Biolnformatics algorithms

Simon Frost, sdf22@cam.ac.uk
No biology in the exam questions

You need to know only the biology in the slides to understand the
reason for the algorithms

Partly based on book: Compeau and Pevzner Bioinformatics
algorithms (chapters 3,5 in Vol 1,7-10 in Vol II)

— Also Biological Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme
Mitchison

Color slides from the course website




Sequence Alignment Outline

From Sequence Comparison to Biological Insights

The Alignment Game and the Longest Common Subsequence
The Manhattan Tourist Problem

Dynamic Programming and Backtracking Pointers

From Manhattan to the Alignment Graph

From Global to Local Alignment

Penalizing Insertions and Deletions in Sequence Alignment
Space-Efficient Sequence Alignment

Multiple Sequence Alignment



DNA: 4-letter alphabet, A (adenosine), T (thymine), C (cytosine) and G (guanine). In the double
helix A pairs with T, C with G

Gene: hereditary information located on the chromosomes and consisting of DNA.

RNA: same as DNA but T -> U (uracil)

3 letters (triplet — a codon) code for one amino acid in a protein.

Proteins: units are the 20 amino acids A, C,D,E,F, G, H, |, K, L, M,N, P, Q,R, S, T, VW, Y.
Genome: an organism’s genetic material
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Why Aligh Sequences?

* Biological sequences can be represented as a
vector of characters:

— A, C, T and G for DNA

* We align sequences such that sites with the
same ancestry are aligned

* This is a requirement e.g. for downstream
phylogenetic analyses



The Alignment Game

ATGTTATA
ATCGTCC
Alignment Game (maximizing the number of points):

e Remove the 1st symbol from each sequence

* 1 point if the symbols match, O points if they don’t match
 Remove the 1st symbol from one of the sequences

* 0 points



The Alignment Game

AT-GTTATA
ATCGT-C-C
+1+1  +1+1 =4



What Is the Sequence Alighment?

matches insertions deletions mismatches

AT-GTTATA
ATCGT-C-2ZC
+1+1 +1+1 =4

Alignment of two sequences is a two-row matrix:

o »n

15t row: symbols of the 15t sequence (in order) interspersed by “-

o »”n

29 row: symbols of the 2" sequence (in order) interspersed by “-



Longest Common Subsequence

AT-GTTATA
ATCGT-C-2ZC

Matches in alignment of two sequences (ATGT) form their
Common Subsequence

Longest Common Subsequence Problem: Find a longest
common subsequence of two strings.
* Input: Two strings.
 Output: A longest common subsequence of these
strings.



From Manhattan to a Grid Graph
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Manhattan Tourist Problem

Manhattan Tourist Problem: Find a longest path in a
rectangular city grid.

eInput: A weighted rectangular grid.

eQutput: A longest path from the source to the sink in
the grid.
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Greedy
algorithm?
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Search for Longest Paths in a Directed Graph

Longest Path in a Directed Graph Problem: Find a
longest path between two nodes in an edge-weighted
directed graph.
* Input: An edge-weighted directed graph with
source and sink nodes.
 Output: A longest path from source to sink in
the directed graph.



Do You See a Connection between
the Manhattan Tourist and the Alignment Game?

AT-GTTATA
ATCGT-C-2C
VY SN Y N Y

15
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How to built a
Manhattan for the
Alignment Game

and the
Longest Common
Subsequence
Problem?

Diagonal red edges
correspond to
matching symbols
and have scores 1
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3 2 4 0

— —_— —_—
There are 1 10 12 14 13
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to arrive to — — — —
the sink:
by moving 13 16 15 12 11
South {, 0 7 3 3
. — e ———— —_—
or by moving
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South or East?

SouthOrEast(n,m)
if n=0 and m=0

return O

if n>0 and m>0
x €< SouthOrEast(n-1,m)+weight of edge “,”into (n,m)
y < SouthOrEast(n,m-1)+ weight of edge “=>”into (n,m)
return max{x,y}

return -infinity
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Dynamic programming

* Break down complex problem into simpler
subproblems

* Solving subproblems once

e Store solutions
— "Memoization’



Dynamic Programming Recurrence

s; i+ the length of a longest path from (0,0) to (i)

5., j + weight of edge “.”into (i)
S;j=max{ "~

s; ., + weight of edge “»”into (i)

I, -1



How does
the
recurrence
change for
this graph?

29



Sa = maXaII predecessors b of node a{sb+ WEIght of Edge from b to 0}

4 choices:
5+2
3+7
5+4
4+ 2

30



S, = max {s,+ weight of edge from b to a}

all predecessors b of node a

4 choices:
5+2
3+7




Dynamic Programming Recurrence for the
Alignment Graph

s; ;- the length of a longest path from (0,0) to (i)

s.. - + weight of edge “J,” into (i)

-1, |
S, /= max { Sij1t weight of edge “=»” into (i)

5.1 .o+ Weight of edge “N into (i)
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Dynamic Programming Recurrence for the
Longest Common Subsequence Problem

s; ;- the length of a longest path from (0,0) to (i)
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red edges N — weight 1
other edges — weight 0
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backtracking pointers
for the Longest
Common Subsequence

red edges N — weight 1
other edges — weight O
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backtracking pointer
for the Longest
Common Subsequence
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Computing Backtracking Pointers

SI/./_1+0
s;; € max{s;; +0
Si.1:.411 ifvi=w;

“>7 if s, =s
7 n .
backtrack; < {“\", ifs; =s,; ;
U\ " _
N7 ifs; =S, 44+

IJ-1
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backtracking pointer
for the Longest
Common Subsequence
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Using Backtracking Pointers to Compute LCS

OutputLCS (backtrack, v, i, j)
ifi=0orj=0
return
if backtrack,; = “->"
OutputLCS (backtrack, v, i, j-1)
else if backtrack;; = “\”
OutputLCS (backtrack, v, i-1, j)
else
OutputLCS (backtrack, v, i-1, j-1)
output v,

40



Computing Scores of ALL Predecessors

5o = MaXy, predecessors b of node a{5b+ WEIght of Edge from b to Cl}

41
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A Vicious Cycle

44



In What Order Should We Explore Nodes of the Graph?

5= MaXy predecessors b of node a{5b+ weignt of edge from b to G}

e By the time a node is analyzed, the scores of all its
predecessors should already be computed.

e |f the graph has a directed cycle, this condition is
impossible to satisfy.

e Directed Acyclic Graph (DAG): a graph without directed
cycles.

45



Topological Ordering

e Topological Ordering: Ordering of nodes of a DAG on a line
such that all edges go from left to right.

e Theorem: Every DAG has a topological ordering.

46



LongestPath

LongestPath(Graph, source, sink)
for each node a in Graph
s, € -infinity
SSOUI’CE é O
topologically order Graph
for each node a (from source to sink in topological order)
S, < max {s,+ weight of edge from b to a}
return s

all predecessors b of node a

sink



H QP

Mismatches and Indel Penalties

#matches — u - #mismatches - o - #indels

AT-GTTATA
ATCGT-C-C
+1+1-2+1+1-2-3-2-3=-7

A C G T - A C G T -
+l1 -p -p -p -o
-p +t1 —-p —-p -o
-u -u +1 -u -o
-p —p —p +1 -o
-0 -0 -0 -0

H QO p
I
=
<+
=
I
w
I
N
I
w

-4 -2 -2 -1

Scoring matrix Even more general scoring matrix



Dynamic Programming Recurrence for the
Alignment Graph

s. . .+ weight of edge “J.” into (i)

i1, j
s; = max {s,.,j_l + weight of edge “=” into (i,j)

S.1 .1+ weight of edge “N" into (i)

ANAANANANA >
AN
AN o
AN e
AN
AN o
AN o
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Dynamic Programming Recurrence for the
Alignment Graph

Si-l,j -0

Si,j-l -0

S, = max { .
I, —
/ Sip 1+ L ifvEw,

Si-l,j-l - u, If VI¢W_]

50



Dynamic Programming Recurrence for the
Alignment Graph

s, ; +score(v,-)

I-1, |
s, = max { S; .1 T score(-,w))

Si.1 j.1+ score(v,w))

AT C G T C C
ANININININIENI
HANANANANAVANAN
GINININININININ
JANANANAVANANAN
TININININININDN
APNINININININI
TININININININD
g AVANANAVANANAN
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Global Alignment

Global Alignment Problem: Find the highest-scoring
alignment between two strings by using a scoring matrix.

* Input: Strings v and w as well as a matrix score.
 Output: An alignment of vand w whose alignment

score (as defined by the scoring matrix score) is
maximal among all possible alignments of vand w.



Which Alignment is Better?

e Alignment 1: score = 22 (matches) - 20 (indels)=2.
GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-

GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

e Alignment 2: score = 17 (matches) - 30 (indels)=-13.

-=-=-G----C-——--- C--CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG-=-——- A-—-—-—--- T————-

53



Which Alignment is Better?

e Alignment 1: score = 22 (matches) - 20 (indels)=2.

GCC-C-AGT--TATGT-CAGGGGGCACG--A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT

e Alignment 2: score = 17 (matches) - 30 (indels)=-13.

CAGTTATGTCAG
CAGTTATGTCAG
local alignment

54



PO OQ@QHAPQQPFPQQAP 000 ProHAQAPAAQP Q0Q0QOA

G ¢ ¢ ¢ ¢c ¢c T CGGTTT T T CAGCA G T T A

-——G—-C————— C——CAGTTATGTCAGGGGGCACGAGCATGCAGA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG————— A—————— T ———
Local alignment

GCC-C-AGT-TATGT-CAGGGGGCACG—-A-GCATGCAGA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG-T—-CAGAT
Global alignment
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G ¢ ¢ ¢ ¢c c T CGTTTTCAGCA G T T A

HOOUODURKUOUHBHCCHUODHUCDODODOVOVUCLUCUOLVUCEHUOLULUCOUK

>
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Local Alignment

Global alignment




Local Alignment= Global Alig

nment in a Subrectangle

_________________________

___________________

—— Compute a Global
Alignment within
each rectangle to
get a Local
Alignment




Local Alignment Problem

Local Alighnment Problem: Find the highest-scoring local
alignment between two strings.

* Input: Strings v and w as well as a matrix score.
e Output: Substrings of v and w whose global alighnhment

(as defined by the matrix score), is maximal among all
global alignments of all substrings of vand w.



GCC-C-AGT-TATGT-CAGGGGGCACG--A-GCATGCACA-
GCCGCC-GTCGT-T-TTCAG----CA-GTTATG-T—-CAGAT
Global alignment

Free Taxi Rides!

G ¢ ¢ 6 ¢ ¢c g6 T CGGT T T T CAGC A G T T A
-r ¢ A G A T

-——G—-C————— C——CAGTTATGTCAGGGGGCACGAGCATGCACA
GCCGCCGTCGTTTTCAGCAGTTATGTCAG————— A-————- T ———
Local alignment 60



What Do Free Taxi Rides Mean in the Terms of the Alignment Graph?
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Building Manhattan for the Local Alignment Problem
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Dynamic Programming for the Local Alighment

weight of edge from (0,0) to (i,j)
5., + weight of edge “.” into (i,})
s; = Max {s,.,j_l + weight of edge “=” into (i,j)

S.1 .1+ weight of edge “N" into (i)
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Dynamic Programming for the Local Alighment

0

s. . .+ weight of edge “J.” into (i)

i1, j
s; = max {s,.,j_l + weight of edge “=” into (i,j)

S.1 .1+ weight of edge “N" into (i)
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Scoring Gaps

* We previously assigned a fixed penalty o to
each indel.

* However, this fixed penalty may be too severe
for a series of 100 consecutive indels.

* Aseries of kindels often represents a single
evolutionary event (gap) rather than k events:

two gaps GATCCAG GATCCAG a single gap
(lower score) GA-C-AG GA--CAG (higher score)



More Adequate Gap Penalties

Affine gap penalty for a gap of length k: o+¢&-(k-1)

o - the gap opening penalty
€ - the gap extension penalty

o > €, since starting a gap should be penalized
more than extending it.



Modelling Affine Gap Penalties by Long Edges
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Building Manhattan with Affine Gap Penalties

o+e-2

ot+e

! %7@%
Varssme

We have just added O(n?) edges to the graph...
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— — — —

Building Manhattan on 3 levels

bottom level

(insertions)

«— — — — <«

— — — — <«

v
v
v
wavd
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NN NN
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middle level
(matches/mismatches)

upper level
(deletions)
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1.~ Howcan we emulate

oo this path in the 3-level

N L Manhattan?
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Middle Column of the Alignment

1

B

\\
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middle column
(middle=tcolumns/2)
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Middle Node of the Alignment

—
A ININILININEN
T INININE NN
AN RNA ¥ NANAN
e ININENINE NN
AN
SRNEN \L\ REAN

middle node
(a node where an optimal alignment path crosses the middle column)
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Divide and Conquer Approach to Sequence Alignment

()]
()]

AlignmentPath(source, sink)
find MiddleNode A
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Divide and Conquer Approach to Sequence Alignment

A C G G A A
AlignmentPath(source, sink) [ ]
find MiddleNode A \ l\ \N N \ \
AlignmentPath(source, MiddleNode) U U (e
RN ANA T NANEN
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Divide and Conquer Approach to Sequence Alignment

A
AlignmentPath(source, sink)

C

()]

find MiddleNode A N\

AlignmentPath(source, MiddleNode) e

—

AlignmentPath(\MiddleNode, sink) T \l\

TN

¢

\

AN

N\

AL

N\

VA Y VeV

&

&

AV AVEVEVEVER.
LAV VL L =

The only problem left is how to find this middle node in linear space!
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Computing Alignment Score in Linear Space

Finding the longest path in the alighnment graph
requires storing all backtracking pointers — O(nm)
memory.

Finding the length of the longest path in the
alignment graph does not require storing any
backtracking pointers — O(n) memory.



Recycling the Columns in the Alignment Graph

TN
St N N O S T
\ 2\/2||¢2

1 ot s

T
D s S
— \ (Q\| (Q\] (q\|
s . S
> P / -

kA A A A
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Can We Find the Middle Node without
Constructing the Longest Path?

T

\

27278787 874%
AVEVAVEVEVEN:
/l/l/;/l/lm
VAV VAV eV
VeV AVEVAR

<

l

4-path that visits the node
(4,middle)
In the middle column

i-path — a longest path among paths that visit the i-th node in the middle column
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Can We Find The Lengths of All i-paths?

—

> x> O

PP
ATRNA 1 RAVAN
R ANA I NANEN
RNANA FIFANAN
RUA VA VAR
RVATE M NANRN
U

length(i):
length of an i-path:

length(0)=2
length(4)=4
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Can We Find The Lengths of All i-paths?

FINANAN
NN

AVAINA M AN

NN

A

PR ANA ¥ SNRNAN

SIRNAN
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Can We Find The Lengths of i-paths?

length(i):
length of an i-path

\

l

AN
AN <
/l/l/;/l/lm
2949787448
SN

> x> O

length(i)=fromSource(i)+toSink(i)
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Computing FromSource and toSink

G

G

C

A

0
0

1

RNV NSANAN

—> — —F$2+—=2
! \V\ \32 \2\1\0

TN

TN

+—

G\.ﬁ
FINANAN

\1\31\\ \ \

O0—1—1—pF1

v
1

A@\o\o\

0

Tl
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toSink(i)

fromSource(i)



How Much Time Did It Take to Find the Middle Node ?

G A A A C GrG A A
Q 21— 2—1—0
NN AN N NININENG
LN ININD 7 INININTININEN
W
\-—\; > :@—> 1
LN & ISSITIRINS
I\ N
NANAVEIPYANENA |} SENAN|

fromSource(i) toSink(i)



Laughable Progress: O(nm) Time to Find ONE Node!

G A G C A A T T

%
/

/

aveveve |

/N

////‘?‘///

D —

.

/

L avas

Al Vavavavs

aveers

R
784
/i

How much time would it take to conquer 2 subproblems?



Laughable Progress: O(nm+nm/2) Time to Find THREE Nodes!

()]
>
()]

vz

VSV EAVe LV

<_
®

v
o

Each subproblem
can be conquered
in time
proportional to
its area:

AV

féﬁ///»
ANV
AN

A \
® area/8+area/8+
A l area/8+area/8=
® area/4

17
/7
/

S AR
v aaavae

aaana
vevevde

/

/

How much time would it take to conquer 4 subproblems?



O(nm+nm/2+nm/4) Time to Find NEARLY ALL Nodes!

G A G C A A T T

JRRNT U ANANANAN

N NN AN
T \\ \ \V\v\ \ \ +area/4
' \ \ \ \6\ \ \ \ ++a(z'c:>eaa//186
IRNANAVAN \.\ NIND s
SANANANAN VI

. \ \ \ \ \l\\‘\ 2-area
T INUNUNIONISIEST T\

How much time would it take to conquer ALL subproblems?



Total Time: area+area/2+area/4+area/8+area/16+...

1+¥v%+h+... <2
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The Middle Edge

SNUONENININININ LN
NN
SUNININININ NN
AVANAVAVANANAVAN
AVANAVANATANANAN
RNANAVANANAVANAN
SININININININGN
INANINUNININS TN

—

Middle Edge:
an edge in an
optimal
alignment path
starting at the
middle node



The Middle Edge Problem

Middle Edge in Linear Space Problem. Find a middle edge
in the alignment graph in linear space.

* Input: Two strings and matrix score.

* Output: A middle edge in the alignment graph of
these strings (as defined by the matrix score).
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Recursive LinearSpaceAlignment

LinearSpaceAlignment(top,bottom, left, right)

if left = right

return alignment formed by bottom-top edges “J{ ”
middle & |(left+right)/2]
midNode < MiddleNode(top,bottom,left,right)
midEdge < MiddleEdge(top,bottom,left,right)
LinearSpaceAlignment(top,midNode,left,middle)
output midEdge
if midEdge = “> “ or midEdge = “°\”

middle < middle+1
if midEdge = “J “ or midEdge = “\”

midNode < midNode+1
LinearSpaceAlignment(midNode,bottom,middle,right)



Generalizing Pairwise to Multiple Alignment

* Alignment of 2 sequences is a 2-row matrix.
* Alignment of 3 sequences is a 3-row matrix

A - GCG -
A-CGT-A
A CAC-A

* Our scoring function should score alignments with
conserved columns higher.



Alignments = Paths in 3-D

* Alignment of ATGC, AATC, and ATGC

#symbols up to a given position

o

| N | RET | QN
N

H WO 9N
w

Qi Ol >

94



Alignments = Paths in 3-D

* Alignment of ATGC, AATC, and ATGC

(0,0,0)—>(1,1,0)—(1,2,1) —>(2,3,2) —(3,3,3) —(4,4,4)

allrollallwl 9l
| w
allsll ol all




2-D Alignment Cell versus 3-D Alignment Cell
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Multiple Alignment: Dynamic Programming

Sitjoik—1 T 5(Vi » W, 9uk)
Si—l,j—l,k +5(Vi9Wj >_)
Sic1,j k-1 +5(Vi 9_9uk)
Siix =MaxyS; i, + 5(—,Wj ,uk)
Si—l,j,k + 5(Vi 9_:_)
Si,j-1k +5<_9Wj 9_)

\Si,j,k—l T 5(_9_9 Uy )

* JX, Y, 2)isan entryin the 3-D scoring matrix.



