reply)	&&		
(corrupt(reply)	||
isNAK(reply))

sequence=1
udt_send(packet)

rdt_send(data)

udt_rcv(reply)			
&&	notcorrupt(reply)	
&&	isACK(reply)	

udt_send(packet)

udt_rcv(reply)	&&		
(corrupt(reply)	||
isNAK(reply))

udt_rcv(reply)			
&&	notcorrupt(reply)	
&&	isACK(reply)

IDLE
Waiting
for	reply

L
L

udt_rcv(packet)	&&	corrupt(packet)

40

rdt2.1:	receiver,	handles	garbled	ACK/NAKs

Wait	for	
0	from	
below

udt_send(NAK)

receive(packet)	&&	
not	corrupt(packet)	&&
has_seq0(packet)

udt_rcv(packet)	&&	not	corrupt(packet)	
&&	has_seq1(packet)

udt_send(ACK)
rdt_rcv(data)

Wait	for	
1	from	
below

udt_rcv(packet)	&&	not	corrupt(packet)	
&&	has_seq0(packet)	

udt_send(ACK)
rdt_rcv(data)

udt_send(ACK)

receive(packet)	&&	
not	corrupt(packet)	&&
has_seq1(packet)

receive(packet)	&&	corrupt(packet)

udt_send(ACK)

udt_send(NAK)

41

rdt2.1:	discussion
Sender:
• seq #	added	to	pkt
• two	seq.	#’s	(0,1)	will	

suffice.		Why?
• must	check	if	received	

ACK/NAK	corrupted	
• twice	as	many	states

– state	must	“remember”
whether	“current” pkt has	a
0	or	1	sequence	number

Receiver:
• must	check	if	received	

packet	is	duplicate
– state	indicates	whether	0	or	1	

is	expected	pkt seq #

• note:	receiver	can	not know	
if	its	last	ACK/NAK	received	
OK	at	sender

42

rdt2.2:	a	NAK-free	protocol

• same	functionality	as	rdt2.1,	using	ACKs	only
• instead	of	NAK,	receiver	sends	ACK	for	last	pkt received	OK

– receiver	must	explicitly include	seq #	of	pkt being	ACKed

• duplicate	ACK	at	sender	results	in	same	action	as	NAK:	
retransmit	current	pkt

43

rdt2.2:	sender,	receiver	fragments

Wait	for	call	
0	from	
above

sequence=0
udt_send(packet)

rdt_send(data)

udt_send(packet)

rdt_rcv(reply)	&&		
(corrupt(reply)	||
isACK1(reply))

udt_rcv(reply)			
&&	not	corrupt(reply)	
&&	isACK0(reply)

Wait	for	
ACK
0

sender	FSM
fragment

Wait	for	
0	from	
below

receive(packet)	&&	not	corrupt(packet)	
&&	has_seq1(packet)	

send(ACK1)
rdt_rcv(data)

udt_rcv(packet)	&&	
(corrupt(packet)	||
has_seq1(packet))

udt_send(ACK1)

receiver	FSM
fragment

L

44

rdt3.0:	channels	with	errors	and loss

New	assumption: underlying	
channel	can	also	lose	
packets	(data	or	ACKs)
– checksum,	seq.	#,	ACKs,	

retransmissions	will	be	of	
help,	but	not	enough

Approach: sender	waits	
“reasonable” amount	of	
time	for	ACK	

• retransmits	if	no	ACK	received	in	
this	time

• if	pkt (or	ACK)	just	delayed	(not	
lost):
– retransmission	will	be		

duplicate,	but	use	of	seq.	#’s	
already	handles	this

– receiver	must	specify	seq #	of	
pkt being	ACKed

• requires	countdown	timer

udt_rcv(reply)	&&		
(corrupt(reply)	||
isACK(reply,1))

45

rdt3.0	sender

sequence=0
udt_send(packet)

rdt_send(data)

Wait	
for	
ACK0

IDLE
state	1

sequence=1
udt_send(packet)

rdt_send(data)

udt_rcv(reply)			
&&	notcorrupt(reply)	
&&	isACK(reply,0)

udt_rcv(packet)	&&		
(corrupt(packet)	||
isACK(reply,0))

udt_rcv(reply)			
&&	notcorrupt(reply)	
&&	isACK(reply,1)

L
L

udt_send(packet)
timeout

udt_send(packet)
timeout

udt_rcv(reply)

IDLE
state	0

Wait	
for	
ACK1

L
udt_rcv(reply)

L
L

L

Dealing	with	Packet	Loss

Time
Sender Receiver

1

1

ý

Timer-driven loss	detection
Set	timer when	packet	is	sent;	retransmit	on	timeout

Timeout

Dealing	with	Packet	Loss

Time
Sender Receiver

1

1

ý
Timeout

duplicate!

47

Dealing	with	Packet	Loss

Time
Sender Receiver

1

.

.

.

1

Timer-driven	retx.	can lead	to	duplicates

Timeout

duplicate!

49

Performance	of	rdt3.0

• rdt3.0	works,	but	performance	stinks
• ex:	1	Gbps link,	15	ms prop.	delay,	8000	bit	packet:

❍ U	sender:	utilization – fraction	of	time	sender	busy	sending

❍ 1KB	pkt every	30	msec ->	33kB/sec	throughput	over	1	Gbps link
❍ network	protocol	limits	use	of	physical	resources!

U
sender = .008

30.008
= 0.00027

microsec
onds

L / R
RTT + L / R

=

dsmicrosecon8
bps10
bits8000

9 ===
R
Ldtrans

50

rdt3.0:	stop-and-wait	operation

first	packet	bit	transmitted,	t	=	0

sender receiver

RTT

last	packet	bit	transmitted,	t	=	L	/	R

first	packet	bit	arrives
last	packet	bit	arrives,	send	ACK

ACK	arrives,	send	next	
packet,	t	=	RTT	+	L	/	R

U
sender = .008

30.008
= 0.00027

microsec
onds

L / R
RTT + L / R

=

Inefficient	if
t <<	RTT

51

Pipelined	(Packet-Window)	protocols

Pipelining: sender	allows	multiple,	“in-flight”,	yet-to-be-
acknowledged	pkts
– range	of	sequence	numbers	must	be	increased
– buffering	at	sender	and/or	receiver

A	Sliding	Packet	Window

• window =	set	of	adjacent	sequence	numbers
– The	size	of	the	set	is	the	window	size;	assume	window	size	is	n

• General	idea:	send	up	to	n packets	at	a	time	
– Sender	can	send	packets	in	its	window
– Receiver	can	accept	packets	in	its	window
– Window	of	acceptable	packets	“slides”	on	successful	

reception/acknowledgement

52

A	Sliding	Packet	Window

• Let	A	be	the	last	ack’d packet	of	sender	without	gap;
then	window	of	sender	=	{A+1,	A+2,	…,	A+n}

• Let	B	be	the	last	received	packet	without	gap by	receiver,
then	window	of	receiver	=	{B+1,…,	B+n}

n
B

Received	and	ACK’d
Acceptable	but not
yet	received

Cannot	be	received

n
A

Already	ACK’d

Sent	but	not	ACK’d

Cannot	be	sent
sequence	number	à

53

Acknowledgements	w/	Sliding	Window

• Two	common	options
– cumulative	ACKs:	ACK	carries	next	in-order	
sequence	number	that	the	receiver	expects

54

Cumulative	Acknowledgements	(1)

• At	receiver
n

B
Received	and	ACK’d
Acceptable	but not
yet	received

Cannot	be	received

l After	receiving	B+1,	B+2
nBnew=	B+2

l Receiver	sends	ACK(Bnew+1) 55

Cumulative	Acknowledgements	(2)

• At	receiver
n

B
Received	and	ACK’d
Acceptable	but not
yet	received

Cannot	be	received

l After	receiving	B+4,	B+5
nB

l Receiver	sends	ACK(B+1)
56

How	do	we	
recover?