Multiple Alignment: Running Time

* For 3 sequences of length n, the run time is
proportional to 7n?

* For a k-way alignment, build a k-dimensional
Manhattan graph with
— n* nodes
— most nodes have 2 — 1 incoming edges.
— Runtime: O(2%n¥)



Multiple Alignment Induces Pairwise Alignments

Every multiple alignment induces pairwise alighnments:
AC-GCGG-C
AC-GC-GAG
GCCGC-GAG

!

ACGCGG-C AC-GCGG-C AC-GCGAG
ACGC-GAC GCCGC-GAG GCCGCGAG
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ldea: Construct Multiple from Pairwise Alignments

Given a set of arbitrary pairwise alignments, can
we construct a multiple alignment that induces
them?

AAAATTTT---- -—---AAAATTTT TTTTGGGG——---
-———-TTTTGGGG GGGGAAAA---- ----GGGGAAAA
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Aligning Profile Against Profile

* |In the past we were aligning a sequence
against a sequence.

— Can we align a sequence against a profile?
— Can we align a profile against a profile?

- A G G C T A T C A CC T G
T A G - €C T A C CcC A - - - G
c A G - c T A CCA - - - G
c A G - CcCT A TC AT C - G G
c A G - CcCT AT CGTC - G G
A 0o 1.0 0 0 01 0 0.8 0 O O0 O
C .6 0 0 0 1 0 0.4 1 0.6 .2 0 O
G o 0 1.2 0 0 O O O.2 O O .4 1
T .2 0 0 0 0 1 0.6 0 O O 0.2 O
- .2 0 0.8 0 0 0 0 O O .4 .8 .4 o



Multiple Alignment: Greedy Approach

* Choose the most similar sequences and
combine them into a profile, thereby reducing
alignment of k sequences to an alignment of
of k — 2 sequences and 1 profile.

* |terate



Greedy Approach: Example
* Sequences: GATTCA, GTCTGA, GATATT, GTCAGC.

* 6 pairwise alignments (premium for match +1,
penalties for indels and mismatches -1)

s2 GTCTGA s1 GATTCA--
s4 GTCAGC (score 2) s4 G-T-CAGC (score

0)

s1 GAT-TCA s2 G-TCTGA
s2 G-TCTGA (score 1) s3 GATAT-T (score = -1)

s1 GAT-TCA s3 GAT-ATT
s3 GATAT-T (score 1) s4 G-TCAGC (score = -1)
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Greedy Approach: Example

* Since s, and s, are closest, we consolidate them
into a profile:

s2 GTCTGA

4 GTCAGC} S, 4 = GICt/aGas/cA

* New set of 3 sequences to align:

s, GATTCA
S;  GATATT
s, , GICt/aGa/c
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Other alphabets

 Amino acid space (n=20)
e Codon space (n=64)



.........................

..............................

LIV |F | Y |W

......................................

...............................................

Y (Tyr) often mutates into F (score +7)
but rarely mutates into P (score -5)

.....................................................

SN | DAt PN AT AT | S PSR MR TN | Tt A T,

...................................................................

........................................................................

................................................................................
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0
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12
o
-2
-3
2
-3
P
-4
3
4
5
-5
=7
-6
—
4

3

Scoring Matrices for Amino Acid Sequences

C Cys
B mer




Summary

Pairwise alignment can be performed with
dynamic programming

Multiple alignment often uses heuristics
How best to choose the scoring matrix?

Current work in this area focuses on aligning
coding sequences at the codon (3 bases) level

— Complicated due to:
* Insertions and deletions
 Different reading frames



Phylogeny Outline

Transforming Distance Matrices into Evolutionary Trees

Toward an Algorithm for Distance-Based Phylogeny Construction
Additive Phylogeny

Using Least-Squares to Construct Distance-Based Phylogenies
Ultrametric Evolutionary Trees

The Neighbor-Joining Algorithm

Character-Based Tree Reconstruction

The Small Parsimony Problem

The Large Parsimony Problem

Back to the alignment: progressive alignment



Phylogeny

* A phylogenetic tree represents inferred
evolutionary relationships among various
biological species or other entities based upon
similarities and differences in their physical or
genetic characteristics

* The taxa joined together in the tree are
implied to have descended from a common
ancestor



What do we use phylogenies for?

* |Inferring relationships between taxa
* |dentifying common ancestors

 With additional information, we can infer
when different taxa diverged



Phylogenetic tree of MERS-Coronavirus in
humans and camels

111
Dudas et al., 2017



Methods for reconstructing phylogenies

Distance

Parsimony
_ikelihood




Constructing a Distance Matrix

D, ; = number of differing symbols between i-th
andj -th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT

3 0 7 5
Seal TCGAGAGCAC 5] 7 0 2
Whale TCGAAAGCAT 4 5 2 0




Constructing a Distance Matrix

D, ; = number of differing symbols between i-th
andj -th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT

3 0 7 5
Seal TCGAGAGCAC 5] 7 0 2
Whale TCGAAAGCAT 4 5 2 0




Constructing a Distance Matrix

D, ; = number of differing symbols between i-th
andj -th rows of a multiple alignment.

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale
Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 )
Seal TCGAGAGCAC 6 7 0 2
Whale TCGAAAGCAT 4 5 2 0

How else could we form a distance matrix?




Aside: more realistic models of nucleotide
distance

e Counting the number of differences may not
be a good measure of divergence time

— Base frequencies are skewed

— The rate at which one base substitutes for another
differ

— ‘Models_of DNA_evolution’” in Wikipedia
* What about:

— Insertions and deletions?
— Ambiguous nucleotides



Trees

ANIMALS

cnidarian/ | \
/ | \htworms / \
/ \Iophophorates/ \rotifers roundworms
VERTEBRATES [ ] ARTHROPODS
/ \ echinoderny\ / \
cartilaginous segmented mollusks chelicerates
fish worms
TETRAPODS [ ) e O
/ \ bony fish crustaceans insects
AMNIOTES o
/ \amphibians
/ \ mmmmm Is
/ \ turtles
ake:

snakes crocodiles
& lizards & birds

Tree: Connected
graph containing
no cycles.

Leaves (degree = 1):

present-day species

Internal nodes
(degree = 1):
ancestral species




Trees

N
/N /N

AW/ A

o O 000 00060 o6 o Present Day

TIME

Rooted tree: one node is designated as the
(most recent common ancestor)




Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct

an evolutionary tree from a distance matrix.

* Input: A distance matrix.

* Output: The unrooted tree “fitting” this distance
matrix.




Fitting a Tree to a Matrix

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp Seal
1 2
\ 3 /
Human ‘/ X Whale



Return to Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct

an evolutionary tree from a distance matrix.

* |Input: A distance matrix.

* Output: The unrooted tree fitting this distance
matrix.

Now is this problem well-defined?




Return to Distance-Based Phylogeny

Exercise Break: Try fitting a tree to the following

matrix.
i j ok
i 0 3 4 3
j 3 0 4 5
k 4 4 0 2
I 3 5 2 0



No Tree Fits a Matrix

Exercise Break: Try fitting a tree to the following

matrix.
i j ok
i 0 3 4 3
j 3 0 4 5
k 4 4 0 2
I 3 5 2 0

Additive matrix: distance matrix such that there
exists an unrooted tree fitting it.




More Than One Tree Fits a Matrix

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp Seal



More Than One Tree Fits a Matrix

Chimp

Chimp 0
Human 3
Seal 6
Whale 4
Chimp

Human

3

0
7
5

Seal

6

N O

Whale
4

5
2
0



Which Tree is “Better”?
Chimp ‘ ‘ Seal

\ KN /

Human ‘ ‘ Whale

Simple tree: tree with no nodes of degree 2.

Theorem: There is a unique simple tree fitting an
additive matrix.




Reformulating Distance-Based Phylogeny

Distance-Based Phylogeny Problem: Construct

an evolutionary tree from a distance matrix.

* Input: A distance matrix.

« Output: The simple tree fitting this distance
matrix (if this matrix is additive).




An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 )
Seal 6 7 0 2
Whale 4 5 2 0)
Chimp : Seal
\ 3 /
/ \
Human ‘ Whale



An Idea for Distance-Based Phylogeny

Seal and whale are neighbours (meaning they
share the same ).

Theorem: Every simple tree with at least two nodes
has at least one pair of neighbouring leaves.

Chimp Seal

\ . 2/

Human ‘

5 S~




An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 )
Seal 6 7 0 2
Whale 4 5 2 0
Seal
How do we compute "/
the unknown o
distances”? x




Toward a Recursive Algorithm

d [(d +dkm)+(d +d m) ( im djm)]/2



Toward a Recursive Algorithm

Oim = Uy Aim) + (0 + ) = (A + 0 )] 1 2
Oiom = (i + A= diy) 1 2

Oiom = Dy + D= Dyy) 1 2

v O = D= (D *+ D —D;) 1 2

Oim = (D + Djj=D;p) [ 2



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Oy = (Dig+ Dyj—Djy) 12



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

Oy = (Dig+ Dyj—Djy) 12



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp ‘ - dSeal/‘ Seal
-y ~ m
x
' ‘ Whale

Oseal,m = (Dsearchimp T Dseal,whale = Pwhale,chimp) / 2



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

dSeaI,m =2



An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp ‘ -_ 4 2/ Seal
-y ~ m



An ldea for Distance-Based Phylogeny

Chimp Human Seal Whale m

Chimp 0 3 6 4 4
Human 3 0 7 5 5
Seal 6 14 0 2 2
Whale 4 5 2 0 0
m 4 3 2 0 0



An Idea for Distance-Based Phylogeny

Chimp Human m

Chimp 0 3 4
Human 3 0 O
m 4 5 0



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5

m 4 3) 0



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5
m 4 5 0
Chimp ‘ , 5 ‘ Seal
\ i m/



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5
m 4 ) 0
Chimp ‘ , 5 ‘ Seal
\ i m/



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5
m 4 5 0
Chimp ‘ , 5 Seal
\ i m/
/ \
Human ‘ ' 0 ‘ Whale



An Idea for Distance-Based Phylogeny

Chimp Human

m

Chimp 0 3 4

Human 3 0 5

m 4 3 0
Chimp ‘\1 2/‘ Seal



An Idea for Distance-Based Phylogeny

Chimp Human

m
Chimp 0 3 4
Human 3 0 5
m 4 3 0
Chimp ‘ , 5 ‘ Seal
\ y /




An Idea for Distance-Based Phylogeny

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
Chimp ‘ , 5 ‘ Seal
\ a ; m/




An Idea for Distance-Based Phylogeny

Exercise Break: Apply this recursive approach to
the distance matrix below.

i j k|
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
I 22 13 13 0




What Was Wrong With Our Algorithm?

i j k|
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
I 22 13 13 0



What Was Wrong With Our Algorithm?

i j k|
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
I 22 13 13 0

o&Les/a
0/ e



What Was Wrong With Our Algorithm?

i j kI

i 0 13 21 22

j 13 0 12 13 minimum

kK 21 12 0 13 element is D;

I 22 13 13 0

&Ly”
o/ e



i j ok
i 0 13 21 22
j 13 0 12 13
k 21 12 0 13
I 22 13 13 0

&LES/”
0/ 7

What Was Wrong With Our Algorithm?

minimum
element is D;

Jand k are
not neighbors!




From Neighbours to Limbs

Rather than trying to find neighbours, let’s
instead try to compute the length of limbs, the
edges attached to leaves.

o\?L?/a
o/ o




From Neighbours to Limbs

Oim = Uy Aim) + (0 + ) = (A + 0 )] 1 2
Oiom = (i + A= diy) 1 2

Oiom = Dy + D= Dyy) 1 2

v O = D= (D *+ D —D;) 1 2

Oim = (D + Djj=D;p) [ 2



From Neighbours to Limbs

dk,m = [(di,m t dk,m) T (d/m T dk,m) _ (di,m T djm)] / 2
Oiom = (i + A= diy) 1 2
Oim = (D + D= D;j) 12

v 0, =D —(Di+ D —D;)) 2 | Assumes that i
dim=(Dix+D;;=D; ) | 2 and j are

nainhhnre



Computing Limb Lengths

Limb Length Theorem: LimbLength(i) is equal to
the minimum value of (D, + D;;— D, ,)/2 over all
leaves Jj and k.

Limb Length Problem: Compute the length of a

limb in the simple tree fitting an additive distance

matrix.

* Input: An additive distance matrix D and an
integer J.

« Output: The length of the limb connecting leaf

to its parent, LimbLength(j).
Solve the Limb Length Problem.




Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is
equal to the minimum value of (D + D
D pimp k)12 over all leaves j and k.

chimp,k chimp,j

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5

Seal 6 7 0 2
Whale 4 5 2 0

(D
1

=(3+6-7)/2=

chimp, human + Dchimp, seal Dhuman, seal) /2



Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is
equal to the minimum value of (D + D
D pimp k)12 over all leaves j and k.

chimp,k chimp,j

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 )
Seal 6 7 0 2
Whale 4 5 2 0
(Dchimp, human + Dchimp, seal Dhuman, seal) / 2 = (3 T 6 _ 7) / 2 =
1
(Dchimp, human + Dchimp, whale — Dhuman, whale) / 2 = (3 T 4 — 5) / 2 = 1



Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is
equal to the minimum value of (D + D
D pimp k)12 over all leaves j and k.

chimp,k chimp,j

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 )
Seal 6 7 0 2
Whale 4 5 2 0
(Dchimp, human + Dchimp, seal Dhuman, seal) /2 = (3 +6 - 7) /2=
1
(Dchimp, human + Dchimp, whale — Dhuman, whale) /2 = (3 +4 - 5) [2=1

(Dooee o A+ D —D. Y/ 2 =(6+4-2)/2=4



Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is
equal to the minimum value of (D + D
D pimp k)12 over all leaves j and k.

chimp,k chimp,j

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 5
Seal 6 7 0 2
Whale 4 5 2 0
(Dhuman, chimp + Dchimp, seal Dhuman, seal) /2 = (3 +6 - 7) /2=
1
(Dhuman, chimp Dchimp, whale Dhuman, whale) [2 = (3 +4 - 5) [2=1

(Do I Y D SR —D. Y/ 2 =(6+4-2)/2=4



Computing Limb Lengths

Limb Length Theorem: LimbLength(chimp) is
equal to the minimum value of (D + D
D pimp k)12 over all leaves j and k.

chimp,k

Chimp Human Seal Whale

Chimp 0 3 6 4
Human 3 0 7 )
Seal 6 7 0 2
Whale 4 5 2 0
Chimp 1 Seal
\ 3 /
/ \
Human ‘ Whale

chimp,j




D

AdditivePhylogeny In Action

i j kI
i 0 13 21 22 [

11 6
j 13 0 12 13 \ 4 /
k 21 12 0 13 0/ X

I 22 13 13 O



AdditivePhylogeny In Action

i j kI
i 0 13 21 22
j 13 0 12 13
D

k 21 12 0 13
I 22 13 13 O

1. Pick an arbitrary leaf J.




AdditivePhylogeny In Action

i j kI
i 0 13 21 22

D J

k 21 12 0 13

13 0 12 13

I 22 13 13 O

LimbLength(j) = 2

2. Compute its limb length, LimbLength()).




AdditivePhylogeny In Action

i j k|
TREE(DPald)
i 0 11 21 22

pbaid 4 110 10 \ — <

k 21 10 0 13 Y
I 22 11 13 0

3. Subtract LimbLength(j) from each row and
column to produce D2 in which j is a bald limb

(lenath 0).



AdditivePhylogeny In Action

i k |
i O 21 22
Dtrim
k 21 0 13
| 22 13 0

4. Remove the j-th row and column of the matrix to
form the (n — 1) x (n — 1) matrix D™,




AdditivePhylogeny In Action

TREE(DM)

i 0 21 22 O

6
Dtrim o 15 /
k 21 0 13 X

@D

I 22 13 0

5. Construct Tree(D"m),




AdditivePhylogeny In Action

i j k|
TREE(Dbald)
i 0 11 21 22

Dbaldj 1 0 10 11 \ /

k 21 10 0 13 Y
I 22 11 13 0

6. Identify the point in Tree(D"™) where leaf j
should be attached.




AdditivePhylogeny In Action

i j k|
TREE(D)
i 0 13 21 22

i 13 0 12 13 \ 4 /
D J
k 21 12 0 13 0/ XO

I 22 13 13 O

LimbLength(j) = 2

7. Attach j by an edge of length LimbLength(j) in
order to form Tree(D).




AdditivePhylogeny

AdditivePhylogeny(D):

1.
2.
3.

4.

o e

Pick an arbitrary leaf j.

Compute its limb length, LimbLength(j).

Subtract LimbLength(j) from each row and column
to produce DPald in which j is a bald limb (length 0).
Remove the j-th row and column of the matrix to
form the (n — 1) x (n — 1) matrix D"m,

Construct Tree(Dm).

|dentify the point in Tree(D""™) where leaf j should
be attached.

Attach j by an edge of length LimbLength(j) in order
to form Tree(D).




AdditivePhylogeny

AdditivePhylogeny(D):

1.
2.
3.

4.

o o

Pick an arbitrary leaf j.

Compute its limb length, LimbLength(j).

Subtract LimbLength(j) from each row and column
to produce DPald in which j is a bald limb (length 0).
Remove the j-th row and column of the matrix to
form the (n — 1) x (n — 1) matrix D"m,

Construct Tree(Dm).

Identify the point in Tree(D''™) where leaf j
should be attached.

Attach j by an edge of length LimbLength(j) in order
to form Tree(D).




Attaching a Limb

i j k| .
TREE(DMM)

i 0 11 21 22
; O

j 11 0 10 11 15 /
pbald o
k 21 10 0 13 X

I 22 11 13 O 0

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (D2, + Dbald, | —
pPald, )2 over all leaves i and k.




Attaching a Limb

i j k| .
TREE(DMM)

] 0O 11 22
i 6 @

j 11 0 10 11 15 /
Dbald O
k 21 10 0 13 X

I 22 11 13 O 0

Limb Length Theorem: the length of the limb of j is
equal to the minimum value of (D2, + Dbald, | —
pPald, )2 over all leaves i and k.

(Dbaldi’j + Dbaldj,k _ )/2 =0



Attaching a Limb

i j kI

trim
i 0 M1 22 TREE(D )@

6
i 11 0 10 11 15 /
Dbald o
k 21 10 0 13 X

I 22 11 13 O 0

(Dbaldi’j + Dbaldj,k _ )/2 =0

bald bald —
D¢ + DA, | =



Attaching a Limb

TREE(DPald)

11 6

Dbald j 11 0 10 11 -, 4

k 219 10 0 13
I 22 11 13 O

The attachment point for j is found on the path
between leaves i and k at distance D", from i.

bald bald —
D¢, + DA, | =



AdditivePhylogeny

AdditivePhylogeny(D):

1.
2.
3.

4.

9 O

Pick an arbitrary leaf j.

Compute its limb length, LimbLength()).

Subtract LimbLength(j) from each row and column
to produce D2l in which j is a bald limb (length 0).
Remove the j-th row and column of the matrix to
form the (n — 1) x (n — 1) matrix D™,

Construct Tree(D"Mm).

|dentify the point in Tree(D"™) where leaf j should
be attached.

Attach j by an edge of length LimbLength(j) in order
to form Tree(D).

Implement AdditivePhylogeny.




Sum of Squared Errors

Discrepancy(T, D) = Z1.;<i<,(d;(T) = D;))?
=12+ 12=2

T\ i /
S

i
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NN
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/
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Sum of Squared Errors

Exercise Break: Assign lengths to edges in T in
order to minimize Discrepancy(T, D).

T o\? | ,_,/a
o ?\0

i j k | i j k |
i 3 4 3 i ? 7?7 7?
] 4 5 ] ? 7?
D ] d J
k 2 k ?
/ /




Least-Squares Phylogeny

Least-Squares Distance-Based Phylogeny

Problem: Given a distance matrix, find the tree

that minimizes the sum of squared errors.

* Input: An n x n distance matrix D.

« Output: A weighted tree T with n leaves
minimizing Discrepancy(T, D) over all weighted
trees with n leaves.

Unfortunately, this problem is NP-Complete...




Ultrametric Trees

edge weights:
correspond to difference in
ages on the nodes the

Rooted binary tree: an
unrooted binary tree with

a root (of degree 2) on 33
o\ [emAmnRCee:

distance from root to any
legf is the same (i.e., age

one of its edges.
33

PN
., ‘E}Qoot;.
// %
,
.A k.\.

Squirrel Baboon Orangutan Gorilla Chimpanzee Bonobo Human
Monkey




Ultrametric Trees

Ultrametric tree:
33 distance from root to any
leaf is the same (i.e., age

10\ 23
10\ o: ;oot).
> 23 6\ 7
/ N,
,
® ® ® ® QA k0\0

Squirrel Baboon Orangutan Gorilla Chimpanzee Bonobo Human
Monkey




UPGMA: A Clustering Heuristic

1. Form a cluster for each present-day species,

each containing a single leaf.

- X -
w A W O -~
a A O W -
N © A A X
O N U1 W o~

O o

O o

O o

@ o




UPGMA: A Clustering Heuristic

2. Find the two closest clusters C, and C,
according to the average distance

Davg(C1’ Co) =2, C1,jin C2 Di,j/ 1Cq] * |Gy
where |C| denotes the number of elements in C.

-~ X -
w A W O -~
a A O W -
N ©O A B~ OXxX
O N U1 W o~

O° OO0 Go O




UPGMA: A Clustering Heuristic

3. Merge C, and C, into a single cluster C.

1K 1}

O° OO0 OG0 O

-~ X -
w A W O -~
a A O W -
N ©O A B~ OXxX
O N U1 W o~




UPGMA: A Clustering Heuristic

4. Form a new node for C and connect to C, and
C, by an edge. Set age of C as D,(C,, C,)/2.

i ok
i 0 3 4 3 {k”}1
i 3 0 4 5 1/\1
kK 4 4 0 2
I3 5 2 0 OO0 00 OO0 O




UPGMA: A Clustering Heuristic

5. Update the distance matrix by computing the
average distance between each pair of clusters.

i {kl}
i 0 3 35 th. /3

1
j 3 0 45 / \1
{k,I1} 35 45 0

1
O o OO o o @O o




UPGMA: A Clustering Heuristic

6. lterate until a single cluster contains all species.

{i.j}
rog Akl 1.5

i 0 3 3.5 !
' 1 1
{k,I} 35 4.5 0 / \

O o OO o o @O o




UPGMA: A Clustering Heuristic

6. lterate until a single cluster contains all species.

{1}
G ) 15

J}
i)y O 4 15 15 1
(k,I} 4 0 1/ \1

O o OO o o @O o




UPGMA: A Clustering Heuristic

6. lterate until a single cluster contains all species.




UPGMA: A Clustering Heuristic

6. lterate until a single cluster contains all species.




UPGMA: A Clustering Heuristic

UPGMA(D):

1.

2.

s W

Form a cluster for each present-day species, each
containing a single leaf.
Find the two closest clusters C, and C, according to the
average distance

Davg(C1s C2) = 2iin ¢, jin c2 Dij 1G4l * |Gy
where |C| denotes the number of elements in C
Merge C, and C, into a single cluster C.
Form a new node for C and connect to C, and C, by an
edge. Set age of C as D, (C,, C,)/2.
Update the distance matrix by computing the average
distance between each pair of clusters.
lterate steps 2-5 until a single cluster contains all

species.




UPGMA Doesn’t “Fit” a Tree to a Matrix

2

i ok I y
i 0 3 4 3 1.5 \
i 3 0 4 5 1
k 4 4 0 2 1'5/\'5 1/\1
I 3 5 2 0



UPGMA Doesn’t “Fit” a Tree to a Matrix

2

i ok I y
i 0 3 4 3 1.5 \
i 3 0 4 5 1
k 4 4 0 2 1'5/\'5 1/\1
I 3 5 2 0



In Summary...

« AdditivePhylogeny:
— good: produces the tree fitting an additive matrix
— bad: fails completely on a non-additive matrix

« UPGMA:

— good: produces a tree for any matrix
— bad: tree doesn’t necessarily fit an additive matrix
o PP

— good: produces the tree fitting an additive matrix
— good: provides heuristic for a non-additive matrix



Neighbour-Joining Theorem

Given an n x n distance matrix D, its neighbour-
joining matrix is the matrix D* defined as

*.i= (n—2)*D, ;- TotalDistancep(i) — TotalDistancep())

where TotalDistancep(i) is the sum of distances from i
to all other leaves.

i j k / TotalDistance, i j k /
i 0 13 21 22 56 i 0 -68 -60 -60
j 13 0 12 13 38 . j - 0 -60 -60
k 21 12 0 13 46 2 08
k - -60 0 -68
I 22 13 13 O 48 80

/I - 60 -68 O




Neighbour-Joining Theorem

Neighbor-Joining Theorem: If D is additive, then
the smallest element of D* corresponds to
neighbouring leaves in Tree(D).

i j k / TotalDistance, i j k /
i 0 13 21 22 56 i 0 -68 -60 -60
j 13 0 12 13 38 . Jj - 0 -60 -60
k 21 12 0 13 46 D 68
k - -60 0 -68
I 22 13 13 O 48 80

/I - 60 -68 O




Neighbour-Joining in Action

i j k / TotalDistance,

i 0 -68 -60 -60 56
pD* J - 0 60 -60 38
68 46
K - 60 0 -68 48
I - 60 -68 O
60

1. Construct neighbour-joining matrix D* from D.




Neighbour-Joining in Action

i j k | TotalDistance,

i 0 -68 -60 -60 56
pD* J - 0 -60 -60 38
68 46
K - 60 0 -68 45
I - 60 68 O
60

2. Find a minimum element D*; of D*.




Neighbour-Joining in Action

i j k | TotalDistance,

i 0 -68 -60 -60 56
pD* J - 0 -60 -60 38
68 46
K - 60 0 -68 45
I - 60 -68 O
60

2. Find a minimum element D*; of D*.




Neighbour-Joining in Action

i j k / TotalDistance,

i 0 -68 -60 -60 56
p* i - 0 -60 -60 A;;=(56-38)/(4-2)
63 46 =9
k - -60 0 -68
50 48
| - -60 -68 O
60

3. Compute 4;; = (TotalDistancep(i) —
TotalDistancep(j)) / (n — 2).




Neighbour-Joining in Action

i j k | TotalDistance,
i 0 13 21 22 o6
D i 13 0 12 13 38 = (56 38)/ (4 -2)
k 21 12 0 13 46 =
I 22 13 13 O 48

LimbLength(i) = /2(13 + 9) = 11
LimbLength(i) = /2(13 — 9) = 2

4. Set LimbLength(i) equal to 72(D;; + 4, ) and
LimbLength(j) equal to 72(D,; — 4,)).




Neighbour-Joining in Action

m k / TotalDistance,,
m 0 10 M1 21
D’ k 10 0 13 23
/I 11 13 0 24

5. Form a matrix D’ by removing /-th and /-th
row/column from D and adding an m-th row/column




Flashback: Computation of d, ,

dk,m = [(di,m t dk,m) T (djm T dk,m) _ (di,m T djm)] / 2
Oiom = (i + A= diy) 1 2
Oim = (D + D= D;j) 12



Neighbour-Joining in Action

m 0 10 11 4
D’ k 10 0 13 @

I 11 13 0

6. Apply NeighbourJoining to D’ to obtain

Tree(D’).




Neighbour-Joining in Action

11 Tree 6
m O \
D’ k 10
I 11 13 0 0/ XO

LimbLength(i) = /2(13 + 9) = 11
LimbLength(i) = /2(13 — 9) = 2

/. Reattach limbs of i and j to obtain Tree(D).




Neighbour-Joining in Action

m k / 0 11 TI’GG(D) 6 0
m 0 10 1 \ 4 /
D’ k 10 0 13 / \
/I 11 13 0 2 7
@ @

/. Reattach limbs of i and j to obtain Tree(D).




Neighbour-Joining

NeighborJoining(D):

1.
2.
3.

4.

e

Construct neighbour-joining matrix D* from D.

Find a minimum element D*;; of D".

Compute 4A;; = (TotalDistancep(i) — TotalDistancep(j)) /
(n—2).

Set LimbLength(i) equal to 2(D;; + 4, ;) and
LimbLength(j) equal to %2(D;; — 4,)).

Form a matrix D’ by removing i-th and j-th row/column
from D and adding an m-th row/column such that for
any K, Dy, = (Dy;+ Dy;— D)) I 2.

Apply NeighbourJoining to D’ to obtain Tree(D’).
Reattach limbs of / and j to obtain Tree(D).

Implement NeighbourJoining.




Neighbour-Joining

Exercise Break: Find the tree returned by
NeighborJoining on the following non-additive

matrix. How does the result compare with the tree
produced by UPGMA?

i j k 1 05 UPGMA
i 0 3 4 3 tree
j 3 0 4 5
D
k 4 4 0 2 1
I 3 5 2 0



Current work

 What if some taxa are ancestors of others?
— ‘Family joining’
https://doi.org/10.1093/molbev/msw123
 What if sequences are sampled at several points
in time?
— Serial UPGMA

https://doi.org/10.1093/oxfordjournals.molbev.a0262
81

— Least squares dating (adjusts branch lengths of
existing tree) https://doi.org/10.1093/sysbio/syv068



Weakness of Distance-Based Methods

Distance-based algorithms for evolutionary tree
reconstruction say nothing about ancestral states at
internal nodes.

We lost information when we converted a multiple
alignment to a distance matrix...

SPECIES ALIGNMENT DISTANCE MATRIX
Chimp Human Seal Whale

Chimp ACGTAGGCCT 0 3 6 4
Human ATGTAAGACT 3 0 7 3

Seal TCGAGAGCAC 6 I4 0 2
Whale TCGAAAGCAT 4 3 2 0




An Alignhment As a Character Table

SPECIES ALIGNMENT
Chimp ACGTAGGCCT
Human _
> 1 SPECIES
Seal TCGACGAGCAC
Whale TCG CAT /
H_J

m characters



Toward a Computational Problem

Chimp ACGTAGGCCT o
Human _
> 1 SPECIES
Seal TCGAGAGCAC
Whale TCG CAT

H_J
m characters




Toward a Computational Problem

Chimp ACGTAGGCCT
Human ATGTAAGACT
Seal TCGAGAGCAC
Whale TCGAAAGCAT
PRP?7?27?2272°7°
P72 72°7 PRP?27?27?272°7
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale



Toward a Computational Problem

ACGAAAGCCT
ACGTAAGCCT TCGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale



Toward a Computational Problem

Parsimony score: sum of Hamming distances
along each edge.

CGAAAGCCT
/ \
ACG AAGCCT CGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale



Toward a Computational Problem

Parsimony score: sum of Hamming distances
along each edge.

Parsimony Score: 8

CGAAAGCCT
/ \
ACG AAGCCT CGAAAGCAT
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT

Chimp Human Seal Whale



Toward a Computational Problem

Small Parsimony Problem: Find the most

parsimonious labeling of the internal nodes of a

rooted ftree.

* Input: Arooted binary tree with each leaf
labeled by a string of length m.

« Output: Alabeling of all other nodes of the tree
by strings of length m that minimizes the tree’s
parsimony score.




Toward a Computational Problem

Small Parsimony Problem: Find the most

parsimonious labeling of the internal nodes of a

rooted ftree.

* Input: Arooted binary tree with each leaf
labeled by a string of length m.

« Output: Alabeling of all other nodes of the tree
by strings of length m that minimizes the tree’s
parsimony score.

Is there any way we can simplify this problem
statement?




Toward a Computational Problem

Small Parsimony Problem: Find the most

parsimonious labeling of the internal nodes of a

rooted ftree.

* Input: Arooted binary tree with each leaf
labeled by a single symbol.

« Output: Alabeling of all other nodes of the tree
by single symbols that minimizes the tree’s
parsimony score.




Toward a Computational Problem



A Dynamic Programming Algorithm

Let 7, denote the subtree of T / \

whose root is v. / \ ./V\TV
JANAY

Define s,(v) as the minimum \
parsimony score of / overall | @
labelings of | , assuming that /\
v is labeled by k. ® ©

The minimum parsimony score for the tree is equal
to the minimum value of s,(root) over all symbols k.




A Dynamic Programming Algorithm

N

F bols i and j, defi )
v b NV ANA:

* 0;; = 1 otherwise. ./ \ ./ \. ./ \.
0/\0

Exercise Break: Prove the following recurrence
relation:

SK(V) = Ming; symbois i {S{Daughter (V))"" Ojxt T MiNgy qymbois i {SASON(V)) +

Oj ks



A Dynamic Programming Algorithm

/ \
0 2N
AN AN

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A G T
oo

C
co () oo oo co () oo oo ) oo oo oo co () oo oo co oo () oo co oo () oo co oo oo () co ()

Sk(V) = minaII symbols / {S,-(Daughter(v)) + 5i,k} + minaII symbols / {S,-(SOI’)(V)) + 5]k}



A Dynamic Programming Algorithm

/ \
I NN

2022/\ 1122/\ 2202/\ 2121/\
A CGT A CGT A CGT A C G T A CGT A CGT A CGT A CGT
o () oo oo c© () oo oo ) o0 oo oo o () oo oo o oo () oo co oo () oo co oo oo () 0

Sk(V) = minaII symbols / {S,-(Daughter(v)) + 5i,k} + minaII symbols / {S,-(SOI’)(V)) + 5]k}



A Dynamic Programming Algorithm

A c oG / \ o
2 1 3 3 / 3 2 2 2
A CGT /Ak A CGT A\

2022/\ 1122/\ 2202/\ 2121/\
A C G T A CGT A C G T A C G T A CGT A C G T A CGT A C G T
co () oo oo co () oo oo 0 oo oo oo co () oo oo co oo () oo co oo () oo co oo oo () co () oo oo

Sk(V) = rninaII symbols / {S,-(Daughter(v)) + 5i,k} + minaII symbols / {S,-(SOI’)(V)) + 5]k}



A Dynamic Programming Algorithm

A C G T
5 3 4 4

C
A c oo / \ o
2 1 3 3 / 3 2 2 2
A CGT /Ak A CGT A\

21 2 1

ANANRYANRYAN

A CGT A CGT A CGT A CGT A G A CGT A CGT A CGT
oo

Cc T
co () oo oo oo () oo oo ) o0 oo oo oo () oo oo oo () oo co oo () oo co oo oo () co () oo oo

Sk(V) = rninaII symbols / {S,-(Daughter(v)) + 5i,k} + minaII symbols / {S,-(SOI’)(V)) + 5]k}



A Dynamic Programming Algorithm

A CGT
5 3 4 4

C
A c oo / \ o
2 1 3 3 / 3 2 2 2
A CGT Ak A CGT A\

2 0 2 2 21 2 1

VANVANVANRYAN

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT

oo () oo oo oo () o0 o ) o0 oo oo c© () oo oo o oo () oo co oo () o co oo oo () oo () oo oo

Exercise Break: "Backtrack” to fill in the remaining
nodes of the tree.




A Dynamic Programming Algorithm

A CGT
5 3 4 4

/ \ A o .
/ "
A CGT /Ak A CGT Ak

21 2 1

VANRVANRYAN /\

A CGT A CGT A CGT A CGT A CGT A CGT A CGT A CGT

co () oo oo co () oo oo ) oo oo oo co () oo oo co oo () oo co oo () oo co oo oo () co () oo oo

Solve the Small Parsimony
Problem.



Cow

Pig

Horse

Mouse

—— Palm Civet

——— Human

Turkey

Dog

Cat

Exercise Break: Apply SmallParsimony to this
tree to reconstruct ancestral coronavirus

seauences.




Small Parsimony for Unrooted Trees

Small Parsimony in an Unrooted Tree Problem:

Find the most parsimonious labeling of the internal

nodes of an unrooted tree.

* Input: An unrooted binary tree with each leaf
labeled by a string of length m.

« Output: A position of the root and a labeling of
all other nodes of the tree by strings of length m
that minimizes the tree’s parsimony score.

Solve this problem.




Finding the Most Parsimonious Tree

ACGAAAGCCT
/ \
ACG AAGCCT TCGAAAGCAT
/ y / N
ACGTAGGCCT ATGTAAGACT TCGAGAGCAC TCGAAAGCAT
Chimp Human Seal Whale

Parsimony Score: 8



Finding the Most Parsimonious Tree

ACGTAAGCAT
/ \
ACGTAAGCAT ACGTAAGCAT
/ x / y
ACGTAGGCCT TCGAGAGCAC ATGTAAGACT TCGAAAGCAT
Chimp Seal Human Whale

Parsimony Score: 11



Finding the Most Parsimonious Tree

ACGTAAGCCT
/ \
ACGTAAGCCT ACGTAAGCCT
ACGTAGGCCT TCGAAAGCAT ATGTAAGACT TCGAGAGCAC
Chimp Whale Human Seal

Parsimony Score: 14



Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of

strings, find a tree (with leaves labeled by all these

strings) having minimum parsimony Score.

* Input: A collection of strings of equal length.

* Output: Arooted binary tree T that minimizes
the parsimony score among all possible rooted
binary trees with leaves labeled by these

strings.