Go-Back-N	(GBN)

• Sender	transmits	up	to	n unacknowledged	packets

• Receiver	only	accepts	packets	in	order
– discards	out-of-order	packets	(i.e.,	packets	other	than B+1)

• Receiver	uses	cumulative	acknowledgements
– i.e.,	sequence#	in	ACK	=	next	expected	in-order	sequence#	

• Sender	sets	timer	for	1st outstanding	ack (A+1)
• If	timeout,	retransmit	A+1, …	,	A+n

57

Sliding	Window	with	GBN

• Let	A	be	the	last	ack’d packet	of	sender	without	gap;
then	window	of	sender	=	{A+1,	A+2,	…,	A+n}

• Let	B	be	the	last	received	packet	without	gap by	receiver,
then	window	of	receiver	=	{B+1,…,	B+n}

n
A

Already	ACK’d

Sent	but	not	ACK’d

Cannot	be	sent

n
B

Received	and	ACK’d
Acceptable	but not
yet	received

Cannot	be	received

sequence	number	à

58

GBN	Example	w/o	Errors

Time

Window	size	=	3	packets

Sender Receiver

1{1}
2{1,	2}
3{1,	2,	3}

4{2,	3,	4}
5{3,	4,	5}

Sender	Window Receiver	Window

6{4,	5,	6}
.
.
.

.

.

.

59

GBN	Example	with	Errors
Window	size	=	3	packets

Sender Receiver

1
2
3
4
5
6Timeout

Packet	4

4
5
6

60

61

GBN:	sender	extended	FSM

Wait udt_send(packet[base])
udt_send(packet[base+1])
…
udt_send(packet[nextseqnum-1])

timeout

rdt_send(data)

if	(nextseqnum <	base+N)	{
udt_send(packet[nextseqnum])
nextseqnum++
}

else
refuse_data(data)			Block?

base	=	getacknum(reply)+1

udt_rcv(reply)	&&	
notcorrupt(reply)	

base=1
nextseqnum=1

udt_rcv(reply)	
&&	corrupt(reply)

L

L

62

GBN:	receiver	extended	FSM

ACK-only:	always	send	an	ACK	for	correctly-received	packet	with	
the	highest	in-order seq #
– may	generate	duplicate	ACKs
– need	only	remember	expectedseqnum

• out-of-order	packet:	
– discard	(don’t	buffer)	->	no	receiver	buffering!
– Re-ACK	packet	with	highest	in-order	seq #

Wait

udt_send(reply)
L

udt_rcv(packet)
&&	notcurrupt(packet)
&&	hasseqnum(rcvpkt,expectedseqnum)	

rdt_rcv(data)
udt_send(ACK)
expectedseqnum++

expectedseqnum=1

L

Acknowledgements	w/	Sliding	Window

• Two	common	options
– cumulative	ACKs:	ACK	carries	next	in-order	sequence	
number	the	receiver	expects

– selective	ACKs:	ACK	individually	acknowledges	
correctly	received	packets

• Selective	ACKs	offer	more	precise	information	but	
require	more	complicated	book-keeping

• Many	variants	that	differ	in	implementation	
details

63

Selective	Repeat	(SR)

• Sender:	transmit	up	to	n unacknowledged	packets

• Assume	packet	k is	lost,	k+1 is	not

• Receiver:	indicates	packet	k+1 correctly	received

• Sender:	retransmit	only	packet	k on	timeout

• Efficient	in	retransmissions	but	complex	book-keeping
– need	a	timer	per	packet

64

SR	Example	with	Errors

Time

Sender Receiver

1
2
3

4
5
6

4

7

Window	size	=	3	packets{1}
{1,	2}

{1,	2,	3}
{2,	3,	4}
{3,	4,	5}
{4,	5,	6}

{4,5,6}

{7,	8,	9}

{4,5,6}

Timeout
Packet	4

65

Observations

• With	sliding	windows,	it	is	possible	to	fully	utilize	a	
link,	provided	the	window	size	(n)	is	large	enough.		
Throughput	is	~	(n/RTT)
– Stop	&	Wait	is	like	n	=	1.

• Sender	has	to	buffer	all	unacknowledged	packets,	
because	they	may	require	retransmission

• Receiver	may	be	able	to	accept	out-of-order	
packets,	but	only	up	to	its	buffer	limits

• Implementation	complexity	depends	on	protocol	
details	(GBN	vs.	SR)

66

Recap:	components	of	a	solution
• Checksums	(for	error	detection)	
• Timers	(for	loss	detection)	
• Acknowledgments	

– cumulative	
– selective

• Sequence	numbers	(duplicates,	windows)
• Sliding	Windows	(for	efficiency)	

• Reliability	protocols	use	the	above	to	decide	
when	and	what	to	retransmit	or	acknowledge

67

What	does	TCP	do?

Most	of	our	previous	tricks	+	a	few	differences
• Sequence	numbers	are	byte	offsets	
• Sender	and	receiver	maintain	a	sliding	window
• Receiver	sends	cumulative	acknowledgements	(like	GBN)
• Sender	maintains	a	single	retx.	timer	
• Receivers	do	not	drop	out-of-sequence	packets	(like	SR)
• Introduces	fast	retransmit	:	optimization	that	uses	duplicate

ACKs	to	trigger	early	retx
• Introduces	timeout	estimation	algorithms

Automatic	Repeat	Request	(ARQ)

+	Self-clocking	(Automatic)

+	Adaptive

+	Flexible

- Slow	to	start	/	adapt
consider	high	Bandwidth/Delay	product

Next	lets	move	from
the	generic	to	the

specific….

TCP	arguably	the	most	
successful	protocol	in	the	
Internet…..

its	an	ARQ	protocol

69

70

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used to mux
and demux

Last	time:	Components	of	a	solution	
for	reliable	transport

• Checksums	(for	error	detection)	
• Timers	(for	loss	detection)	
• Acknowledgments	

– cumulative	
– selective

• Sequence	numbers	(duplicates,	windows)
• Sliding	Windows	(for	efficiency)

– Go-Back-N	(GBN)
– Selective	Replay	(SR)

71

What	does	TCP	do?

Many	of	our	previous	ideas,	but	some	key	
differences
• Checksum	

72

73

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Computed
over header
and data

What	does	TCP	do?