Finding the Most Parsimonious Tree

Large Parsimony Problem: Given a set of

strings, find a tree (with leaves labeled by all these

strings) having minimum parsimony Score.

* Input: A collection of strings of equal length.

* Output: Arooted binary tree T that minimizes
the parsimony score among all possible rooted
binary trees with leaves labeled by these

strings.

Unfortunately, this problem is NP-Complete...




A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, 2).




A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, 2).




A Greedy Heuristic for Large Parsimony

Note that removing an internal edge, an edge
connecting two internal nodes (along with the
nodes), produces four subtrees (W, X, Y, 2).




A Greedy Heuristic for Large Parsimony

Rearranging these subtrees is called a nearest
neighbor interchange.

D G D
N/
4% w\a_b/y Y
e



A Greedy Heuristic for Large Parsimony

Nearest Neighbors of a Tree Problem: Given an
edge Iin a binary tree, generate the two neighbors

of this tree.

* Input: An internal edge Iin a binary tree.

* Output: The two nearest neighbors of this tree
(for the given internal edge).

Solve this problem.



A Greedy Heuristic for Large Parsimony

Nearest Neighbor Interchange Heuristic:

1. Set current tree equal to arbitrary binary rooted
tree structure.

2. Go through all internal edges and perform all

possible nearest neighbor interchanges.

Solve Small Parsimony Problem on each tree.

If any tree has parsimony score improving over

optimal tree, set it equal to the current tree.

Otherwise, return current tree.

P~ W

Implement the nearest-neighbor
iInterchange heuristic.



Current uses of parsimony

e Parsimony has generally fallen out of favour in
preference for model-based approaches
* Uses:

— Inference of ‘difficult” states e.g. indels
— Heuristic for guiding iterative tree search



Back to alignment: progressive alignment

Progressive alignment methods are heuristic in nature.
They produce multiple alignments from a number of
pairwise alignments. Perhaps the most widely used
algorithm of this type is CLUSTALW

Pairwise Alignment Guide Tree lterative Multiple Alignment
1+2
1+3 — 1 2
1+4 -2 3:‘-
2+3 \_ 3 4
2+4

3+4 — 4



Progressive Alignment

Clustalw:

1. Given N sequences, align each sequence
against each other.

2. Use the score of the pairwise alignments to
compute a distance matrix.

3. Build a guide tree (tree shows the best order of
progressive alignment).

4. Progressive Alignment guided by the tree.




Progressive Alignment

Not all the pairwise alignments build well into a
multiple sequence alignment (compare the
alignments on the left and right)

TAGT TCEE——
fff T-GT —GEAT “31
TAGT TAGT ~TGG TeG——
TA-T ___AT
H“H T-GT GCGAT ;f#

TA-T ——AT




Progressive Alighment

The progressive alignment builds a final alignment by
merging sub-alignments (bottom to top) with a guide
tree

AC--A

ACG-A

CC--A

LA-GTA

LA-G-RA

Merping of

/ Srbwaligm .'Jl:'u.'.‘.\

AC-LA AGTA
ACGR AG-R

ce-h .ﬁ'e'q.'.'e'rr-n'm‘\
Sequence fo Sequence Aligrment
Subalignment ARGTA AGL

ACR ACGR
CCA

/; JUERCE [0
Sequence Alipnment

ACRA CCA




Progressive Alignment
- AA

AAA | Small section (3 columns) of the
AAT alignment of 4 sequences

ATC

Let’s start from an alignment of four sequences (above the first three columns);
Compute the frequencies for the occurrence of each letter in each column of multiple
alignment pA = 1, pT=pG=pC=0 (1st column);

pA = 0.75, pT = 0.25, pG=pC=0 (2nd column);

pA = 0.50, pT = 0.25, pC=0.25 pG=0 (3rd column);

Compute entropy of each column: E = — %"y, - 5 7 Pxlog (Px)

The entropy for a multiple alignment is the sum of entropies of each column of the
alignment|

Implementation: http://www.ebi.ac.uk/Tools/msa/




Genome Sequencing Outline

What |Is Genome Sequencing?

Exploding Newspapers

The String Reconstruction Problem

String Reconstruction as a Hamiltonian Path Problem
String Reconstruction as an Eulerian Path Problem
Similar Problems with Different Fates

De Bruijn Graphs

Euler’s Theorem

Assembling Read-Pairs



Next Generation Sequencing Technologies

* Late 2000s: The market for new
sequencing machines takes off.

— [llumina reduces the cost of sequencing ||um|na
a human genome from $3 billion to
$10,000.

— Complete Genomics builds a genomic
factory in Silicon Valley that sequences Comr.g!%’rcn%ff{b
hundreds of genomes per month.

— Beijing Genome Institute orders hundreds
| - - ¥ 3-{i
of sequencing machines, becoming the
world’s largest sequencing center. I3GH

248



Why Do We Sequence Personal Genomes?

e 2010: Nicholas Volker became the first human
being to be saved by genome sequencing.

— Doctors could not diagnose his condition; he went
through dozens of surgeries.

— Sequencing revealed a rare mutation in a XIAP gene
linked to a defect in his immune system.

— This led doctors to use immunotherapy, which saved the
child.

* Different people have slightly different genomes:

on average, roughly 1 mutation in 1000
nucleotides.



The Newspaper Problem

i —a—

e
N === e
= ERE==
N ===

\x“

stack of NY Times, June 27, 2000

__ s
N=r==
N ==

s
i

N

stack of NY Times, June 27, 2000
on a pile of dynamite

i
%
y

NS =
%Q ==y e ——
N =
E\ = S == =3

¥

this is just hypothetical

so, what did the June 27, 2000 NY

Times say?
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The Newspaper Problem as an
Overlapping Puzzle
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The Newspaper Problem as an
Overlapping Puzzle

<= Ehe New JJork Times ===
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Multiple Copies of a Genome (Millions of them)

S=S=

g

P A

stack of NY Times, June 27, 2000

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC
CTGATGATGGACTACGCTACTACTGCTAGCTGTATTACGATCAGCTACCACATCGTAGCTACGATGCATTAGCAAGCTATCGGATCAGCTACCACATCGTAGC

Breaking the Genomes at Random Positions

~

CTGATG*GGACTACG(,*CTACTGC*GCTGTATTA*ATCAGCTACC*ATCGTAGCT/*ATGCATTAG(,*«GCTATCG*TCAGCTAC*CATCGTAGC
CTGA %GGAC GCTACTAC TAGCTGTAT*CGATCAG*CCACATCG CTACGATGCA TAGCAAGCYLTCCGATCARTACCACATIRGTAGC
CTGATG GGACTACG ACTACTGCTA*TGTATTAC TCAGCTARCACATCGTAGCIRACGATGCATTARCAAGCTATRGGATCAGCTIRCCACATCGTAGC

CTGATGATG TACGCTA CTGCTAGCT*ATTACGAT*GCTACCAC CGTAGCTACGANGCATTAGCARGCTATCGGRYCAGCTACCAYETCGTAGC

253



Generating “Reads”

CTGATGA TGGACTACGCTAC TACTGCTAG CTGTATTACG ATCAGCTACCACA TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA GCTGTATTACG ATCAGCTACC ACATCGTAGCT ACGATGCATTA GCAAGCTATC GGATCAGCTAC CACATCGTAGC
CTGATGATGG ACTACGCTAC TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A TCAGCTACCA CATCGTAGC
CTGATGATGGACT ACGCTACTACT GCTAGCTGTAT TACGATCAGC TACCACATCGT AGCTACGATGCA TTAGCAAGCT ATCGGATCA GCTACCACATC GTAGC

“Burning” Some Reads

( \\
N \ \) ( Y,
)\
b _en T
o e s
CTGATGA TACTGCTAG CTGTATTACG TCGTAGCTACG ATGCATTAGCAA GCTATCGGA TCAGCTACCA CATCGTAGC
CTGATGATG GACTACGCT ACTACTGCTA ATCAGCTACC ACATCGTAGCT GCAAGCTATC GGATCAGCTAC CACATCGTAGC
CTGATGATGG TACTGCTAGCT GTATTACGATC AGCTACCAC ATCGTAGCTACG ATGCATTAGCA AGCTATCGG A CATCGTAGC

CTGATGATGGACT ACGCTACTACT TACGATCAGC TACCACATCGT AGCTACGATGCA ATCGGATCA GCTACCACATC GTAGC



No Idea What Position Every Read Comes From
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From Experimental to Computational Challenges

Multiple (unsequenced) genome copies

L1 L) resdsenertion

l l l l l Genome assembly
Assembled genome

..GGCATGCGTCAGAAACTATCATAGCTAGATCGTACGTAGCC...
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What Makes Genome Sequencing Difficult?

* Modern sequencing machines cannot read an
entire genome one nucleotide at a time from
beginning to end (like we read a book)

— Progress in this area via Nanopore and PacBio

* They can only shred the genome and generate
short reads.

* The genome assembly is not the same as a jigsaw
puzzle: we must use overlapping reads to
reconstruct the genome, a giant overlap puzzle!

Genome Sequencing Problem. Reconstruct a genome from reads.
Input. A collection of strings Reads.

Output. A string Genome reconstructed from Reads.




What Is k-mer Composition?

Composition; (TAATGCCATGGGATGTT) =
TAA
AAT
ATG
TGC
GCC
CCA
CAT
ATG
TGG
GGG
GGA
GAT
ATG
TGT
GTT
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k-mer Composition

Composition; (TAATGCCATGGGATGTT) =
TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

e.g., lexicographic order (like in a dictionary)
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Reconstructing a String from its Composition

String Reconstruction Problem. Reconstruct a string from
its k-mer composition.

* Input. A collection of k-mers.

* QOutput. A Genome such that Composition, (Genome) is
equal to the collection of k-mers.



A Naive String Reconstruction Approach

ATG )ATG ATG CAT CCA GAT GCC GGA GGG GTT TGC TGG TGT

ATG ATG CAT CCA GAT GCC GGA GGG TGC TGG

TAA

AAT
ATG

TGT

GTT 261




Representing a Genome as a Path

Composition, (TAATGCCATGGGATGTT) =

RS A A S CACA CACACACACACR)

Can we construct this genome path without knowing the genome TAATGCCATGGGATGTT, only
from its composition?

Yes. We simply need to connect k-mer, with k-mer, if suffix(k-mer,)=prefix(k-mer,).
E.g. TAA > AAT



A Path Turns into a Graph

TAATGCCATGGGATGTT

e @@é(em - AEHTE-O-ED-E

Yes. We simply need to connect k-mer, with k-mer, if suffix(k-mer,)=prefix(k-mer,).
E.g. TAA > AAT



A Path Turns into a Graph

TAATGCCATGGGATGTT

e @@é(em - AEHTE-O-ED-E

Can we still find the genome path in this graph?
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Where Is the Genomic Path?

A Hamiltonian path: a path that visits each node in a graph
exactly once.

TAATGCCATGGGATGTT

~_ =

What are we trying to find in this graph?




Does This Graph Have a Hamiltonian Path?

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
Input. A graph.

Output. A path visiting every node in the graph exactly once.
14

William
Hamilton

17 @
Undirected graph

Icosian game (1857)
266



TAATGGGATGCCATGTT

HRORATAEOOOP PE

S 7

TAATGCCATGGGATGTT




A Slightly Different Path

TAATGCCATGGGATGTT

O G A R C A CACA SR CACACACA)

3-mers as nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG _TGT GTT

O~Or~O~O~O~O~0~O-0~0—0—~0~0~0~0~0

3-mers as edges

How do we label the starting and ending nodes of an edge?

TAA

prefix of TAA —>@ suffix of TAA
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Labeling Nodes in the New Path

TAATGCCATGGGATGTT

O G A R C A CACA SR CACACACA)

3-mers as nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG _TGT GTT

B-D-B~B~E OGO~~~ -O~~O~D

3-mers as edges and 2-mers as nodes
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Labeling Nodes in the New Path

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG _TGT GTT

B-D-B~B~E OGO~~~ -O~~O~D

3-mers as edges and 2-mers as nodes
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Gluing ldentically Labeled Nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG _TGT GTT

B-B-B-O-E-C-0-F-O—-0—C—0-B-B-6-@

TAA AAT TGG GGG GGA GAT ATG _TGT GTT

~O-C-0-B-B-6-@
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Gluing ldentically Labeled Nodes

TAATGCCATGGGATGTT
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Gluing ldentically Labeled Nodes

TAATGCCATGGGATGTT
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Gluing ldentically Labeled Nodes

TAATGCCATGGGATGTT

CAT
TAA AAT §

RN
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Gluing ldentically Labeled Nodes

TAATGCCATGGGATGTT

CAT
TAA AAT §

RN

275



De Bruijn Graph of TAATGCCATGGGATGTT

ccA/" e

C GC

TGcl
CAT

TAA AAT | AIS \
@_,@_,@ Where is the Genome
iy hiding in this graph?
GAT

TGGY
O—en
GGA GGG
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It Was Always There!

TAATGCCATGGGATGTT

CCA GC

C GC
TGC|

ran par | AT An Eulerian path in a
@—»@—»@@m @—0 gra.ph is a path that
ATG visits each edge exactly

TGGy once.
G G

GGA GGG

CAT

GAT




Eulerian Path Problem

Eulerian Path Problem. Find an Eulerian path in a graph.

Input. A graph.

B

iy
B

e B \i‘sﬂh i;"_' >

-y
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Eulerian Versus Hamiltonian Paths

Eulerian Path Problem. Find an Eulerian path in a graph.
* Input. A graph.

 OQutput. A path visiting every edge in the graph exactly once.

Hamiltonian Path Problem. Find a Hamiltonian path in a graph.
* |nput. A graph.

 Qutput. A path visiting every node in the graph exactly once.

Find a difference!

279




What Problem Would You Prefer to Solve?

l ‘

@( p—

Hamiltonian Path Problem

A

While Euler solved the Eulerian Path Problem
(even for a city with a million bridges), nobody
has developed a fast algorithm for the
Hamiltonian Path Problem yet.




NP-Complete Problems

* The Hamiltonian Path Problem belongs to a
collection containing thousands of

computational problems for which no fast
algorithms are known.

That would be an excellent argument, but the
guestion of whether or not NP-Complete
problems can be solved efficiently is one of
seven Millennium Problems in mathematics.

NP-Complete problems are all equivalent: find an
efficient solution to one, and you have an
efficient solution to them all.



Eulerian Path Problem

Eulerian Path Problem. Find an Eulerian path in a graph.

* Input. A graph.

* OQutput. A path visiting every edge in the graph exactly once.
(cq

We constructed the de Bruijn
graph from Genome, but in
reality, Genome is unknown!
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What We Have Done: From Genome to de Bruijn Graph

TAATGCCATGGGATGTT

CC

C G
7'y

AT

|

A/ Gc
TGC

TAA AAT 4 AIG
i =

ATG

AT
TGGY
G G
GGA GGG

C

G

N ‘
oGT o(TT
6T ~ GTT O

G
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What We Want: From Reads (k-mers) to Genome

TAATGCCATGGGATGTT
I\

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT
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What We will Show: From Reads to de Bruijn Graph to Genome

TAATGCCATGGGATGTT

CC

C G
7'y

AT

t

A/ Gc
TGC

TAA AAT 4 AIG
e

ATG
AT
TGGY
G G
GGA GGG

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

C

G

N\ ‘
GT o(TT
6T ~ GTT O

G
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Constructing de Bruijn Graph when Genome Is Known
TAATGCCATGGGATGTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG _TGT GTT

B-EA~E(9~E9~C)~ (A~~~ W~~~ @
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Constructing de Bruijn when Genome Is Unknown

TAA ATG GCC CAT TGG GGA ATG GTT

AAT TGC CCA ATG GGG GAT TGT

Composition;(TAATGCCATGGGATGTT)
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Representing Composition as a Graph Consisting of Isolated Edges

TAA ATG GCC CAT TGG GGA ATG GTT

AAT TGC CCA ATG GGG GAT TGT

Composition;(TAATGCCATGGGATGTT)
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Constructing de Bruijn Graph from k-mer Composition

B G- @~ (-0 G~ - @O
@ o ©-

Composition;(TAATGCCATGGGATGTT)
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Glueing Identically Labeled Nodes

B 4 G- €@ B0 O~ @~ @O
%0 &0 @90



G

@T Aq @ AAT l ATG3 TGCCGCC CC A CA T TG GG GGA @ GAl A—T;@
TGT @
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We Are Not Done with Glueing Yet

@T ﬁ(@_ﬁf@scc cc A CA T TG GGG ~GGA e GAI ATG T TGT & G—T@
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Glueing Identically Labeled Nodes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA GAT ATG _TGT GTT

B-B-B-O-E-C-0-F-O—-0—C—0-B-B-6-@

TAA AAT TGG GGG GGA GAT ATG _TGT GTT

~O-C-0-B-B-6-@
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Glueing Identically Labeled Nodes

TAATGCCATGGGATGTT

294



TAATGCCATGGGATGTT
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Glueing Identically Labeled Nodes

TAATGCCATGGGATGTT
ccA/" Ge
C GC
|

CAT

TAA AAT } AIG
ol
BB {97 @€
ATG

GAT

TGGY
& G GGG
GGA
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The Same de Bruijn Graph:
DeBruin(Genome)=DeBruin(Genome Composition)

ccA/ &c

C GC

TGcl
CAT

ATG
TAA AAT }
O
B-@- I @@
ATG

GAT

TGG}
G G
GGA GGG
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Constructing de Bruijn Graph

De Bruijn graph of a collection of k-mers:

— Represent every k-mer as an edge between its prefix
and suffix

— Glue ALL nodes with identical labels.

DeBruijn(k-mers)
form a node for each (k-1)-mer from k-mers
for each k-mer in k-mers
connect its prefix node with its suffix node by an edge



From Hamilton

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly

once.

000 001 010 011 100 101 110 111
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From Hamilton

Universal String Problem (Nicolaas de Bruijn, 1946). Find a circular string containing each binary k-mer exactly

once.

000 001 100 101 110 111

101 110

@O @0 O 0 @0 -0 -0 -0 OO

300



to Euler

From Hamilton to de Bruijn

94 L Fi
{ ”
‘ M

301



De Bruijn Graph for 4-Universal String

0011

0110

1100

Does it have an Eulerian cycle? If yes, how can we find it?



Eulerian CYCLE Problem

Eulerian CYCLE Problem. Find an Eulerian cycle in a graph.

* Input. A graph.
ting every edge in the graph exactly once.

S

e OQutput. Acyclev

srrna il o
e
i

-y

[\,
A.“
-
3.
A
s
=
i
r
b
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A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?



A Graph is Eulerian if It Contains an Eulerian
Cycle.

Is this graph Eulerian?