Many	of	our	previous	ideas,	but	some	key	
differences
• Checksum	
• Sequence	numbers	are	byte	offsets	

TCP: Segments and
Sequence Numbers

75

TCP “Stream of Bytes” Service…
Application	@	Host	A

Application	@	Host	B
76

… Provided Using TCP “Segments”

Host	A

Host	B

TCP	Data

TCP	Data

Segment sent	when:
1. Segment	full	(Max	Segment	Size),
2. Not	full,	but	times	out

77

TCP Segment

• IP	packet
– No	bigger	than	Maximum	Transmission	Unit	(MTU)
– E.g.,	up	to	1500	bytes	with	Ethernet

• TCP	packet
– IP	packet	with	a	TCP	header	and	data	inside
– TCP	header	³ 20	bytes	long

• TCP	segment
– No	more	than	Maximum	Segment	Size (MSS)	bytes
– E.g.,	up	to	1460	consecutive	bytes	from	the	stream
– MSS	=	MTU	– (IP	header)	– (TCP	header)

IP	Hdr
IP	Data

TCP	HdrTCP	Data	(segment)

78

Sequence Numbers

Host	A

ISN	(initial	sequence	number)

Sequence	number	
=	1st byte	in	segment	=	

ISN	+	k

k bytes

79

Sequence Numbers

Host	B

TCP	Data

TCP	Data

TCP	
HDR

TCP	
HDR

ACK	sequence	number	
=	next	expected	byte
=	seqno +	length(data)

Host	A

ISN	(initial	sequence	number)

Sequence	number	
=	1st byte	in	segment	=	

ISN	+	k

k

80

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Starting byte
offset of data
carried in this
segment

81

• What	does	TCP	do?

82

What	does	TCP	do?

Most	of	our	previous	tricks,	but	a	few	differences
• Checksum	
• Sequence	numbers	are	byte	offsets	
• Receiver	sends	cumulative	acknowledgements	(like	GBN)

ACKing and Sequence Numbers
• Sender sends packet

– Data starts with sequence number X
– Packet contains B bytes [X, X+1, X+2, ….X+B-1]

• Upon receipt of packet, receiver sends an ACK
– If all data prior to X already received:

• ACK acknowledges X+B (because that is next expected byte)
– If highest in-order byte received is Y s.t. (Y+1) < X

• ACK acknowledges Y+1
• Even if this has been ACKed before

84

Normal	Pattern
• Sender:	seqno=X,	length=B
• Receiver:	ACK=X+B
• Sender:	seqno=X+B,	length=B
• Receiver:	ACK=X+2B
• Sender:	seqno=X+2B,	length=B

• Seqno of	next	packet	is	same	as	last	ACK	field

85

86

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Acknowledgment
gives seqno just
beyond highest
seqno received in
order
(“What Byte

is Next”)

What	does	TCP	do?

Most	of	our	previous	tricks,	but	a	few	differences
• Checksum	
• Sequence	numbers	are	byte	offsets	
• Receiver	sends	cumulative	acknowledgements	(like	GBN)
• Receivers	can	buffer	out-of-sequence	packets	(like	SR)

87

Loss	with	cumulative	ACKs

• Sender	sends	packets	with	100B	and	seqnos.:
– 100,	200,	300,	400,	500,	600,	700,	800,	900,	…

• Assume	the	fifth	packet	(seqno 500)	is	lost,	
but	no	others

• Stream	of	ACKs	will	be:
– 200,	300,	400,	500,	500,	500,	500,…

88

What	does	TCP	do?

Most	of	our	previous	tricks,	but	a	few	differences
• Checksum	
• Sequence	numbers	are	byte	offsets	
• Receiver	sends	cumulative	acknowledgements	(like	GBN)
• Receivers	may	not	drop	out-of-sequence	packets	(like	SR)
• Introduces	fast	retransmit:	optimization	that	uses	duplicate

ACKs	to	trigger	early	retransmission

89

Loss	with	cumulative	ACKs

• “Duplicate	ACKs”	are	a	sign	of	an	isolated loss
– The	lack	of	ACK	progress	means	500	hasn’t	been	delivered
– Stream	of	ACKs	means	some	packets	are	being	delivered

• Therefore,	could	trigger	resend	upon	receiving	k	
duplicate	ACKs

• TCP	uses	k=3

• But	response	to	loss	is	trickier….

90

Loss	with	cumulative	ACKs

• Two	choices:
– Send	missing	packet	and increase	W	by	the	
number	of	dup	ACKs

– Send	missing	packet,	and	wait	for	ACK	to	increase	
W

• Which	should	TCP	do?

91

What	does	TCP	do?

Most	of	our	previous	tricks,	but	a	few	differences
• Checksum	
• Sequence	numbers	are	byte	offsets	
• Receiver	sends	cumulative	acknowledgements	(like	GBN)
• Receivers	do	not	drop	out-of-sequence	packets	(like	SR)
• Introduces	fast	retransmit:	optimization	that	uses	duplicate

ACKs	to	trigger	early	retransmission
• Sender	maintains	a	single	retransmission	timer	(like	GBN)	and	

retransmits	on	timeout

92

Retransmission	Timeout

• If	the	sender	hasn’t	received	an	ACK	by	
timeout,	retransmit	the	first	packet	in	the	
window

• How	do	we	pick	a	timeout	value?

93

Timing	Illustration

1

1

Timeout	too	long	à inefficient

1

1

Timeout	too	short	à
duplicate	packets	

RTT

Timeout

Timeout

RTT

94

Retransmission	Timeout

• If	haven’t	received	ack by	timeout,	retransmit	
the	first	packet	in	the	window

• How	to	set	timeout?
– Too	long:	connection	has	low	throughput
– Too	short:	retransmit	packet	that	was	just	delayed

• Solution:	make	timeout	proportional	to	RTT
• But	how	do	we	measure	RTT?

95

RTT	Estimation
• Use	exponential	averaging	of	RTT	samples

SampleRTT= AckRcvdTime− SendPacketTime
EstimatedRTT =α ×EstimatedRTT + (1−α)× SampleRTT
0 <α ≤1

Es
tim
at
ed
RT
T

Time

SampleRTT

96

Exponential	Averaging	Example

RTT

time

EstimatedRTT =	α*EstimatedRTT +	(1 – α)*SampleRTT
Assume	RTT	is	constant	à SampleRTT =	RTT

0 1 2 3 4 5 6 7 8 9

EstimatedRTT (α = 0.8)

EstimatedRTT (α = 0.5)

97

Problem:	Ambiguous	Measurements

• How	do	we	differentiate	between	the	real	ACK,	and	ACK	of	
the	retransmitted	packet?