1lin, 2 out

A graph is balanced if indegree = outdegree for each node



Fuler’s Theorem

* Every Eulerian graph is balanced

e Every balanced™ graph is Eulerian
0011

1001 0110

1100

(*) and strongly connected, of course! 306



Recruiting an Ant to Prove Euler’s Theorem

Let an ant randomly walk through the graph.
The ant cannot use the same edge twice!




If Ant Was a Genius...

308



A Less Intelligent Ant Would Randomly Choose a
Node and Start Walking...

Can it get stuck? In what node?




The Ant Has Completed a Cycle BUT has not
Proven Euler’s theorem yet...

The constructed cycle is not Eulerian. Can we enlarge it?




Let’s Start at a Different Node in the Green Cycle

Let’s start at a node with still unexplored edges.

“Why should | start at a different node?

F /
Backtracking? I’'m not evolved to walk

backwards! And what difference does it v
make???”




An Ant Traversing Previously Constructed Cycle

Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

e‘/v

“Why do | have to walk along the
same cycle again??? Can | see 3 A4
something new?” 1




| Returned Back BUT... | Can Continue Walking!

Starting at a node that has an unused edge, traverse the already
constructed (green cycle) and return back to the starting node.

After completing the cycle, start random exploration of still
untraversed edges in the graph.




Stuck Again!

No Eulerian cycle yet... can we enlarge the green-blue cycle?

The ant should walk along the constructed cycle starting at
yet another node. Which one?




| Returned Back BUT... | Can Continue Walking!

“Hmm, maybe these
instructions were not
that stupid...”
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| Proved Euler’s Theorem!

EulerianCycle(BalancedGraph)
form a Cycle by randomly walking in BalancedGraph (avoiding already visited edges)
while Cycle is not Eulerian
select a node newStart in Cycle with still unexplored outgoing edges
form a Cycle’ by traversing Cycle from newStart and randomly walking afterwards
Cycle & Cycle’
return Cycle

0011

0010 1011

1001 0110

0101
1010

0100 1101

1100
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From Reads to de Bruijn Graph to Genome

TAATGCCATGGGATGTT

CC

C G
7'y

AT

t

A/ Gc
TGC

TAA AAT 4 AIG
e

ATG
AT
TGGY
G G
GGA GGG

AAT ATG ATG ATG CAT CCA GAT GCC GGA GGG GTT TAA TGC TGG TGT

C

N\ ‘
GT o(TT
6T ~ GTT O

G

G
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Multiple Eulerian Paths

TAATGCCATGGGATGTT TAATGGGATGCCATGTT
@
ccA/ G A/ ac
CA 69 C GC
TGC e |
CAT CAT
TAA AaT | RIS TAA _AaT | AIE
AT,
BBl 0 -G o0+C
ATG ATG
GAT GAT
TGG| TGG)
G GG G G

GGA GGG GGA GGG
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Breaking Genome into Contigs

TAATGCCATGGGATGTT

TAAT

GGGAT

TGCCAT

TGTT

TGG

GGG

GGG
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DNA Sequencing with Read-pairs

Multiple identical copies of genome

Randomly cut genomes into large equally
sized fragments of size InsertLength

Generate read-pairs:
two reads from the

ends of each fragment
— —

— = (separated by a fixed
200 bp 200 gistance)

Insertvl_ength o0



From k-mers to Paired k-mers

Read 1 Read 2
q q
Genome ATCAGATTACGTTCCGAG..
DR Distance d=11 --------- >

A paired k-mer is a pair of k-mers at a fixed distance d apart in Genome.
E.g. TCA and TCC are at distance d=11 apart.

Disclaimers:

1. In reality, Readl and Read2 are typically sampled from different strands:
(— ..o..... < ratherthan — ....... —)

2. In reality, the distance d between reads is measured with errors.
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What is PairedComposition(TAATGCCATGGGATGTT)?

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

. . . . TAA
Representing a paired 3-mer TAA GCC as a 2-line expression: GCC

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA CAT ATG TGG GGG GGA GAT ATG TGT GTT
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TAA
GCC

AAT
cca

AAT
cca

ATG
CAT

PairedComposition(TAATGCCATGGGATGTT)

ATG TGC
CAT ATG

ATG CAT
GAT GGA

GCC
TGG

CCA
GGG

CCA
GGG

GCC
TGG

TAA GCC

AAT CCA

ATG CAT

TGC ATG
GCC TGG
CCA GGG

CAT
GGA

GGA
GTT

CAT GGA

ATG GAT

TGG ATG
GGG TGT
GGA GTT

ATG
GAT

GGG
TGT

TGG
ATG

TAA
GCC

GGG
TGT

TGC
ATG

Representing PairedComposition in lexicographic order

GGA
GTT

TGG
ATG
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String Reconstruction from Read-Pairs Problem

String Reconstruction from Read-Pairs Problem. Reconstruct

a string from its paired k-mers.

* Input. A collection of paired k-mers.

 OQutput. A string Text such that PairedComposition(Text) is
equal to the collection of paired k-mers.

How Would de Bruijn Assemble Paired k-mers?



Representing Genome TAATGCCATGGGATGTT as a Path

TAA GCC
AAT CCA
ATG CAT
TGC ATG
GCC TGG
CCA GGG
CAT GGA
ATG GAT
TGG ATG
GGG TGT
GGA GTT

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC __CCA__CAT __ATGTGG__GGG__GGA_GAT _ATG TGT GTT

GO~ ~O~C-O-0-0~0-0~0

CCA
GGG

, A
paired prefix of —> 88% —p of SSG

325



Labeling Nodes by Paired Prefixes and Suffixes

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC __CCA__CAT_ATGTGGC GGG __GGA__GAT _ ATG TGT GTT

@-B-C-0-E-O-0-B--B-6—-@

CCA
GGG

. . , A
paired prefix of — S,Sé —p of SSG

326



Glue nodes with identical labels

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA_CAT ATG__TGG GGG GGA GAT__ ATG__ TGT _ GTT

B-B-C0-0-G-0-0-B--B-6-@

GCC CCA CAT
TGG__GGG _ GGA

cc CA AT GAT
0/ E-@

TGG GGG GGA
ATG TGT GTT
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Glue nodes with identical labels

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA_CAT ATG__TGG GGG GGA GAT__ ATG__ TGT _ GTT

B-B-C0-0-G-0-0-B--B-6-@

GCC CCA CAT
TGG__GGG _ GGA

TGC

1% -@-E-0-0x
TAA AAT ATG
GCC__CCA _CAT ATG

BB~ ™

TGG ~ GGG ~ GGA
ATG TGT GTT

Paired de Bruijn Graph from the Genome
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Constructing Paired de Bruijn Graph

ATG GCC CAT TGG GGA
_’i CAT IG GGR ATG GTT
@ ®- E-® @
TGC CCA ATG GGG

C‘f@@‘iﬁ

CCA
GGG

paired prefix of —> 88{},‘ —p of 88@‘
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Constructing Paired de Bruijn Graph

& ' & e o

TGC CCcAa ATG GGG

d‘f@@ﬁ

e Paired de Bruijn graph for a collection of paired k-mers:

— Represent every paired k-mer as an edge between its
paired prefix and paired suffix.

— Glue ALL nodes with identical labels.



Constructing Paired de Bruijn Graph

TGG GGA

Cﬁ@@ﬁf@@m—?‘

TGC CcAa ATG GGG

%o d% Fo Fo %

We Are Not Done with Glueing Yet

TAA AAT ATG TGC GCC CCA CAT ATG TGG GGG GGA
GCC CCA_CAT ATG__TGG GGG GGA GAT__ ATG__ TGT _ GTT

B-B-C-0-G-0-0-B--B-6-@
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Constructing Paired de Bruijn Graph

GCC CCA CAT
TGG__GGG _ GGA

.GCC CA AT @ @ é}T_\%

TGG ~ GGG~ GGA
ATG TGT GTT

Paired de Bruijn Graph from read-pairs

* Paired de Bruijn graph for a collection of paired k-mers:

— Represent every paired k-mer as an edge between its
paired prefix and paired suffix.

— Glue ALL nodes with identical labels.



Which Graph Represents a Better Assembly?

Unique genome reconstruction Multiple genome reconstructions
TAATGCCATGGGATGTT TAATGCCATGGGATGTT
TAATGGGATGCCATGTT

GCC CCA CAT
TGG__GGG _ GGA

GCC _CcAa _CAT
TGG ~ GGG~ GGA

ATG TGT GTT

Paired de Bruijn Graph De Bruijn Graph
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Some Ridiculously Unrealistic Assumptions

Perfect coverage of genome by reads (every k-mer
from the genome is represented by a read)

Reads are error-free.
Multiplicities of k-mers are known

Distances between reads within read-pairs are exact.



Some Ridiculously Unrealistic Assumptions

Imperfect coverage of genome by reads (every k-
mer from the genome is represented by a read)

Reads are error-prone.
Multiplicities of k-mers are unknown.

Distances between reads within read-pairs are
inexact.

Etc., etc., etc.
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15t Unrealistic Assumption: Perfect Coverage

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

250-nucleotide reads generated by Illlumina
technology capture only a small fraction of 250-
mers from the genome, thus violating the key
assumption of the de Bruijn graphs.



Breaking Reads into Shorter k-mers

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact

atgccgtatggacaacgact
atgcc
tgccg
gccgt
ccgta
cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac

cgact
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2" Unrealistic Assumption: Error-free Reads

atgccgtatggacaacgact
atgccgtatg
gccgtatgga
gtatggacaa
gacaacgact
cgtaCggaca

Erroneous read
(change of t into C)

atgccgtatggacaacgact
atgcc
tgccg
gccgt
ccgta
cgtat
gtatg
tatgg
atgga
tggac
ggaca
gacaa
acaac
caacg
aacga
acgac
cgact
cgtaC
gtaCg
taCgg
aCgga
Cggac
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De Bruijn Graph of ATGGCGTGCAATG...
Constructed from Error-Free Reads

ATGCC TGCCG GCCGT CCGTA CGTAT GTATG TATGG _ ATGGA TGGAC GGACA

Errors in Reads Lead to Bubbles in the
De Bruijn Graph

ATGCC TGCCG GCCGT _ CCGTA CGTAT GTATG TATGG _ ATGGA TGGAC GGACA

GCCGC “Bubble! CATG

CCGCA CGCAT GCATG



Bubble Explosion...Where Are the Correct Edges
of the de Bruijn Graph?

/\N /N
< “ﬂ

/

N i‘ﬁw’
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De Bruin Graph of N. meningitidis Genome
AFTER Removing Bubbles

7

o~ J Red edges represent repeats
341



Current work

e Extension to multiple samples using coloured
de Bruijn graphs
— https://doi.org/10.1038/ng.1028
— Colour nodes according to sample
— Bubbles represent biological variation

* Succinct coloured de Bruijn graphs with

reduced memory footprint
— https://doi.org/10.1093/bioinformatics/btx067



Clustering Algorithms Outline

Clustering as an optimization problem

The Lloyd algorithm for k-means clustering
From Hard to Soft Clustering

From Coin Flipping to k-means Clustering
Expectation Maximization

Soft k-means Clustering

Hierarchical Clustering

Markov Clustering Algorithm



Measuring 3 Genes at 7 Checkpoints

Measure expression of various yeast genes at 7

checkpoints:
| | | | | | | S

-6h -4h -2h 0 +2h +4h

+6h

Aianivie chift

YpLo012w 1.1 0.8 0.9 0.4 0.3 0.1 0.1
YPROS55w 1.1 1.1 1.1 (1.1) 1.1 1.1 1.1

e; = expression level
of gene j at checkpoint
]

] 1

—_—

. 1

] —_\

=NOOI-=-NO1O

AN NOIO
|

AN NOIO

coo
]

ool

ool

- 344



Switching to Logarithms of Expression Levels

o
=

YPLO12W 1.1 0.8 . .
YPROS5W 1.1 1.1 1.1 1.1 1.1

e}
-
I_\
I_\

coo

SR NOIO
] | |

coO

SN2 NOIO
| | |

coo

SN2 NOIO
] ] ] ]

l taking logarithms (base-
L 2) 4 -

4 4
2/_/\ 2 1 2 -
0 - 0 - 0 -
-2 - -2—\—\ -2 -

YLR258W 0.1 0.4 0.5 1.9 2.0 3.3 2.6
YPLO12W 0.1 -0.3 -0.2 -1.2 -1.6 -3.0 -3.1
YPROS5W 0.2 0.2 0.2 0.1 0.1 0.1 0.1 345




Gene Expression Matrix

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141W
YJLOZ28W
YKLOZ26C
YPRO55W

0.14 0.03
0.12
-0.10
-0.43
0.11

-0.23
-0.14
-0.73

0.43

-0.06
-0.24
-0.03
-0.06

0.45

0.07
-1.16
-0.06
-0.11

1.89

-0.01
-1.40
-0.07
-0.16

2.00

-0.06
-2.67
-0.14
3.47
3.32

-0.01
-3.00
-0.04
2.64
2.56

0.09

-0.28

-0.15

-1.18

-1.59

-2.96

-3.08

-0.16
-0.28
-0.19
0.15 0.15

-0.04
-0.23
-0.15

-0.07
-0.19
0.03
0.17

-1.26
-0.19
0.27
0.09

-1.20
-0.32
0.54
0.07

-2.82
-0.18
3.64
0.09

-3.13
-0.18
2.74
0.07

gene expression
vector

346




Gene Expression Matrix

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141wW
YJLOZ28W
YKLOZ26C
YPROLSOSW

0.14
0.12

-0.10
-0.43

0.11
0.09

-0.16
-0.28
-0.19

0.15

0.03
-0.23
-0.14
-0.73

0.43
-0.28
-0.04
-0.23
-0.15

0.15

-0.06
-0.24
-0.03
-0.06

0.45
-0.15
-0.07
-0.19

0.03

0.17

0.07
-1.16
-0.06
-0.11

1.89
-1.18
-1.26
-0.19

0.27

0.09

-0.01
-1.40
-0.07
-0.16

2.00
-1.59
-1.20
-0.32

0.54

0.07

-0.06
-2.67
-0.14

3.47
3.32

-2.96
-2.82
-0.18

3.64
0.09

-0.01
-3.00
-0.04
2.64
2.56
-3.08
-3.13
-0.18
2.74
0.07

1997: Joseph deRisi
measured
expression of 6,400
yeast genes at 7
checkpoints before
and after the diauxic

shift.

6,400 x 7 gene
expression matrix

Goal: partition all yeast genes into clusters so
that:
* genes in the same cluster have similar behavior

* genes in different clusters have different




Genes as Points in Multidimensional Space

YLR361C
YMR290C
YNRO65C
YGR043C
YLR258W
YPLO12W
YNL141wW
YJLOZ28W
YKLOZ26C
YPRO55W

0.14
0.12
-0.10
-0.43
0.11
0.09
-0.16
-0.28
-0.19
0.15

0.03
-0.23
-0.14
-0.73

0.43
-0.28
-0.04
-0.23
-0.15

0.15

-0.06
-0.24
-0.03
-0.06

0.45
-0.15
-0.07
-0.19

0.03

0.17

0.07
-1.16
-0.06
-0.11

1.89
-1.18
-1.26
-0.19

0.27

0.09

-0.01
-1.40
-0.07
-0.16

2.00
-1.59
-1.20
-0.32

0.54

0.07

-0.06
-2.67
-0.14
3.47
3.32
-2.96
-2.82
-0.18
3.64
0.09

-0.01
-3.00
-0.04
2.64
2.56
-3.08
-3.13
-0.18
2.74
0.07

(8,7)
®

nxm
gene expression
matrix

v

n points in
m-dimensional
space
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Gene Expression and Cancer Diagnostics

MammaPrint: a test that evaluates the likelihood
of breast cancer recurrence based on the
expression of just 70 genes.

But how did scientists discover these 70 human

genes? 349




Toward a Computational Problem

Good Clustering Principle: Elements within
the same cluster are closer to each other than
elements in different clusters.




Toward a Computational Problem

e distance between elements in the same cluster < A
* distance between elements in different clusters > A

r—~ ® “ o
fi‘\\ ~\\\ (/o > -
° L ~ ° ®
@ e ® < o N “o N
¢ / SS e ® \. 4 /. ®
- ;":3" - ( o\
7 ® ..\l \:.‘,I
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/ I
I o / re
I. ® .// (. L4 .\
\eo ° ]
\_.// \\:/
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Clustering Problem

Clustering Problem: Partition a set of expression

vectors into clusters.

* Input: A collection of n vectors and an integer k.

* Output: Partition of n vectors into k disjoint
clusters satisfying the Good Clustering

Principle.

. Any partition into

*Cere two clusters does

A not satisfy the Good
oo Clustering Principle!




What is the “best” partition into three clusters?

353




Clustering as Finding Centers

Goal: partition a set Data into k clusters.

Equivalent goal: find a set of k points Centers
that will serve as the “centers” of the k clusters in

Data.

‘ 354



Clustering as Finding Centers

Goal: partition a set Data into k clusters.

Equivalent goal: find a set of k points Centers
that will serve as the “centers” of the k clusters in
Data and will minimize some notion of distance

from Centers to Data .

What is the “distance” from Centers to Data?

Q 0”\'

I
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Distance from a Single DataPoint to Centers

The distance from DataPoint in Data to Centers
IS the distance from DataPoint to the closest
center:

d(DataPoint, Centers) = min

d(DataPoint, x)

all points x from Centers

. 356



Distance from Data to Centers

MaxDistance(Data, Centers) =

max d(DataPoint, Centers)

all points DataPoint from Data

‘ 357



k-Center Clustering Problem

k-Center Clustering Problem. Given a set of

points Data, find k centers minimizing

MaxDistance(Data, Centers).

* Input: A set of points Data and an integer k.

* Output: A set of k points Centers that
minimizes MaxDistance(DataPoints, Centers)
over all possible choices of Centers.

. 358




k-Center Clustering Problem

k-Center Clustering Problem. Given a set of

points Data, find k centers minimizing

MaxDistance(Data, Centers).

* Input: A set of points Data and an integer k.

* Output: A set of k points Centers that
minimizes MaxDistance(DataPoints, Centers)
over all possible choices of Centers.




k-Center Clustering Heuristic

FarthestFirstTraversal(Daia, k)
Centers < the set consisting of a single DataFPoint from Data
while Centers have fewer than k points
DataPoint < a point in Data maximizing d(DataPoint,
Centers) among all data points
add DataPoint to Centers

. 360




k-Center Clustering Heuristic

FarthestFirstTraversal(Daia, k)
Centers < the set consisting of a single DataFPoint from Data
while Centers have fewer than k points
DataPoint < a point in Data maximizing d(DataPoint,
Centers) among all data points
add DataPoint to Centers

‘e
.
.
«
-
.
‘e
-

‘ 361




What Is Wrong with FarthestFirstTraversal?

FarthestFirstTraversal selects Centers that
minimize MaxDistance(Data, Centers).