Sa
m
pl
eR

TT

Sender Receiver

Sa
m
pl
eR

TT

Sender Receiver

98

Karn/Partridge Algorithm

• Measure SampleRTT only for original transmissions
– Once a segment has been retransmitted, do not use it for any

further measurements
• Computes EstimatedRTT using α =	0.875

• Timeout value (RTO) = 2 × EstimatedRTT
• Employs exponential backoff

– Every time RTO timer expires, set RTO ¬ 2·RTO
– (Up to maximum ³ 60 sec)
– Every time new measurement comes in (= successful original

transmission), collapse RTO back to 2 × EstimatedRTT

99

Karn/Partridge	in	action

from	Jacobson	and	Karels,	SIGCOMM	1988 100

Jacobson/Karels Algorithm

• Problem: need to better capture variability in
RTT
–Directly measure deviation

• Deviation = | SampleRTT – EstimatedRTT |
• EstimatedDeviation: exponential average of Deviation

• RTO = EstimatedRTT + 4 x EstimatedDeviation

101

With	Jacobson/Karels

102

What	does	TCP	do?

Most	of	our	previous	ideas,	but	some	key	
differences
• Checksum	
• Sequence	numbers	are	byte	offsets	
• Receiver	sends	cumulative	acknowledgements	(like	GBN)
• Receivers	do	not	drop	out-of-sequence	packets	(like	SR)
• Introduces	fast	retransmit:	optimization	that	uses	duplicate

ACKs	to	trigger	early	retransmission
• Sender	maintains	a	single	retransmission	timer	(like	GBN)	and	

retransmits	on	timeout

103

TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

“Must Be Zero”
6 bits reserved

Number of 4-byte
words in TCP
header;
5 = no options

104

TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Used with URG
flag to indicate
urgent data (not
discussed further)

105

TCP Header: What’s left?

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

106

TCP Connection Establishment and
Initial Sequence Numbers

107

Initial Sequence Number (ISN)
• Sequence number for the very first byte
• Why not just use ISN = 0?
• Practical issue

– IP addresses and port #s uniquely identify a connection
– Eventually, though, these port #s do get used again
– … small chance an old packet is still in flight

• TCP therefore requires changing ISN
• Hosts exchange ISNs when they establish a connection

108

Establishing a TCP Connection

• Three-way handshake to establish connection
– Host A sends a SYN (open; “synchronize sequence numbers”) to

host B
– Host B returns a SYN acknowledgment (SYN ACK)
– Host A sends an ACK to acknowledge the SYN ACK

A B

Each host tells
its ISN to the
other host.

109

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

Flags: SYN
ACK
FIN
RST
PSH
URG

110

Step 1: A’s Initial SYN Packet

A’s port B’s port

A’s Initial Sequence Number

(Irrelevant since ACK not set)

Advertised window5 Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it wants to open a connection…

111

Step 2: B’s SYN-ACK Packet

B’s port A’s port

B’s Initial Sequence Number

ACK = A’s ISN plus 1

Advertised window5 0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

B tells A it accepts, and is ready to hear the next byte…

… upon receiving this packet, A can start sending data

Flags

112

Step 3: A’s ACK of the SYN-ACK

A’s port B’s port

B’s ISN plus 1

Advertised window20B Flags0

Checksum Urgent pointer

Options (variable)

Flags: SYN
ACK
FIN
RST
PSH
URG

A tells B it’s likewise okay to start sending

A’s Initial Sequence Number

… upon receiving this packet, B can start sending data 113

Timing Diagram: 3-Way Handshaking

Client (initiator)

Server
Active
Open

Passive
Open

connect()
listen()

114

What if the SYN Packet Gets Lost?

• Suppose the SYN packet gets lost
– Packet is lost inside the network, or:
– Server discards the packet (e.g., it’s too busy)

• Eventually, no SYN-ACK arrives
– Sender sets a timer and waits for the SYN-ACK
– … and retransmits the SYN if needed

• How should the TCP sender set the timer?
– Sender has no idea how far away the receiver is
– Hard to guess a reasonable length of time to wait
– SHOULD (RFCs 1122 & 2988) use default of 3 seconds

• Some implementations instead use 6 seconds

115

Tearing Down the Connection

116

Normal Termination, One Side At A Time

• Finish (FIN) to close and receive remaining bytes
– FIN occupies one byte in the sequence space

• Other host acks the byte to confirm
• Closes A’s side of the connection, but not B’s

– Until B likewise sends a FIN
– Which A then acks

time
A

B

TIME_WAIT:

Avoid reincarnation
B will retransmit FIN
if ACK is lost

Connection
now half-closed

Connection
now closed

117

Normal Termination, Both Together

• Same as before, but B sets FIN with their ack of A’s FIN

time
A

B

Connection
now closed

TIME_WAIT:
Avoid reincarnation
Can retransmit
FIN ACK if ACK lost

118

Abrupt Termination

• A sends a RESET (RST) to B
– E.g., because application process on A crashed

• That’s it
– B does not ack the RST
– Thus, RST is not delivered reliably
– And: any data in flight is lost
– But: if B sends anything more, will elicit another RST

time
A

B

119

TCP	State	Transitions

CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK
Timeout after two
segment lifetimesFIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open /SYN

Data,	ACK	
exchanges	
are	in	here

120

An	Simpler	View	of	the	Client	Side

CLOSED

TIME_WAIT

FIN_WAIT2

FIN_WAIT1

ESTABLISHED

SYN_SENT

SYN	(Send)

Rcv.	SYN+ACK,
Send	ACK

Send	FINRcv.	ACK,
Send	Nothing

Rcv.	FIN,	
Send	ACK

121

TCP Header

Source port Destination port

Sequence number

Acknowledgment

Advertised windowHdrLen Flags0

Checksum Urgent pointer

Options (variable)

Data

122

• What	does	TCP	do?
– ARQ	windowing,	set-up,	tear-down

• Flow	Control	in	TCP

123

Recap: Sliding Window (so far)

• Both sender & receiver maintain a window

• Left edge of window:
– Sender: beginning of unacknowledged data
– Receiver: beginning of undelivered data

• Right edge: Left edge + constant
– constant only limited by buffer size in the

transport layer
124

Sliding Window at Sender (so far)

Sending process

First unACKed byte

Last byte
can send

TCP
Last byte writtenPreviously

ACKed bytes

Buffer	size	(B)

125

Sliding Window at Receiver (so far)

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Received and
ACKed

Buffer	size	(B)

Sender	might	overrun	
the	receiver’s	buffer

126

Solution: Advertised Window (Flow
Control)

• Receiver uses an “Advertised Window” (W)
to prevent sender from overflowing its
window
– Receiver indicates value of W in ACKs
– Sender limits number of bytes it can have in

flight <= W

127

Sliding Window at Receiver

Receiving process

Next byte needed
(1st byte not received)

Last byte read

Last byte received

Buffer	size	(B)

W=	B	- (LastByteReceived - LastByteRead)

128

Sliding Window at Sender (so far)

Sending process

First unACKed byte

Last byte
can send

TCP

Last byte written
W

129

Sliding Window w/ Flow Control

• Sender: window advances when new data
ack’d

• Receiver: window advances as receiving
process consumes data

• Receiver advertises to the sender where
the receiver window currently ends
(“righthand edge”)
– Sender agrees not to exceed this amount

130

Advertised Window Limits Rate
• Sender can send no faster than W/RTT

bytes/sec

• Receiver only advertises more space when it
has consumed old arriving data

• In original TCP design, that was the sole
protocol mechanism controlling sender’s rate

• What’s missing?