But biologists are interested in typical rather than
maximum deviations, since maximum deviations
may represent outliers (experimental errors).

human eye

FarthestFirstTraver
sal

362




Modifying the Objective Function

The maximal distance between Data
and Centers:

MaxDistance(Data, Centers)=
MaX ,,:.point from pata d(DataPoint, Centers)

A single data point contributes

to MaxDistance

@,

The
between Data and Centers:

Distortion(Data, Centers) =

Z DataPoint from Data d(D ataPoin t,
Centers)%/n

All data points contribute to
Distortion




k-Means Clustering Problem

k-Center Clustering Problem:

Input: A set of points Data and
an

integer k.

Output: A set of k points
Centers

that minimizes

S DataPoints. Cont
)

over all choices of Centers.

L3
.
"...
Q .
~ .
Q
U
'.
.IX.
.
"

k-Means Clustering Problem:

Input: A set of points Data and
an

iInteger k.

Output: A set of k points
Centers

that minimizes

nlcfnrflnn/ngfg Caoanto ro)

FIDLEVT I\ LULU, \J Ul Tl V]

all Mfbides dfardkhr .
.\ ‘*‘

o

364
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k-Means Clustering for k=1

Center of Gravity Theorem: The center of gravity
of points Data is the only point solving the 1-
Means Clustering Problem.

The center of gravity of points Data is
Zall points DataPoint in Data DataPoint / #pOintS in
Data

5 O I-th coordinate of the center of
; gravity = the average of the /-
® O th coordinates of datapoints:
. ((2+4+6)/3, (3+1+5)/3 ) = (4,
O

3) 365



The Lloyd Algorithm in Action

Select k arbitrary data points as Centers




The Lloyd Algorithm in Action
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The Lloyd Algorithm in Action
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The Lloyd Algorithm in Action
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The Lloyd Algorithm in Action
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The Lloyd Algorithm in Action
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The Lloyd Algorithm

Select k arbitrary data points as Centers and then
iteratively performs the following two steps:

« Centers to Clusters: Assign each data point to
the cluster corresponding to its nearest center
(ties are broken arbitrarily).

* Clusters to Centers: After the assignment of
data points to k clusters, compute new centers
as clusters’ center of gravity.

The Lloyd algorithm terminates when the centers
stop moving (convergence).




Must the Lloyd Algorithm Converge?

If a data point is assigned to a new center
during the Centers to Clusters step:

— the squared error distortion is reduced
because this center must be closer to

the point than the previous center was.

If a center is moved during the Clusters to
Centers step:

— the squared error distortion is reduced
since the center of gravity is the only
point minimizing the distortion (the
Center of Gravity Theorem).
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Clustering Yeast Genes

Cluster 1 Cluster 2 Cluster 3

2 2
4 4

Cluster 4 Cluster 5 Cluster 6
4 4




k-means Clustering vs. the Human Eye

How would the Lloyd algorithm cluster these sets of
points?




Soft vs. Hard Clustering

the red or to the blue cluster.
* “hard” assignment of data points to clusters.

L
’——_ --~~
- —

The Lloyd algorithm assigns the midpoint either to

” .. ~
e 0:“.3\\
@ o0 g0 !
\ ®e ®. 0 /
\ .. o 7/
~ s .
\\ .,’

\N ”
=~ - -—
_eean mm me =— =

Midpoint: A point approximately
halfway between two clusters.
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Soft vs. Hard Clustering

The Lloyd algorithm assigns the midpoint either to
the red or to the blue cluster.
« “hard” assignment of data points to clusters.

— e — o, - - —_
— ~~ — —y
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" \\ ’/ \\
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Can we color the midpoint half-red and half-blue?
« “soft” assignment of data points to clusters.
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Soft vs. Hard Clustering

(0.98, 0.02)

o/ I

° .o ® 9

o ® o0
°

S o° . (001,099)
(0.48,052) o ° ¢ o~

Hard choices: points are
colored red or blue depending
on their cluster membership.

Soft choices: points are
assigned “red” and “blue”
responsibilities r,,,. and r,

ed 378

(rhlna + rrnnl =1)



Flipping One Biased Coin

 We flip a loaded coin with an unknown bias6
(probability that the coin lands on heads).

* The coin lands on heads i out of n times.

* For each bias, we can compute the probability of
the resulting sequence of flips.

Probability of generating the given sequence of flips is
Pr(sequence|B) = 6/ * (1-6)"

This expression is minimized at@= i/ln (most likely bias)




Flipping Two Biased Coins

Data
HTTTHTTHTH 0.4
HHHHTHHHHH 0.9
HTHHHHHTHH 0.8
HTTTTTHHTT 0.3
THHHTHHHTH 0.7

Goal: estimate the probabilities8 , andB,

380



e Knew Which Coin
Used in Each Sequence...

Data HiddenVector

HTTTHTTHTH 0.4 1
HTTTTTHHTT 0.3 1
THHHTHHHTH 0.7 0

Goal: estimate Parameters = (0,,05)
when HiddenVector is given

381



e Knew Which Coin
Used in Each Sequence...

Data HiddenVector

HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
THHHTHHHTH 0.7 0

0, = fraction of heads generated in all flips with coin A =
(4+3)/ (10+10) = (0.4+0.3) / 2=0.35

= fraction of heads generated in all flips with coin B =
(9+8+7)/ (10+10+10) = (0.9+0.8+0.7) / (1+1+1) = 0.80
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Parameters as a Dot-Product

Data HiddenVector Parameters=(0,

)

HTTTHTTHTH 0.4 1

(0.35, 0.80)

* ¥ * *

HTTTTTHHTT 0.3 1
*

0, = fraction of heads generated in all flips with coin A =
= (4+3)/(10+10) = (0.4+0.3) / 2=0.35

(0.4*1+0.9*0+0.8*0+0.3*1+0.7*0)/ (1+0+0+1+0) = 0.35
Y all data points ; D@ta;"HiddenVector; | 3 qata points HiddenVector=

Data * HiddenVector | (1,,..."1)HidtbberXéattor 0.35
1 refers to a vector (1 0}35 ,1) consisting of all'f's



Parameters as a Dot-Product

O5)
HTTTHTTHTH

HTHHHHHTHH
HT'TTTTHHTT
THHHTHHHTH

0.
.3
.7

0
0

Data HiddenVector Parameters=(9,

.4

8

¥ * ¥ * *

1

0 (0.35, 0.80)
1
0

O = fraction of heads generated in all flips with coin B
= (9+8+7)/ (10+10+10) = (0.9+0.8+0.7) /( 1+1+1) = 0.80

(0.5*0+0.9*1+0.8*1+0.4*0+0.7%1) / (0+1+1+0+1) = 0.80
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Parameters as a Dot-Product

O5)
HTTTHTTHTH

HTHHHHHTHH
HT'TTTTHHTT
THHHTHHHTH

Data HiddenVector Parameters=(9,

0.4

0.8
0.3
0.7

* ¥ * *

*

1

0 (0.35, 0.80)
1
0

0, = fraction of heads generated in all flips with coin A

= (0.4+0.3)/2=0.35

= Data * HiddenVector /| 1 * HiddenVector

Oz = fraction of heads generated in all flips with coin B

= Data *
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Data, HiddenVector, Parameters

Data HiddenVector Parameters=(0,,

— (0.35, 0.80)

O O O O O
N W 00 VW s
O RO OoOH

HiddenVecto Parameters

r
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Data, HiddenVector, Parameters

Data HiddenVector Parameters=(0,,

< (0.35, 0.80)

O O O O O
N W 00 VW s
AV IRCLS BV B VY

HiddenVecto Parameters

r
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From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,,

0.4 2
0.9 2
0.8 > € (035 )
0.3 2
0.7 2

Which coin is more likely to generate the
18t sequence (with 4 H)?

Pr(1st sequence|6,)=0,4 (1-6,)° = 0.35% « 0.65° = 0.00113 >
Pr(1st sequence|B5 )= 65%(1-65)° = 0.80% » 0.20° = 0.00003
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From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,,

0.4 L
0.9 2
0.8 > € (035 )
0.3 2
0.7 2

Which coin is more likely to generate the
18t sequence (with 4 H)?

Pr(1st sequence|6,)=0,% (1-6,)° = 0.35% « 0.65° = 0.00113 >
Pr(1st sequence|B5 )= 65%(1-65)° = 0.80% » 0.20° = 0.00003
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From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,,

O5)
0.4 L
0.9 ?
0.8 > € (0.35, 0.80)
0.3 ?
0.7 ?

Which coin is more likely to generate the
2"d sequence (with 9 H)?

Pr(2" sequence|6,)= 6,° (1-6,)'=0.35%0.65" = 0.00005 <
Pr(2"d sequence|B;)= 0 (1 65)' =0.80° «0.20" = 0.02684
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From Data & Parameters to HiddenVector

Data HiddenVector Parameters=(0,,

1

o O O O
[ ]

> € (0.35, 0.80)
.,

N W 00w s

0.

Which coin is more likely to generate the
2"d sequence (with 9 H)?

Pr(2"d sequence|6,)= 6,° (1-6,)'=0.35%0.65" = 0.00005 <
Pr(2" sequence|6g)= 65° (1-65)' =0.80° <0.20" = 0.02684
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HiddenVector Reconstructed!

Data HiddenVector Parameters=(9,

< (0.35, 0.80)

O O O O O
N W 00 VW
O R O O H
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Reconstructing HiddenVector and Parameters

HiddenVecto Parameters
r




Reconstructing HiddenVector and Parameters

HiddenVecto Parameters’
r




Reconstructing HiddenVector and Parameters

Parameters’



Reconstructing HiddenVector and Parameters

Iterate!

HiddenVecto Parameters’

r



What does this algorithm remind you of?

— o—f—Fo—]
0.3 0.4 0.7 0.8 0.9

Parameters

0,=06  0,=0.82 :
— o——fo—] HiddenVector
0.3 04 0.7 0.8 0.9

Parameters

e -t ot HiddenVector

— _ Parameters
0.3 04 0.7 0.8 0.9 397
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From Coin Flipping to k-means Clustering:
Where Are Data, HiddenVector, and Parameters?

Data: data points Data = (Data,,...,Data,)
Parameters: Centers = (Center.,...,Center,)

HiddenVector:
(n-dimensional vector with coordinates varying from 1 to k).

t\j}/.
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Coin Flipping and Soft Clustering

Coin flipping: how would you select between coins A and B if
Pr(sequence|6,) = Pr(sequence|6;)?

k-means clustering: what cluster would you assign a data
point it to if it is a midpoint of centers C, and C,?

-
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00 0Q e o \
e e® \ °® oo
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Soft assignments: assigning C, and C, “responsibility” =0.5
for a midpoint.
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Memory Flash:
From Data & Parameters to HiddenVector

Data HiddenVector Parameters =
(0,4,65)

<€ (060, )

o O O O
W 0 WV

n) o) o e o)

0.7

Which coin is more likely to have generated the
first sequence (with 4 H)?

Pr(1st sequence|6,)=6,° (1-6,)° = 0.60% « 0.40° = 0.000531 >
Pr(1st sequence|Bg )= 65°(1-65)° = 0.82% « 0.18° = 0.000015
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Memory Flash:
From Data & Parameters to HiddenVector

Data HiddenVector Parameters =

(64,65)
0.4 L
0.9 ?
0.8 2 <€ (060, )
0.3 ?
0.7 ?

Which coin is more likely to have generated the
first sequence (with 4 H)?

Pr(1st sequence|6,)=6,° (1-6,)° = 0.60% « 0.40° = 0.000531 >
Pr(1st sequence|Bg )= 65°(1-65)° = 0.82% « 0.18° = 0.000015
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From Data & Parameters to HiddenMatrix

(B4

Data HiddenMatrix Parameters =

)

0.4 0.97
0.9 ?
0.8 2 <€ (0.60, 0.82)
0.3 ?
0.7 ?

What are the respon5|blllt|es of coins for this

aYaVYalHVaYaVa)

oCY UUIU

Pr(1st sequenceleA) = (0.000531 >
Pr(1st sequence|8g ) = 0.000015

0.000531 / (0.000531 + )= 0.97
0.000015 /(0.000531 + 0.000015) = 0.03 402




From Data & Parameters to HiddenMatrix

Data HiddenMatrix Parameters =

0, 6
(94, %) 0.97

0.12
2 <= (0.60, 0.82)

?
i ?

O O O O O
W 0 WV

What are the responsibilities of coins for the 2@

la¥aVall II\V‘\I\I\’)

Pr(2n sequence|,) = 0.0040 <

0.0040 / (0.0040 + )=0.12
/ (0.0040 + ) =0.88 403



HiddenMatrix Reconstructed!

O O O O O

N W 00w s

Data HiddenMatrix

0.
.12

O O O O

97

.29
.99
.55

Parameters =

0.71€ (0.60, 0.82)

0.01
0.45
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Expectation Maximization Algorithm

Parameters



E-step

HiddenMatri Parameters
)'¢




M-step

HiddenVecto Parameters’
r




Memory Flash: Dot Product

Data HiddenVector Parameters=(6,

Og)
*
HTTTHTTHTH 0.4 . 1
HHHHTHHHHH 0.9 . 0
HTHHHHHTHH 0.8 . 0 ?7?7?
HTTTTTHHTT 0.3 1
TI_I&EI;IE aHTl-I H(/)dE!ZnVector 0 / 1 * HiddenVector

Og=Data *
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From Data & HiddenMatrix to Parameters

Data HiddenVector
Parameters=(0,,0;)

HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
TH&EI-:I%I?:I: aI-IT’I‘-I H(l)daznVector 0 /1 * HiddenVector

HiddenVector= (1 0 O 1 0)

What is HiddenMatrix corresponding to this HlddenVector?
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From Data & HiddenMatrix to Parameters

Data HiddenVector
Parameters=(0,,0;)

HTTTHTTHTH 0.4 1
HHHHTHHHHH 0.9 0
HTHHHHHTHH 0.8 0
HTTTTTHHTT 0.3 1
THHH HT ./
H&i ;{){gg H H(/)dden Vector 0 /1 * HiddenVector
0, = Data * 15t row of HiddenMatrix / 1*1st row of HiddenMatrix

65 = Data * 2"d row of HiddenMatrix /| 1*2"d row of HiddenMatrix

HiddenVector= (1 0 O 1 0)

Hidden Matrix= 1 0 0 1 0= HiddenVector
=1 - HiddenVector"®




From Data & HiddenMatrix to Parameters

Data HiddenMatrix

Parameters=(0,,0;)

HT'TTHTTHTH
HHHHTHHHHH
HTHHHHHTHH
HT'TTTTHHTT

TH&-IHE HTH

0.4 0.97
0.9 0.12
0.8 0.29
0.3 0.99
H(/)ddZn Vec(:)z‘or5 >

0.03
0.88
0.71
0.01

07%5*

HiddenVector

0, = Data * 15t row of HiddenMatrix / 1*1st row of HiddenMatrix

65 = Data * 2"d row of HiddenMatrix /| 1*2"d row of HiddenMatrix

HiddenVector =

Hidden Matrix = -
.55

(1

0O O

1

97 .03 .29 .99

411




From HiddenVector to HiddenMatrix

Data: data points Data = {Data,, ... ,Data,}
Parameters: Centers = {Center,, ... ,Center,}
HiddenVector:

A B C D E F G
HiddenVector 79 2 1 3 2 1 3 3
1 1 0 1 0 0 1 0 0
HiddenMatrix 9| ¢ 1 0 0 1 0 0 0
31 0 0 0 1 0 0 1 1

19\ o0 :

1
3
412



From HiddenVector to HiddenMatrix

Data: data points Data = {Data,, ... ,Data,}
Parameters: Centers = {Center,, ... ,Center,}
HiddenMatrix; ;: responsibility of center / for data point

B C D E F G
11707 | 0 1 0 0 1 0 0

1

0

HiddenMatrix 9| 0.2 0 0 1 0 0 0
3| 0o | 1 | 0o | 0 | 1 | 1

o ome
ﬁf\m?\g;/?

3



From HiddenVector to HiddenMatrix

Data: data points Data = {Data,, ..
Parameters: Centers = {Center,, ..

.,Data_}
.,Center,}

HiddenMatrix; ;: responsibility of center /

1
HiddenMatrix 2

3

A

C

data point

0.70

0.73

0.80

0.05

0.05

0.20

0.17

0.10

0.05

0.20

0.10

0.10

0.10

0.90

0.75




Responsibilities and the Law of Gravitation

¥

planets -

0.70 | 0.15 | 0.73 | 0.40 | 0.15 | 0.80 | 0.05 | 0.05
stars | 020 | 0.80 | 0.17 | 020 | 0.80 | 0.10 | 0.05 | 0.20
0.10 | 0.05 | 0.10 | 0.40 | 0.05 | 0.10 | 0.90 | 0.75

of star / for a planet j is proportional to
the pull (Newtonian law of gravitation):

Force,; =1ldistance(Data,, Center,)?

HiddenMatrix;: =
FOI’CG,-J- /Zall centers j FOI’CG,-’]-




center
S

to

0.70

0.15

0.73

0.80

0.05

0.05

0.20

0.80

0.17

0.10

0.05

0.20

0.10

0.05

0.10

0.10

0.90

0.75

4" F

— -p-dist Dataj, Centen
FOI’CG,-’]- = e B-distance(Dataj, Centen)

of center j for a data point j is proportional

HiddenMatrix;: =
FOI’CG,-J- /Zall centers j Force,-’j
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How Does Stiffness Affect Clustering?

Hard k-means
clustering

Soft k-means
clustering
(stiffness =1)

Soft k-means
clustering
(stiffness = 0.3)
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Stratification of Clusters

Clusters often have subclusters, which have
subsubclusters, and so on.
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Stratification of Clusters

Clusters often have subclusters, which have sub-
subclusters, and so on.
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From Data to a Tree

To capture stratification, the hierarchical clustering
algorithm organizes n data points into a tree.

i |

55 g : 1

84

o 08 E [w

e 6 6 6 o o o o
83 85 8s 87 81 86 810 82 84 89 420




From a Tree to a Partition into 4 Clusters

To capture stratification, the hierarchical clustering
algorithm organizes n data points into a tree.

i |

g ® | Line
° - crossing
e f‘o . o """"?If """  the tree
84 _at 4 points

Ll
g0 @8 E [

e 6 6 6 o o o o
83 85 8s 87 81 86 810 82 84 89
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From a Tree to a Partition into 6 Clusters

To capture stratification, the hierarchical clustering
algorithm first organizes n data points into a tree.

A

o
2
o)
: g ~on p.
2 ol ( %D
. e 4" :
g
9
[ )
g0 © 9
\x-,
6 Clusters

83

!

8s

87

81

86 810 82

Line
crossing
the tree

_at 6 points

® O
84 8o 422



Constructing the Tree

Hierarchical clustering starts from a transformation of n x
expression matrix into n x n similarity matrix or distance

matrix.