131

TCP	

• The	concepts	underlying	TCP	are	simple	
– acknowledgments	(feedback)
– timers
– sliding	windows	
– buffer	management
– sequence	numbers

132

Sizing	Windows	for	
Congestion	Control

• What	are	the	problems?
• How	might	we	address	them?

133

• What	does	TCP	do?
– ARQ	windowing,	set-up,	tear-down

• Flow	Control	in	TCP
• Congestion	Control	in	TCP

134

We have seen:
– Flow control: adjusting the sending rate to

keep from overwhelming a slow receiver

Now lets attend…
– Congestion control: adjusting the sending rate

to keep from overloading the network

135

• If two packets arrive at the same time
– A router can only transmit one
– … and either buffers or drops the other

• If many packets arrive in a short period of time
– The router cannot keep up with the arriving traffic
– … delays traffic, and the buffer may eventually overflow

• Internet traffic is bursty

Statistical	Multiplexing	à Congestion

136

Congestion is undesirable

Average
Packet delay

Load

Typical	queuing	system with	bursty arrivals

Must balance utilization versus delay and loss

Average
Packet loss

Load

137

Who	Takes	Care	of	Congestion?

• Network?	 End	hosts? Both?

• TCP’s	approach:
– End	hosts	adjust	sending	rate
– Based	on	implicit	feedback	from	network

• Not	the	only	approach
– A	consequence	of	history	rather	than	planning

138

Some	History:	TCP	in	the	1980s

• Sending	rate	only	limited	by	flow	control
– Packet	drops	à senders	(repeatedly!)	retransmit	a	full	
window’s	worth	of	packets	

• Led	to	“congestion	collapse”	starting	Oct.	1986
– Throughput	on	the	NSF	network	dropped	from	
32Kbits/s	to	40bits/sec

• “Fixed”	by	Van	Jacobson’s	development	of	TCP’s	
congestion	control	(CC)	algorithms

139

Jacobson’s	Approach
• Extend	TCP’s	existing	window-based	protocol	but	adapt	the	

window	size	in	response	to	congestion
– required	no	upgrades	to	routers	or	applications!
– patch	of	a	few	lines	of	code	to	TCP	implementations

• A	pragmatic	and	effective	solution	
– but	many	other	approaches	exist

• Extensively	improved	on	since	
– topic	now	sees	less	activity	in	ISP	contexts	
– but	is	making	a	comeback	in	datacenter	environments

140

Three	Issues	to	Consider

• Discovering	the	available	(bottleneck)	
bandwidth

• Adjusting	to	variations	in	bandwidth

• Sharing	bandwidth	between	flows

141

Abstract	View

• Ignore	internal	structure	of	router	and	model	it	as	
having	a	single	queue	for	a	particular	input-
output	pair

Sending	Host Buffer	in	Router Receiving	Host

A B

142

Discovering	available	bandwidth

• Pick	sending	rate	to	match	bottleneck	bandwidth
– Without	any	a	priori knowledge
– Could	be	gigabit	link,	could	be	a	modem

A B100	Mbps

143

Adjusting	to	variations	in	bandwidth

• Adjust	rate	to	match	instantaneous bandwidth
– Assuming	you	have	rough	idea	of	bandwidth

A B
BW(t)

144

Multiple	flows	and	sharing	bandwidth

Two	Issues:
• Adjust	total	sending	rate	to	match	bandwidth
• Allocation	of	bandwidth	between	flows

A2 B2BW(t)

A1

A3 B3

B1

145

Reality

Congestion	control	is	a	resource	allocation	problem	involving	many	flows,	
many	links,	and	complicated	global	dynamics

146

View	from	a	single	flow	

• Knee	– point	after	which	
– Throughput	increases	slowly
– Delay	increases	fast

• Cliff	– point	after	which
– Throughput	starts	to	drop	to	zero	

(congestion	collapse)
– Delay	approaches	infinity

Load

Load

Th
ro
ug
hp

ut
De

la
y

knee cliff

congestion
collapse

packet
loss

147

General	Approaches

(0)	Send	without	care
– Many	packet	drops

148

General	Approaches

(0)	Send	without	care
(1)	Reservations

– Pre-arrange	bandwidth	allocations
– Requires	negotiation	before	sending	packets
– Low	utilization

149

General	Approaches

(0)	Send	without	care
(1)	Reservations
(2)	Pricing

– Don’t	drop	packets	for	the	high-bidders
– Requires	payment	model

150

General	Approaches

(0)	Send	without	care
(1)	Reservations
(2)	Pricing
(3)	Dynamic	Adjustment

– Hosts	probe	network;	infer	level	of	congestion;	adjust	
– Network	reports	congestion	level	to	hosts;	hosts	adjust
– Combinations	of	the	above
– Simple	to	implement	but	suboptimal,	messy	dynamics

151

General	Approaches

(0)	Send	without	care
(1)	Reservations
(2)	Pricing
(3)	Dynamic	Adjustment

All	three	techniques	have	their	place
• Generality of	dynamic	adjustment	has	proven	powerful
• Doesn’t	presume	business	model,	traffic	characteristics,	

application	requirements;	does	assume	good	citizenship

152

TCP’s	Approach	in	a	Nutshell

• TCP	connection	has	window
– Controls	number	of	packets	in	flight	

• Sending	rate:	~Window/RTT

• Vary	window	size	to	control	sending	rate

153

All	These	Windows…

• Congestion	Window:	CWND
– How	many	bytes	can	be	sent	without	overflowing	routers
– Computed	by	the	sender	using	congestion	control	algorithm

• Flow	control	window:	AdvertisedWindow (RWND)
– How	many	bytes	can	be	sent	without	overflowing	receiver’s	buffers
– Determined	by	the	receiver	and	reported	to	the	sender

• Sender-side window = minimum{CWND,RWND}
• Assume for this material that RWND >> CWND

154

Note

• This	lecture	will	talk	about	CWND	in	units	of	
MSS	
– (Recall	MSS:	Maximum	Segment	Size,	the	amount	of	
payload	data	in	a	TCP	packet)

– This	is	only	for	pedagogical	purposes

• In	reality	this	is	a	LIE:	Real	implementations	
maintain	CWND	in	bytes

155

Two	Basic	Questions

• How	does	the	sender	detect	congestion?

• How	does	the	sender	adjust	its	sending	rate?
– To	address	three	issues

• Finding	available	bottleneck	bandwidth
• Adjusting	to	bandwidth	variations
• Sharing	bandwidth

156

Detecting Congestion
• Packet delays

– Tricky: noisy signal (delay often varies considerably)

• Router tell endhosts they’re congested

• Packet loss
– Fail-safe signal that TCP already has to detect
– Complication: non-congestive loss (checksum errors)

• Two	indicators	of	packet	loss
– No	ACK	after	certain	time	interval:	timeout
– Multiple	duplicate	ACKs

157

Not	All	Losses	the	Same

• Duplicate ACKs: isolated loss
– Still getting ACKs

• Timeout: much more serious
– Not enough dupacks
– Must have suffered several losses

• We	will	adjust	rate	differently	for	each	case

158

Rate	Adjustment

• Basic	structure:
– Upon	receipt	of	ACK	(of	new	data):	increase	rate
– Upon	detection	of	loss:	decrease	rate

• How	we	increase/decrease	the	rate	depends	on	
the	phase	of	congestion	control	we’re	in:	
– Discovering	available	bottleneck	bandwidth	vs.
– Adjusting	to	bandwidth	variations

159

Bandwidth Discovery with Slow Start

• Goal: estimate available bandwidth
– start slow (for safety)
– but ramp up quickly (for efficiency)

• Consider
– RTT	=	100ms,	MSS=1000bytes
– Window	size	to	fill	1Mbps	of	BW	=	12.5	packets
– Window	size	to	fill 1Gbps	=	12,500	packets
– Either	is	possible!	

160

“Slow Start” Phase
• Sender starts at a slow rate but increases

exponentially until first loss

• Start with a small congestion window
– Initially, CWND = 1
– So, initial sending rate is MSS/RTT

• Double the CWND for each RTT with no loss

161

Slow Start in Action

• For	each	RTT:	double	CWND

• Simpler	implementation:	for	each	ACK,	CWND	+=	1

D A D D A A D D

Src

Dest

D D

1 2 43

A A A A

8

162

Adjusting	to	Varying	Bandwidth

• Slow	start	gave	an	estimate	of	available	bandwidth	

• Now,	want	to	track	variations	in	this	available	
bandwidth,	oscillating	around	its	current	value
– Repeated	probing	(rate	increase)	and	backoff (rate	
decrease)

• TCP	uses:	“Additive	Increase	Multiplicative	
Decrease”	(AIMD)
– We’ll see why shortly…

163

AIMD

• Additive increase
– Window grows by one MSS for every RTT with no

loss
– For each successful RTT, CWND = CWND + 1
– Simple implementation:

• for each ACK, CWND = CWND+ 1/CWND

• Multiplicative decrease
– On loss of packet, divide congestion window in half
– On loss, CWND = CWND/2

164

Leads to the TCP “Sawtooth”

Loss

Exponential
“slow start”

t

Window

165

Slow-Start	vs.	AIMD

• When	does	a	sender	stop	Slow-Start	and	start	
Additive	Increase?

• Introduce	a	“slow	start	threshold”	(ssthresh)
– Initialized	to	a	large	value
– On	timeout,	ssthresh =	CWND/2

• When	CWND	=	ssthresh,	sender	switches	from	
slow-start	to	AIMD-style	increase

166
166

• What	does	TCP	do?
– ARQ	windowing,	set-up,	tear-down

• Flow	Control	in	TCP
• Congestion	Control	in	TCP

– AIMD

167

• What	does	TCP	do?
– ARQ	windowing,	set-up,	tear-down

• Flow	Control	in	TCP
• Congestion	Control	in	TCP

– AIMD,	Fast-Recovery

168

One	Final	Phase:	Fast	Recovery

• The	problem:	congestion	avoidance	too	slow	
in	recovering	from	an	isolated	loss	

169

Example	(in	units	of	MSS,	not	bytes)

• Consider	a	TCP	connection	with:
– CWND=10	packets
– Last	ACK	was	for	packet	#	101

• i.e.,	receiver	expecting	next	packet	to	have	seq.	no.	101

• 10	packets	[101,	102,	103,…,	110]	are	in	flight
– Packet	101	is	dropped
– What	ACKs	do	they	generate?
– And	how	does	the	sender	respond?

170

The	problem	– A	timeline
• ACK	101	(due	to	102)		cwnd=10		dupACK#1	(no	xmit)
• ACK	101	(due	to	103)		cwnd=10		dupACK#2	(no	xmit)
• ACK	101	(due	to	104)		cwnd=10		dupACK#3	(no	xmit)
• RETRANSMIT	101	ssthresh=5		cwnd=	5
• ACK	101	(due	to	105)		cwnd=5	+	1/5	(no	xmit)
• ACK	101	(due	to	106)		cwnd=5	+	2/5	(no	xmit)
• ACK	101	(due	to	107)		cwnd=5	+	3/5	(no	xmit)
• ACK	101	(due	to	108)		cwnd=5	+	4/5	(no	xmit)
• ACK	101	(due	to	109)		cwnd=5	+	5/5	(no	xmit)
• ACK	101	(due	to	110)		cwnd=6	+	1/5	(no	xmit)
• ACK	111	(due	to	101)		ç only	now	can	we	transmit	new	packets
• Plus	no	packets	in	flight	so	ACK	“clocking”	(to	increase	CWND)	stalls	for	

another	RTT

171

Solution:	Fast	Recovery
Idea:	Grant	the	sender	temporary	“credit”	for	each	dupACK so	as	
to	keep	packets	in	flight

• If	dupACKcount =	3	
– ssthresh =	cwnd/2
– cwnd =	ssthresh +	3

• While	in	fast	recovery
– cwnd =	cwnd +	1	for	each	additional	duplicate	ACK

• Exit	fast	recovery	after	receiving	new	ACK
– set	cwnd =	ssthresh

172

Example

• Consider	a	TCP	connection	with:
– CWND=10	packets
– Last	ACK	was	for	packet	#	101

• i.e.,	receiver	expecting	next	packet	to	have	seq.	no.	101

• 10	packets	[101,	102,	103,…,	110]	are	in	flight
– Packet	101	is	dropped

173

Timeline

• ACK	101	(due	to	102)		cwnd=10		dup#1
• ACK	101	(due	to	103)		cwnd=10		dup#2
• ACK	101	(due	to	104)		cwnd=10		dup#3
• REXMIT	101	ssthresh=5		cwnd=	8	(5+3)
• ACK	101	(due	to	105)		cwnd=	9	(no	xmit)
• ACK	101	(due	to	106)		cwnd=10	(no	xmit)
• ACK	101	(due	to	107)		cwnd=11	(xmit 111)
• ACK	101	(due	to	108)		cwnd=12	(xmit 112)
• ACK	101	(due	to	109)		cwnd=13	(xmit 113)
• ACK	101	(due	to	110)		cwnd=14	(xmit 114)
• ACK	111	(due	to	101)	cwnd =	5	(xmit 115)		ç exiting	fast	recovery
• Packets	111-114	already	in	flight
• ACK	112	(due	to	111)	cwnd =	5	+	1/5		ß back	in	congestion	avoidance

Putting	it	all	together:	
The	TCP	State	Machine	(partial)

• How	are	ssthresh,	CWND	and	dupACKcount updated	for	each	
event	that	causes	a	state	transition?	

slow
start

congstn.
avoid.

fast
recovery

cwnd >	ssthresh

timeout

dupACK=3

timeout
dupACK=3

new	ACK

dupACK

new	ACK

timeout new	
ACK

TCP	Flavors	

• TCP-Tahoe
– cwnd =1	on	triple	dupACK

• TCP-Reno
– cwnd =1	on	timeout
– cwnd =	cwnd/2	on	triple	dupack

• TCP-newReno
– TCP-Reno	+	improved	fast	recovery

• TCP-SACK
– incorporates	selective	acknowledgements	

• What	does	TCP	do?
– ARQ	windowing,	set-up,	tear-down

• Flow	Control	in	TCP
• Congestion	Control	in	TCP

– AIMD,	Fast-Recovery,	Throughput

177

TCP Throughput Equation

178

A

A Simple Model for TCP Throughput

Timeouts

t

cwnd

1

RTT

maxW

2
maxW

½	Wmax RTTs	between	drops

Avg.	¾	Wmax packets	per	RTTs

A

A Simple Model for TCP Throughput

Timeouts

t

cwnd

maxW

2
maxW

Packet drop rate, p =1/ A, where A = 3
8
Wmax

2

Throughput, B = A
Wmax

2
!