A g Distance Matrix
o
86 81 82 83 84 8s 86 87 8s
) 2 81 92 77 93 23 51 102
gz. g;o 89 81 2 120 09 120 95 101 12.8
o o
{? g5 1.2 07 111 81 1.1
4

g 112 92 95 120
g 112 85 1.0
g, 86 5.6 12.1
o &7 9.1

8s

—>
8o
810

8 8o
6.1 7.0
20 1.0
10.5 11.5
1.6 1.1
10.6 11.6
7.7 85
83 93
11.4 12.4

1.1
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Constructing the Tree

|dentify the two closest clusters and merge them.

81 82 83 8a 8s 86 87 8s 89 810

g, 81 92 77 93 23 51 102 61 7.0
g, 120 09 120 95 101 128 2.0 1.0
g, 112 07 111 81 1.1 105 11.5
2 112 92 95 120 1.6 1.1
g 112 85 1.0 106 11.6
{93, 95} 2 56 121 7.7 85

g 91 83 93
|- -| g 11.4 12.4
® 6 6 6 6 6 6 ¢ 0 O
95 95 9s 97 91 G5 G910 92 91 9o

89 1.1
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Constructing the Tree

average distance between elements in the

Recompute the distance between two clusters as

cluster.
81 8 838 84 8e 87 88 8 8o
g1 8.1 9.2 7.7 2.3 51 10.2 6.1 7.0
g, 120 09 95 10.1 128 2.0 1.0
g5 8s 112 111 81 1.0 105 11.5
g 92 95 120 1.6 1.1
2 56 121 7.7 85
{95 95} g 91 83 93
11.4 12.4

|- -| 8s
®© ©60 000000060 >
93 95 9s 97 91 9 G910 92 914 9o

1.1



Constructing the Tree

|dentify the two closest clusters and merge them.

81 8 838 8 86 87 8s 89 810

g 81 92 77 23 51 102 61 7.0
£ 120 09 95 101 128 20 1.0

g 8 112 111 81 1.0 105 115

{95, 9.4} g 92 95 120 1.6 1.1

-0~ g 56 121 7.7 85

{95 95} g 91 83 93

8s 1.4 12.4

|- _‘ 8 1.1
O © 6 6 6 6 6 ¢ 0 O
95 95 98 97 91 96 G910 92 94 Yo
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{95, 95}

]

® O
93 Js

Constructing the Tree

Recompute the distance between two clusters (as
average distance between elements in the

cluster).

8

8 &

83 8s

{92 94} 86
—O- 8
g
8o

810

O 6 6 6 6 ¢ o0 O
9 97 91 96 G100 92 92 Yo

81

82 84
7.7

8385 86

9.2

11.2

2.3

9.2

11.1

87
5.1

9.5

8.1

5.6

83

8o 810

10.2 6.1 7.0

120 16 1.0

1.0

12.1

9.1

10.5 11.5

7.7 8.5

83 93

11.4 12.4

1.1




Constructing the Tree

|dentify the two closest clusters and merge them.

81
{93, 95, 9g} 82 &

83 85
{92, 94} 86
Bl 87
8s
|_ _‘ 89
e 000000000 o
93 95 9s 97 91 9 910 92 94 Yo

81

82 84
7.7

83 85 86
9.2 2.3
11.2 9.2

11.1

87
5.1

9.5

8.1

5.6

8s 89 810
10.2 6.1 7.0

120 16 1.0
1.0 105 115
121 7.7 85
9.1 83 93

11.4 12.4

1.1
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Constructing the Tree

lterate until all elements form a single cluster

(root).
|

|
1

_ﬁ_
T

83 8s 87 81 86 810 82 84 8o

429



Constructing a Tree from a Distance Matrix D

HierarchicalClustering (D, n)

Clusters < n single-element clusters labeled 1 to n

T — a graph with the n isolated nodes labeled 1 to n

while there is more than one cluster
find the two closest clusters C; and C,
merge C; and C,; into a new cluster C,,, with |C| + |C| elements
add a new node labeled by cluster C,,to T
connect node C,, to C; and C;by directed edges
remove the rows and columns of D corresponding to C; and C;
remove C; and C; from Clusters
add a row and column to D for the cluster C,_, by computing

D(C,., ,C) for each cluster C in Clusters

add C,., to Clusters

assign root in T as a node with no incoming edges

return 7




Different Distance Functions Result in Different
Trees

Average distance between elements of two clusters:

Davg(CM ) = (Z all points / and j in clusters C1 and C2, respectively Di,j)/ (|C1 |*|C2|)

Minimum distance between elements of two clusters:

Din(C4, C;) = min D,

all points / and j in clusters C1 and , respectively ~/,j




Clusters Constructed by HierarchicalClustering

Cluster 1 Cluster 2 Cluster 3
4 4 4 P
2,
01:
-2 {| Surge in expression -2 - -2
at final checkpoint
4 4 4
Cluster 4 Cluster 5 Cluster 6
4 4+ 4
2,




Markov Clustering Algorithm

Unlike  most clustering algorithms, the MCL
(micans.org/mcl) does not require the number of expected
clusters to be specified beforehand. The basic idea
underlying the algorithm is that dense clusters correspond

to regions with a larger number of paths.

Material and code at micans.org/mcl




Markov Clustering Algorithm

We take a random walk on the graph described by the
similarity matrix, but after each step we weaken the links
between distant nodes and strengthen the links between
nearby nodes.

A random walk has a higher probability to stay inside the
cluster than to leave it soon. The crucial point lies in
boosting this effect by an iterative alternation of expansion
and inflation steps. An inflation parameter is responsible
for both strengthening and weakening of current.
(Strengthens strong currents, and weakens already weak
currents). An expansion parameter, r, controls the extent
of this strengthening / weakening. In the end, this
influences the granularity of clusters.




Markov Clustering Algorithm

Matrix representation

435



Markov Clustering Algorithm

@ Input is an un-directed graph, with power parameter e (usually =2), and inflation
parameter r (usually =2).

© Create the associated adjacency matrix
Mpq
Zr‘ qu
@ Expand by taking the e-th power of the matrix; for example, if e = 2 just multiply
the matrix by itself.

© Normalize the matrix; M,, =

(Mpq)"
> i(Mig)"

@ Inflate by taking inflation of the resulting matrix with parameter r : Mpq =

©Q Repeat steps 4 and 5 until a steady state is reached (convergence).






Markov Clustering Algorithm

The number of steps to converge is not proven, but
experimentally shown to be 10 to 100 steps, and
mostly consist of sparse matrices after the first few
steps.

The expansion step of MCL has time complexity
O(n3). The inflation has complexity O(n?). However,
the matrices are generally very sparse, or at least
the vast majority of the entries are near zero.
Pruning in MCL involves setting near-zero matrix
entries to zero, and can allow sparse matrix
operations to improve the speed of the algorithm

- Al




Genome Assembly Outline

Why do we map reads?

Using the Trie

From a Trie to a Suffix Tree

String Compression and the Burrows-Wheeler Transform
Inverting Burrows-Wheeler

Using Burrows-Wheeler for Pattern Matching

Finding the Matched Patterns

Setting Up Checkpoints

Inexact Matching



Toward a Computational Problem

* Reference genome: database genome used
for comparison.

* Question: How can we assemble individual
genomes efficiently using the reference?

T C A Individual

G A T Reference



Multiple copies of
a genome

Shatter the
genome into
reads

Sequence the
reads

Assemble the
genome with
overlapping reads

Why Not Use Assembly?

AGAATATCA

TGAGAATAT

GAGAATATC

. . . TGAGAATATCA. ..




Why Not Use Assembly?

@.
* Constructing a de Bruijn graph F
takes a lot of memory. cats T6cf
ATG#
@TA@AA%«'TG: GT @ TT m |
* Hope: a machine in a clinic ATGH
that would collect and oo TaGY
map reads in 10 minutes. j SOAH %GGG#

* |dea: use existing structure of reference
genome to help us sequence a patient’s
genome.



Read Mapping

* Read mapping: determine where each read
has high similarity to the reference genome.

CTGAGGATGGACTACGCTACTACTGATAGCTGTTT Reference
GAGGA CCACG TGA-A Reads



Why Not Use Alignment?

* Fitting alighment: align each read Pattern to
the best substring of Genome.

* Has runtime O(|Pattern| * | Genome]|) for
each Pattern.

* Has runtime O(|Patterns| * |Genome|) for a
collection of Patterns.



Exact Pattern Matching

* Focus on a simple question: where do the
reads match the reference genome exactly?

* Single Pattern Matching Problem:
— Input: A string Pattern and a string Genome.

— Output: All positions in Genome where Pattern
appears as a substring.



Exact Pattern Matching

* Focus on a simple question: where do the
reads match the reference genome exactly?

* Multiple Pattern Matching Problem:

— Input: A collection of strings Patterns and a string
Genome.

— Output: All positions in Genome where a string
from Patterns appears as a substring.



A Brute Force Approach

 We can simply iterate a brute force approach
method, sliding each Pattern down Genome.

panamabananas Genome
nana Pattern

* Note: we use words instead of DNA strings for
convenience.



Brute Force Is Too Slow

* The runtime of the brute force approach is too
high!
— Single Pattern:  O(|Genome| * |Pattern|)
— Multiple Patterns: O(| Genome| * | Patterns|)
— | Patterns| = combined length of Patterns



Processing Patterns into a Trie

* |dea: combine reads into a graph. Each
substring of the genome can match at most
one read. So each read will correspond to a
unique path through this graph.

* The resulting graph is called a trie.



Patterns

banana
pan

and

nab
antenna
bandana
ananas
nana



Using the Trie for Pattern Matching

* TrieMatching: Slide the trie down the
genome.

* At each position, walk down the trie and see if
we can reach a leaf by matching symbols.

* Analogy: bus stops
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Success!

* Runtime of Brute Force:
— Total: O(| Genome | * | Patterns|)

* Runtime of Trie Matching:
— Trie Construction: O( | Patterns|)
— Pattern Matching: O(|Genome| * |LongestPattern|)



Memory Analysis of TrieMatching

S
* Son completely forgot
about memory! LR
O O
O O
* Our trie: 30 edges, IR n b| o on
| Patterns| = 39 O O G a O G ®
A O 0 O
* Worst case: # edges a O O O
= O(| Patterns|) o 5 o &
O @ 454



Preprocessing the Genome

What if instead we create a data structure
from the genome itself?

Split Genome into all its suffixes. (Show
matching “banana” by finding the suffix
“bananas”.

How can we combine these suffixes into a
data structure?

Let’s use a trie!






The Suffix Trie and Pattern Matching

* For each Pattern, see if Pattern can be spelled
out from the root downward in the suffix trie.



dnana

O

e " O-O-O0-00 00000~
c O© ®© < «© < © »n &

O—CO0O0O0O0O0O0O0O0w
@ £ ®© € ®© » &
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Memory Trouble Once Again

: : Suffixes
* Worst case: the suffix trie
panamabananas$

holds O(|Suffixes|) nodes. anamabananas$
namabananas$

amabananas$

mabananas$

abananas$

* For a Genome of length n, bgzgggzi

| Suffixes| = n(n—1)/2 = O(n?) nanas$
anas$

nas$

as$

s$

$



Compressing the Trie

e This doesn’t mean that our idea was bad!

* To reduce memory, we can compress each
“nonbranching path” of the tree into an edge.






 This data structure is called a suffix tree.

* For any Genome, # nodes < 2| Genome|.
— # leaves = |Genome|;
— # internal nodes < |Genome| -1
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Runtime and Memory Analysis

* Runtime:
— O(|Genome|?) to construct the suffix tree.
— O(|Genome| + | Patterns|) to find pattern matches.

* Memory:
— O(|Genome|?) to construct the suffix tree.
— O(| Genome|) to store the suffix tree.



Runtime and Memory Analysis

* Runtime:
— O(|Genome|) to construct the suffix tree directly.
— O(|Genome| + | Patterns|) to find pattern matches.
— Total: O(| Genome| + | Patterns|)

* Memory:
— O(|Genome|) to construct the suffix tree directly.
— O(| Genome|) to store the suffix tree.
— Total: O(| Genome| + | Patterns|)



We are Not Finished Yet

* | am happy with the suffix tree, but | am not
completely satisfied.

* Runtime: O(|Genome| + | Patterns|)
* Memory: O(|Genome|)

* However, big-O notation ighores constants!

* The best known suffix tree implementations
require ~ 20 times the length of | Genome|.

e Can we reduce this constant factor?



Genome Compression

* |dea: decrease the amount of memory
required to hold Genome.

* This indicates that we need methods of
compressing a large genome, which is
seemingly a separate problem.



ldea #1: Run-Length Encoding

* Run-length encoding: compresses a run of n
identical symbols.

Genome
GGGGGGGGGGCCcCcCcceececececcAA A AAAATTTTTTTTTTTTTTTCCCCCG

|

10G11C7A15T5C1G
Run-length encoding

* Problem: Genomes don’t have lots of runs...



Converting Repeats to Runs

e ..but they do have lots of repeats!
Genome
How do we do this step? l Convert repeats to runs

Genome*

l Run-length encoding

CompressedGenome™



The Burrows-Wheeler Transform

panamabananass$ $ b a
Spanamabananas
s$panamabanana g
a
Il
a
n b
a

Form all cyclic rotations of
“panamabananas$”



The Burrows-Wheeler Transform

panamabananass$ $ p a
Spanamabananas
s$Spanamabanana g
asS$panamabanan
nas$panamabana
anas$Spanamaban a
nanass$Spanamaba
ananas$panamab
bananas$panama
abananasS$Spanam n
mabananasS$pana
amabananas$pan
namabananas$pa a
anamabananass$Sp

Form all cyclic rotations of
“panamabananas$”



The Burrows-Wheeler Transform

Form all cyclic rotations of
“panamabananas$”

Spanamabananas
abananasSpanam
amabananasS$pan
anamabananass$Sp
ananasS$panamab
anasS$Spanamaban
as$Spanamabanan
bananas$panama
mabananas$pana
namabananasS$pa
nanass$panamaba
nasS$panamabana
panamabananass$
s$Spanamabanana

Sort the strings
lexicographically
($ comes first)



The Burrows-Wheeler Transform

O »no oo oo BB 00 B B n

Form all cyclic rotations of Burrows-Wheeler
“panamabananas$” Transform:
Last column =
smnpbnnaaaaa$a



BWT: Converting Repeats to Runs

Genome

Burrows-Wheeler Transforni! Convert repeats to runs

BW'T(Genome)

l Run-length encoding

Compression(BWT(Genome))
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How Can We Decompress?

Genome

IS IT POSSIBLE? I l Burrows-Wheeler Transform

BWT(Genome)

EASYI l Run-length encoding

Compression(BWT(Genome))



Reconstructing banana

Sb a as Sb
as n na as
an n na an
an b —_— ba — an
ba S 2-mers Sb Sort ba
na a an na
na a an na

 We now know 2-mer composition of the
circular string bananas

e Sorting gives us the first 2 columns of the
matrix.



Sba
asShb
ana
ana
ban
nas
nan

 We now know 3-mer composition of the

0O O PO B B o

Reconstructing banana

3-mers

ashb
nas
nan
ban
Sba
ana
ana

circular string bananas

* Sorting gives us the first 3 columns of the

matrix.

Sort

Sba
asShb
ana
ana
ban
nas
nan
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Reconstructing banana

Sban a asSba Sban
a$ba n nashb a$Sbb
anas$ n nana anaa
anan b —_— bana — anaa
bana $ 4-mers Sban Sort bann
nas$b a anas nasb
nana a anan nana

 We now know 4-mer composition of the
circular string bananas

e Sorting gives us the first 4 columns of the
matrix.
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Reconstructing banana

Sbanana aSban Sbana
a$Sbanan nasSba a$bbn
ana$Sban nanas anaab
ananashb —_— banan —_— anaaa
bananz$ o-mers Sbana Sort bannn
naSbana anashb naS$Sba
nanas$Sbhba anana nanas$

 We now know 5-mer composition of the
circular string bananas

* Sorting gives us the first 5 columns of the
matrix.
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Sbana
aSban
anas$b
anana
banan
naSba
nanas

0O O O B B o

Reconstructing banana

6-mers

aSbana
naSban
nanasShb
banana
Sbanan
anasSba
ananas

—
Sort

Sbanan
aSbbna
anaaba
anaaas
bannna
naSban
nanashb

 We now know 6-mer composition of the
circular string bananas

* Sorting gives us the first 6 columns of the

matrix.



Reconstructing banana

Sbanana aSbana Sbanan
a$Sbanan naSban aSbbna
anaS$Sban nanasShb anaaba
ananas$hb — banana > anaaas$
bananas$ 6-mers Sbanan Sort bannna
naS$Sbana anasSba naS$Sban
nana$Sba ananas nanas$hb

 We now know 6-mer composition of the
circular string bananas

* Sorting gives us the first 6 columns of the
matrix.
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Reconstructing banana

Sbanana

e We now know the entire matrix!

e Taking all elements in the first row (after $)
produces banana.



More Memory Issues

e Reconstructing Genome from BWT(Genome)
required us to store | Genome| copies of
| Genome|.

Sbanana
aSbanan
anasSban
ananashb
bananas
naSbana
nanasSba

 Can we invert BWT with less space?



A Strange Observation

nEeE oo oo o O ord
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A Strange Observation
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o U1l i WIDN R

Is It True in General?

S s
abananas$pananm
amabananasS$pan
anamabananas$Sp
ananasS$panamab
anasS$Spanamaban
asS$Spanamabanan
b a

nwo B BB 3
QO oY 9 oY W

These strings are sorted

/’

Chop off a

bananas$panam
mabananasS$Span
namabananass$p
nanass$Spanamab
nassSpanamaban
s$Spanamabanan



o U1l i WIDN R

Is It True in General?

S s
abananas$pananm
amabananasS$pan
anamabananas$Sp
ananasS$panamab
anasS$Spanamaban
asS$Spanamabanan
b a

nwo B BB 3
QO oY 9 oY W

These strings are sorted

/’

Chop off a

bananas$panam
mabananasS$Span
namabananass$p
nanass$Spanamab
nassSpanamaban
s$Spanamabanan

Still
sorted



o U1l i WIDN R

These strings are sorted

Is It True in General?

S S
a m
a n
a |
a b
a n
a n

bananas$panama
mabananasS$pana
namabananasS$pa
nanasS$Spanamaba
nass$panamabana

p S
s$Spanamabanana

U W INDR

/’

Chop off a

Ordering
doesn'’t
change!

Add a
to end

v

bananas$panama
mabananasS$pana
namabananasS$pa
nanasS$Spanamaba
nassSpanamabana
s$Spanamabanana

Still
sorted

Still
sorted



Is It True in General?