"
#

$

%
&RTT

=
3
2

1
RTT p

180

Some	implications:	(1)	Fairness

• Flows	get	throughput	inversely	proportional	to	
RTT
– Is	this	fair?

Throughput, B = 3
2

1
RTT p

Some	Implications:	
(2)	How	does	this	look	at	high	speed?

• Assume	that	RTT	=	100ms,	MSS=1500bytes

• What	value	of	p is	required	to	go	100Gbps?
– Roughly	2	x	10-12

• How	long	between	drops?
– Roughly	16.6	hours

• How	much	data	has	been	sent	in	this	time?
– Roughly	6	petabits

• These	are	not	practical	numbers!

182

Some	implications:	
(3)	Rate-based	Congestion	Control

• One	can	dispense	with	TCP	and	just	match	eqtn:
– Equation-based	congestion	control
– Measure	drop	percentage	p,	and	set	rate	accordingly
– Useful	for	streaming	applications

Throughput, B = 3
2

1
RTT p

Some	Implications:	(4)	Lossy Links

• TCP	assumes	all	losses	are	due	to	congestion

• What	happens	when	the	link	is	lossy?

• Throughput	~	1/sqrt(p)	where	p	is	loss	prob.

• This	applies	even	for	non-congestion	losses!

184

Other	Issues:	Cheating

• Cheating	pays	off	

• Some	favorite	approaches	to	cheating:	
– Increasing	CWND	faster	than	1	per	RTT
– Using	large	initial	CWND
– Opening	many	connections

• What	does	TCP	do?
– ARQ	windowing,	set-up,	tear-down

• Flow	Control	in	TCP
• Congestion	Control	in	TCP

– AIMD,	Fast-Recovery,	Throughput
• Limitations	of	TCP	Congestion	Control

186

TCP	Flavors	

• TCP-Tahoe
– CWND	=1	on	triple	dupACK

• TCP-Reno
– CWND	=1	on	timeout
– CWND	=	CWND/2	on	triple	dupack

• TCP-newReno
– TCP-Reno	+	improved	fast	recovery

• TCP-SACK
– incorporates	selective	acknowledgements	

Our	default	
assumption

187

Interoperability

• How	can	all	these	algorithms	coexist?	Don’t	
we	need	a	single,	uniform	standard?

• What	happens	if	I’m	using	Reno	and	you	are	
using	Tahoe,	and	we	try	to	communicate?

188

TCP Throughput Equation

189

A

A Simple Model for TCP Throughput

Loss

t

cwnd

1

RTT

maxW

2
maxW

½	Wmax RTTs	between	drops

Avg.	¾	Wmax packets	per	RTTs 190

A

A Simple Model for TCP Throughput

Loss

t

cwnd

maxW

2
maxW

Packet drop rate, p =1/ A, where A = 3
8
Wmax

2

Throughput, B = A
Wmax

2
!

"
#

$

%
&RTT

=
3
2

1
RTT p

191

Implications	(1):	Different	RTTs

• Flows	get	throughput	inversely	proportional	to	RTT
• TCP	unfair	in	the	face	of	heterogeneous	RTTs!

Throughput = 3
2

1
RTT p

A1

A2 B2

B1

bottleneck
link

100ms

200ms

192

Implications	(2):	High	Speed	TCP

• Assume	RTT	=	100ms,	MSS=1500bytes

• What	value	of	p is	required	to	reach	100Gbps	throughput
– ~	2	x	10-12

• How	long	between	drops?
– ~	16.6	hours

• How	much	data	has	been	sent	in	this	time?
– ~	6	petabits

• These	are	not	practical	numbers!

Throughput = 3
2

1
RTT p

193

Adapting	TCP	to	High	Speed

– Once	past	a	threshold	speed,	increase	CWND	faster	
– A	proposed	standard	[Floyd’03]:	once	speed	is	past	some	threshold,	

change	equation	to	p-.8 rather	than	p-.5	

– Let	the	additive	constant	in	AIMD	depend	on	CWND

• Other	approaches?
– Multiple	simultaneous	connections	(hack	but	works	
today)

– Router-assisted	approaches	(will	see	shortly)

194

Implications	(3):	Rate-based	CC

• TCP	throughput	is	“choppy”	
– repeated	swings	between	W/2	to	W

• Some	apps	would	prefer	sending	at	a	steady	rate	
– e.g.,	streaming	apps

• A	solution:	“Equation-Based	Congestion	Control”	
– ditch	TCP’s	increase/decrease	rules	and	just	follow	the	equation
– measure	drop	percentage	p,	and	set	rate	accordingly

• Following	the	TCP	equation	ensures	we’re	“TCP	friendly”
– i.e.,	use	no	more	than	TCP	does	in	similar	setting

Throughput = 3
2

1
RTT p

195

Recap:	TCP	problems

• Misled	by	non-congestion	losses
• Fills	up	queues	leading	to	high	delays
• Short	flows	complete	before	discovering	available	capacity
• AIMD	impractical	for	high	speed	links	
• Sawtooth discovery	too	choppy	for	some	apps
• Unfair	under	heterogeneous	RTTs
• Tight	coupling	with	reliability	mechanisms
• Endhosts can	cheat

Could	fix	many	of	these	with	some	help	from	routers!

Routers	tell	endpoints	
if	they’re	congested

Routers	tell
endpoints	what	
rate	to	send	at

Routers	enforce
fair	sharing

196

• What	does	TCP	do?
– ARQ	windowing,	set-up,	tear-down

• Flow	Control	in	TCP
• Congestion	Control	in	TCP

– AIMD,	Fast-Recovery,	Throughput
• Limitations	of	TCP	Congestion	Control
• Router-assisted	Congestion	Control

197

Router-Assisted	Congestion	Control

• Three	tasks	for	CC:
– Isolation/fairness
– Adjustment
– Detecting	congestion

198

How	can	routers	ensure	each	flow	gets	its	“fair	
share”?

199

Fairness:	General	Approach

• Routers	classify	packets	into	“flows”
– (For	now)	flows	are	packets	between	same	source/destination

• Each	flow	has	its	own	FIFO	queue	in	router

• Router	services	flows	in	a	fair fashion
– When	line	becomes	free,	take	packet	from	next	flow	in	a	fair	order

• What	does	“fair”	mean	exactly?

200

Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth

C, max-min bandwidth allocations are:
ai = min(f, ri)

where f is the unique value such that Sum(ai) = C

r1

r2

r3

?
?

?
C bits/s

201

Example
• C = 10; r1 = 8, r2 = 6, r3 = 2; N = 3
• C/3 = 3.33 ®

– Can service all of r3

– Remove r3 from the accounting: C = C – r3 = 8; N = 2
• C/2 = 4 ®

– Can’t service all of r1 or r2

– So hold them to the remaining fair share: f = 4

8
6
2

4
4

2

f = 4:
min(8, 4) = 4
min(6, 4) = 4
min(2, 4) = 2

10

202

Max-Min Fairness
• Given set of bandwidth demands ri and total bandwidth

C, max-min bandwidth allocations are:
ai = min(f, ri)

• where f is the unique value such that Sum(ai) = C

• Property:
– If you don’t get full demand, no one gets more than you

• This is what round-robin service gives if all packets are
the same size

203

How	do	we	deal	with	packets	of	
different	sizes?

• Mental	model:	Bit-by-bit	round	robin	(“fluid	
flow”)	

• Can	you	do	this	in	practice?

• No,	packets	cannot	be	preempted

• But	we	can	approximate	it	
– This	is	what	“fair	queuing”	routers	do

204

Fair	Queuing	(FQ)	

• For	each	packet,	compute	the	time	at	which	
the	last	bit	of	a	packet	would	have	left	the	
router	if flows	are	served	bit-by-bit

• Then	serve	packets	in	the	increasing	order	of	
their	deadlines

205

Example

1 2 3 4 5

1 2 3 4

1 2
3

1 2
4

3 4
5

5 6

1 2 1 3 2 3 4 4

5 6

55 6

Flow	1
(arrival	traffic)

Flow	2
(arrival	traffic)

Service
in	fluid	flow	

system

FQ
Packet
system

time

time

time

time

206

Fair	Queuing	(FQ)

• Think of it as an implementation of round-robin generalized
to the case where not all packets are equal sized

• Weighted fair queuing (WFQ): assign different flows
different shares

• Today, some form of WFQ implemented in almost all routers
– Not the case in the 1980-90s, when CC was being developed
– Mostly used to isolate traffic at larger granularities (e.g., per-prefix)

207

FQ	vs.	FIFO

• FQ	advantages:	
– Isolation:	cheating	flows	don’t	benefit
– Bandwidth	share	does	not	depend	on	RTT
– Flows	can	pick	any	rate	adjustment	scheme	they	
want

• Disadvantages:
– More	complex	than	FIFO:	per	flow	queue/state,	
additional	per-packet	book-keeping	

FQ	in	the	big	picture

• FQ	does	not	eliminate	congestion	à it	just	
manages	the	congestion

1Gbps

Blue	and	Green	get
0.5Gbps;	any	excess	
will	be	dropped

Will	drop	an	additional
400Mbps	from	
the	green	flow	

If	the	green	flow	doesn’t	drop	its	sending	rate	to	
100Mbps,	we’re	wasting	400Mbps	that	could	be	

usefully	given	to	the	blue	flow

FQ	in	the	big	picture
• FQ	does	not	eliminate	congestion	à it	just	
manages	the	congestion
– robust	to	cheating,	variations	in	RTT,	details	of	delay,	
reordering,	retransmission,	etc.

• But	congestion	(and	packet	drops)	still	occurs

• And	we	still	want	end-hosts	to	discover/adapt	to	
their	fair	share!

• What	would	the	end-to-end	argument	say	w.r.t.	
congestion	control?

Fairness	is	a	controversial	goal
• What	if	you	have	8	flows,	and	I	have	4?

– Why	should	you	get	twice	the	bandwidth

• What	if	your	flow	goes	over	4	congested	hops,	and	mine	only	
goes	over	1?
– Why	shouldn’t	you	be	penalized	for	using	more	scarce	bandwidth?

• And	what	is	a	flow	anyway?
– TCP	connection
– Source-Destination	pair?
– Source?

Router-Assisted	Congestion	Control

• CC	has	three	different	tasks:
– Isolation/fairness
– Rate	adjustment
– Detecting	congestion

Why	not	just	let	routers	tell	endhosts what	rate	
they	should	use?

• Packets	carry	“rate	field”

• Routers	insert	“fair	share”	f in	packet	header
– Calculated	as	with	FQ

• End-hosts set sending rate (or window size) to f
– hopefully (still need some policing of endhosts!)

• This is the basic idea behind the “Rate Control
Protocol” (RCP) from Dukkipati et al. ’07

214

Flow Completion Time: TCP vs. RCP (Ignore XCP)

Flow	Duration	(secs)	vs.	Flow	Size #	Active	Flows	vs.	time

RCP

RCP

Why	the	improvement?

215

Router-Assisted	Congestion	Control

• CC	has	three	different	tasks:
– Isolation/fairness
– Rate	adjustment
– Detecting	congestion

216

Explicit	Congestion	Notification	(ECN)

• Single	bit	in	packet	header;	set	by	congested	routers
– If	data	packet	has	bit	set,	then	ACK	has	ECN	bit	set

• Many	options	for	when	routers	set	the	bit
– tradeoff	between	(link)	utilization	and	(packet)	delay

• Congestion	semantics	can	be	exactly	like	that	of	drop
– I.e.,	endhost reacts	as	though	it	saw	a	drop

• Advantages:
– Don’t	confuse	corruption	with	congestion;	recovery	w/	rate	adjustment
– Can	serve	as	an	early	indicator	of	congestion	to	avoid	delays
– Easy	(easier)	to	incrementally	deploy	

• defined	as	extension	to	TCP/IP	in	RFC	3168	(uses	diffserv bits	in	the	IP	header)
217

One	final	proposal:	Charge	people	for	
congestion!

• Use	ECN	as	congestion	markers

• Whenever	I	get	an	ECN	bit	set,	I	have	to	pay	$$

• Now,	there’s	no	debate	over	what	a	flow	is,	or	what	fair	is…

• Idea	started	by	Frank	Kelly	here	in	Cambridge
– “optimal”	solution,	backed	by	much	math
– Great	idea:	simple,	elegant,	effective
– Unclear	that	it	will	impact	practice	– although	London	congestion	works

218

Synchronized	Flows Many TCP Flows
• Aggregate window has same

dynamics
• Therefore buffer occupancy

has same dynamics
• Rule-of-thumb still holds.

• Independent, desynchronized
• Central limit theorem says the

aggregate becomes Gaussian
• Variance (buffer size)

decreases as N increases

Some	TCP	issues	outstanding…

Probability
Distribution

t

Buffer	Size

t

219

• What	does	TCP	do?
– ARQ	windowing,	set-up,	tear-down

• Flow	Control	in	TCP
• Congestion	Control	in	TCP

– AIMD,	Fast-Recovery,	Throughput
• Limitations	of	TCP	Congestion	Control
• Router-assisted	Congestion	Control

220

TCP	in	detail

Recap

• TCP:	
– somewhat	hacky
– but	practical/deployable
– good	enough	to	have	raised	the	bar	for	the	
deployment	of	new,	more	optimal,	approaches	

– though	the	needs	of	datacenters	might	change	the	
status	quos

221