* First-Last Property: The k-th %

a
occurrence of symbol in a,
FirstColumn and the k-th 2
. a,
occurrence of symbol in a,
LastColumn correspond to a
- b,

the same position of symbol
In Genome. n,
I,
I,



More Efficient BWT Decompression



More Efficient BWT Decompression



More Efficient BWT Decompression

aq m, a
a n,
aj P S
ay b,
a s n,
g I, a
b, a
m, a s
n, a s n
n, ay
I, a g
P S a
S ag
n b

a

* Memory: 2|Genome| = O(|Genome|).



Recalling Our Goal

e Suffix Tree Pattern Matching:
— Runtime: O(|Genome| + | Patterns|)
— Memory: O(|Genome|)
— Problem: suffix tree takes 20 x | Genome| space

e Can we use BWT(Genome) as our data
structure instead?



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S S 1
aq m
a, I,
asna P,
a,na b,
asna n,
g I,
b, a i
m a
n, a s
n, ay
I, a5
P S

493



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S S 1
a; m,
a, n,
a; P
a, b,
asg n,
ag I,
b, a i
m a
n, a s
n, ay
I, a5
P S 1



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S S 1
a; m,
a, n;
aj P
a, b,
asg n,
ag I3
b, a i
m a
n, a s
n, ay
I, a5
P S 1



Finding Pattern Matches Using BWT

* Searching for ana in panamabananas

S S 1
aq m
a, I,
asna P,
a,na b,
asna n,
g I,
b, a i
m a
n, a s
n, ay
I, a5
P S



Where Are the Matches?

* Multiple Pattern Matching Problem:

— Input: A collection of strings Patterns and a string
Genome.

— Output: All positions in Genome where one of
Patterns appears as a substring.

* Where are the positions? BWT has not
revealed them.



Where Are the Matches?

* Example: We know that 5,
ana occurs 3 times, but 2,
where? asna



Using the Suffix Array to Find Matches

e Suffix array: holds 5
starting position of A,
each suffix beginning 23
a row. a.



Using the Suffix Array to Find Matches

e Suffix array: holds 13| §,
starting position of .,
each suffix beginning 23
a row. a.




Using the Suffix Array to Find Matches

e Suffix array: holds 13| §,
. .y 5| a;bananass$
starting position of .,
each suffix beginning 23

a row. a.

abananass$




Using the Suffix Array to Find Matches

e Suffix array: holds 13| §,

. .y 5| a;bananass$
starting position of 5| a,mabananass
each suffix beginning 23

a row. a.

amabananass$




Using the Suffix Array to Find Matches

e Suffix array: holds 13| §,

. .y 5| a;bananass$
starting position of 5| a,mabananass
each suffix beginning 1| asnamabananass

a row. a.

anamabananas$




Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

ananass$

N 2w oW

31

a,bananass$
a.mabananass$
a;namabananass$
a,nanass$



Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

anass$

o 39 W U1 W

31

a,bananass$
a.mabananass$
a;namabananass$
a,nanass$

a.-nass$



Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

ass$s

R O 9k W Ul W

31

a,bananass$
a.mabananass$
a;namabananass$
a,nanass$
a.-nass$

acs$



Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

bananass$

-

[
OO P O JdJFF WUl W

31

a,bananass$
a.mabananass$
a;namabananass$
a,nanass$
a.-nass$

acs$

b,ananass$



Using the Suffix Array to Find Matches

-

[
O O NdPOEF O IR WL W

31

a,bananass$
a.mabananass$
a;namabananass$
a,nanass$
a.-nass$

acs$
b,ananass$
m,abananass$
n,amabananass$
n,anass$

n,ass$

P

Sq

e Suffix array: holds
starting position of
each suffix beginning
a row.

nass

=




Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

panamabananass$

-

= =
OO WMNBOR WVWIR WU W

31

a,bananass$
a.mabananass$
a;namabananass$
a,nanass$
a.-nass$

acs$

b,ananass$
m,abananass$
n,amabananass$
n,anass$

n,ass$
p,anamabananas$;
Sq



Using the Suffix Array to Find Matches

-

31

a,bananass$
a.mabananass$
a;namabananass$
a,nanass$
a.-nass$

acs$

b,ananass$
m,abananass$
n,amabananass$
n,anass$

n,ass$
p,anamabananas$;
S.9

e Suffix array: holds
starting position of
each suffix beginning
a row.

=

()]
VYr
|_\

N o oo NdDdOoOPRrR OUJdF WUl w

-




Using the Suffix Array to Find Matches

e Suffix array: holds
starting position of
each suffix beginning
a row.

panamabananass$

-

=

[
N o oo NdDdOoOPRrR OUJdF WUl w

-




Using the Suffix Array to Find Matches

e Suffix array: holds 5
. «, e a
starting position of Al
each suffix beginning 1 asna
7 a,na
d rOW. 9 agna
ag
bl
m,
* Thus, ana occurs at n,
positions 1, 7, 9 of 2
3
panamabananass. D,

T )



The Suffix Array: Memory Once Again

e Memory: ~ 4 x |Genome|.

11 12

M3 5 3 1 7 9 1 6 4 2 8 10 0 1



The Suffix Array: Memory Once Again

e Memory: ~ 4 x |Genome|.

11 12

M3 5 3 1 7 9 1 6 4 2 8 10 0 1



The Suffix Array: Memory Once Again

e Memory: ~ 4 x |Genome|.

11 12

M3 5 3 1 7 9 1 6 4 2 8 10 0 1



Reducing Suffix Array Size

e We don’t want to have to store all of the suffix
array; can we store only part of it? Show how

checkpointing can be used to store 1/100 the
suffix array.

A Return to Constants

* Explain that using a checkpointed array
increases runtime by a constant factor, but in
practice it is a worthwhile trade-off.



13

N —

ana
S, S1
a, Iy
a; n,
as P1
a, b,
as n,
g N3
b, a;
m, a;
n aj
n, dy
Nj dg
P1 S,
S1 dg

ana
S, S1
a; m,
ay n
aj P1
dy b,
dg n,
dg Nj
b, a;
m, ay
n,a a,
n,a a,
n,a a.
P1 S,
Sq ag

ana
S, S1
a; m,
ay n
asna <N
a,na b,
a.na n,
dg Nj
b, a;
m, ay
n aj
n, dy
Nj dg
P1 S,
S1 dg

517




Returning to Our Original Problem

* We need to look at INEXACT matching in order
to find variants.

* Approx. Pattern Matching Problem:

— Input: A string Pattern, a string Genome, and an
integer d.

— Output: All positions in Genome where Pattern
appears as a substring with at most d mismatches.



Returning to Our Original Problem

* We need to look at INEXACT matching in order
to find variants.

* Multiple Approx. Pattern Matching Problem:

— Input: A collection of strings Patterns, a string
Genome, and an integer d.

— Output: All positions in Genome where a string
from Patterns appears as a substring with at most
d mismatches.



Method 1: Seeding

* Say that Pattern appears in Genome with 1
mismatch:

Pattern acttiggct

Genome actalggct



Method 1: Seeding

* Say that Pattern appears in Genome with 1
mismatch:

Pattern acttiggct

Genome actalggct

* One of the substrings must match!



Method 1: Seeding

* Theorem: If Pattern occurs in Genome with d
mismatches, then we can divide Pattern into
d + 1 “equal” pieces and find at least one exact
match.

X X X X XXXXXXKXX
X X X X XXXXXXXX




Method 1: Seeding

Say we are looking for at most d mismatches.

Divide each of our strings into d + 1 smaller
pieces, called seeds.

Check if each Pattern has a seed that matches
Genome exactly.

If so, check the entire Pattern against Genome.



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

# Mismatches

$ 1 S,
a, m 1
a, n, 0
1
Now we extend o P 1
. . 4 1
all strings with at a. o 0
: 0
most 1 mismatch. ¢ "3
14 a,
m,a a,
n,a a,
n,a a,
n,a a.
p.a S
S, a



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

# Mismatches

$1 Sl

a'1 ml

a, I,

' aj P

One string N b
produces a as n,
a, n,

second mismatch

b,a a, 1
(the $), so we m,a a, 1
discard it. nid &3 0
n,a a, 0
n3a a5 O
p;a $ 1 2
= a g



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

# Mismatches

$1 S

a,ba m, 1

a,ma n, 1

0

In the end, we ans i 0
. 4 1

have five 3-mers a.na n, 0
with at most 1 oe -
. 1 1
mismatch. m, a,
n, a;
n, a,
s as
| $ 1



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Suffix Array

$1 Sl

a'1 ml

a, n,

a‘3 pl
In the _end, we - na b -
have five 3-mers a. n,
with at most 1 26 23
mismatch. m, a,

n, a;

n, ay

I'l3 a'5

D, S,



Method 2: BWT Saves the Day Again

* Recall: searching for ana in panamabananas

Suffix Array

$1 Sl

a'1 ml

a, n,
In the end, we o i
have five 3-mers a;na n, 9
with at most 1 oe .
mismatch. m, a,

n, a 4

n, ay

n, a.

| <) S



Related work

* Accommodate mismatches in string using e.g. a
seed and extend approach
— Heuristic approaches

— BatMis
https://doi.org/10.1093/bioinformatics/bts339

* Lots of interest in processing k-mers of sequence
data

— E.g. MinHash for comparing two sets of reads without
alignment

* Next, we will consider how we can compare more
divergent sequences



Hidden Markov Models Outline

From a Crooked Casino to a Hidden Markov Model
Decoding Problem

The Viterbi Algorithm

Profile HMMs for Sequence Alignment

Classifying proteins with profile HMMs

Viterbi Learning

Soft Decoding Problem

Baum-Welch Learning



The Crooked Casino

A crooked dealer may use one of two identically
looking coins:

- The fair coin (F) gives heads with probability
Pre(“Head”) = 1/2 Pre(“Tail"y =1/2

* The biased coin (B) gives heads with probabilit/ s>
3 )

What coin is more likely if 63 out of 100 flips
resulted in heads?

Hint: 63 is closer to 75 than to 50!




Fair or Biased?

* Given a sequence of n flips with kK “Heads”:
X=XsXy. .. X,
* The probability this sequence was generated by the fair
coin:
Pr(x|F) = Pre(x,) *...* Pre(x,) = (1/2)"
* The probability that it was generated by the biased coin:
DriviP\ = Dyr (v \* *Dr (v \—=1I k (1/4)n-k
Pr(x|F) > Pr(x|] ) — fair is more likely
Pr(x|F) < Pr(x|B) — biased is more
likely

Equilibrium: P(x|F) = P(x|B)
(1/2)n= (3/4)ke (1/4)0k — 2= 3K — k -log,3 *n — k=0.632¢n

Even though 63 is closer to 75 than to 50,
fair coin is more likely to result in 63 heads! 532




Two Coins Up the Dealer Sleeve

* Now the dealer has both fair and coins and
can change between them at any time (without you
noticing) with probability 0.1.

After watching a sequence of flips, can you tell when the
dealer was using fair coin and when he was using biased
coin?




Reading the Dealer’'s Mind

Casino Problem: Given a sequence of coin flips, determine
when the dealer used a fair coin and a biased coin.

* Input: A sequence x = x, x, ... x, of flips made by coins
- (fair) and (biased).

* Output: Asequence T =1, T, * - - T1,,, With each T, being
equal to either - or B and indicating that x; is the result of
flipping the fair or biased coin, respectively.




The Problem with the Casino Problem

* Any outcome of coin tosses could have been generated

by any combination of fair and coins!
— HHHHH could be generated by BBBBB, FFFFF, FBFBF,
etc.

We need to grade different scenarios:
BBBBB, FFFFF, FBFBF, etc.
differently, depending on how likely they are.

How can we explore and grade 2" possible
scenarios”?




Reading the Dealer’s Mind
(one window at a time)

HHHTHTHHHT
BBEBBB

FEFEFFF

Pr(x
br(x
1

F)/Pr(x
F)/Pr(x

B)
B) >

Log-odds ratio of sequence x = log, Pr(x|F) / Pr(x|B)
log, (1/2)"/ (3/4)k(1/4)"* = #Tosses - log,3 *

#Heads



Reading the Dealer’s Mind
(one window at a time)

HHHTHTHHHT
BBBBB Log-odds O
FFFFF Log-odds > 0

Log-odds ratio of sequence x = log, Pr(x|F) / Pr(x|B)

= #Tosses - 1og,3 *
#Heads

> Log-odds

Log-odds ratio <0 | Log-odds ratio >0 ratio

coin more likely Fair coin more
likely



Reading the Dealer’s Mind

HHHTHTHHHT

FEFEFFF
FEFEFEF
FEEFEF
BEBBB
FEFFEF

What are the disadvantages of this approach?

538




Disadvantages of the Sliding Window Approach

?

HHHTETHHHT
BEBBE

FFHFF
FRFFF

HHFFF

BBBBB
FFFFF

Different windows may classify the same coin flip

AiffAvrantl.l

The results depend on the window length. How to choose

i+




Why Are CG Dinucleotides More Rare than GC
Dinucleotides in Genomic Sequences?

* Different species have widely varying GC-content
(percentages of G+C nucleotides in the genome).

S A o T, ,:';iz..',-.'=:-"§" #
" intatr B e e S |

° for gorilla an huan
e Each of the dinucleotides CC, CG, GC, and GG is
expected to occur in the human genome with

frequency 0.23 * 0.23 = 5.29%.

But the frequency of CG in the human genome is only 1%!

540




Methylation

Methylation: adds a methyl (CH;) group to the
cytosine nucleotide (often within a CG dinucleotide).

* The resulting methylated cytosine has the tendency to
deaminate into thymine.

ﬁ\\\ NH
/gethy!auon /Qammat:on /&
N~ 0

Cytosme 5- methyl Thymine
Cytosine

* As aresult of methylation, CG is the least frequent
dinucleotide in many genomes.



Looking for CG-islands

Methylation is often suppressed around genes
in areas called CG-islands (CG appears
frequently).

ATTTCT'IICTCGTCGACGC TAATTTCTTGGAAATATCATTAT

In a first attempt to find genes, how would you
search for CG-islands?




Looking for CG-islands

0
<€ > Log-odds

CG-island more likely | Non-CG island more Irﬁ’lggly

Different windows may classify the same position in
the genome differently.

It is not clear how to choose the length of the
window for detecting CG-islands.

Does it make sense to choose the same window
length for all regions in the genome?




Turning the Dealer into a Machine

 Think of the dealer as a machine with k
hidden states (F and ) that proceeds in a

sequence of steps. blackbox

* In each step, it emits a symbol (H or T)
while being in one of its hidden states.

 While in a certain state, the machine
makes two decisions:

o Which symbol will | emit?

o Which hidden state will | move to
next?

544



Why “Hidden”?

* An observer can see the emitted symbols of an HMM

but does not know which state the HMM is currently
In.

 The goal is to infer the most likely sequence of
hidden states of an HMM based on the sequence of
emitted symbols.



Hidden Markov Model (HMM)

2: an alphabet of emitted symbols
States : a set of hidden states

Transition = (transition,): a | States| x[States|
matrix of transition probabilities (of F
changing from state / to state k) B

Emission= (emission(b)): a |States| x |3 |
matrix of emission probabilities (of
emitting symbol b when the HMM is in state k)

Hand T
Fand B
F B
0.9 0.1
01 0.9
H T
0.50 0.50

0.75 0.25



HMM Diagram

- Transition
.2 (\}j/\ <o F B
1/2// \\3/4 F 09 01

! 1/10 \ B 01 0.9

@ @ Emission
W 1T
F 050 0.50

\\ o~ ,/ 075 025
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Hidden Path

Hidden path: the sequence = 1r,... 11, of states
that the HMM passes through.

* Pr(x, m): the probability that an HMM follows the hidden
path 1t and emits the string x = x, x, . . . x

n.

m F F F B B B B B F F F

Pr(x, 1)

Z all possible emitted strings x Z all possible hidden paths 1

=1
* Pr(x|1r): the conditional probability that an HMM
emits the string x after following the hidden path .

Pr(x|m) =1

Z all possible emitted strings x




Prix, 1) = Pr(x|m) *
* Pr(x, m): the probability that an HMM Pr(rmt) follows
the hidden path it and emits the string x. Pr(x.|1t) —

probability that x, was emitted from the state .
(equal to emission_;(x)).

* Pr(mt,_,—>1)— probability that the HMM moved from

., T (equal to transition ; .4)-
X
- T H T H H H T H T T H
Pr(t, F F F B B B B B F F F
T .5 .9 .9 .1 .9 .9 .9 .9 .1 .9 .9
Pr(x,|TT) “n B B KA % A A K N W
Pr() = Ny, , Pr(m_—m) = Ny, ,transition ; , ;

Pr(x|1T) = I'I,-=1,n Pr(x|m) = I =1 n emission_.(x;)

549




Computing Probability of a Hidden Path Pr(m)
and Conditional Probability of an Outcome Pr(x|m)

Probability of a Hidden Path Problem. Compute the
probability of an HMM'’s hidden path.

* Input: A hidden path min an HMM
(2, States, Transition,Emission).

« Output: The probability of this path, Pr(m).

Probability of an Outcome Given a Hidden Path Problem.
Compute the probability that an HMM will emit a given string
given its hidden path.

* Input: A string x=x,,...x, emitted by an HMM (>, States,
Transition, Emission) and a hidden path = T11,,..., T,

« Output: The conditional probability Pr(x|r) that x will be
emitted given that the HMM follows the hidden path .




Decoding Problem

Decoding Problem: Find an optimal hidden path in an

HMM given its emitted string.

* Input: Astring x =x, ... x, emitted by an HMM (3,
States, Transition, Emission).

e Output: A path t that maximizes the probability Pr(x,m)
over all possible paths through this HMM.

Pr(x, 1) = Pr(x|1T) * Pr(1m)
=M o1, Prx{m) * Pr(mm_—m)
=1 =y ,emission; (x;) * transition ;;_; .




Building Manhattan for the Crooked Casino

1/10

F9/10) (9/10
1/10

5. HMM diagram

><><><><><

F\——(F ——(F ——(F
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Building Manhattan for the Crooked Casino

1/10
F 9/10 9/10 B HMM diagram

1/10

><><><><></

F——(F——(F ——(F

F
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Building Manhattan for Decoding Problem

//A\\ HMM diagram

G

r (A— A —> A —> A —> A —>( A

SR

.\ (C —IC —IC ——IC —>ICc —>C

Y

Number of symbols emitted (n)
554



Building Manhattan for Decoding Problem

o
//\\ HMM diagram
G

A—> A —> A —> A —> A —> A

C —>C —> C —>C —>C —>C



Alignment Manhattan vs. Decoding Manhattan

Alignment Decoding
three valid directions many valid directions

©\=




Edge Weights in the HMM Manhattan

A—> A A—>A —>A

<3€‘%§/

C—>(C—>C —>(C—>C —>(C
i-1 I

Edge (/, k, i-1) from node (/, i-7) to node (k, i):
- transitioning from state / to state k (with probability fransition, )
 emitting symbol x; (with probability emission,(x;)

weight(l, k, i-1)=emission,(x;) * transition, ,

557




Edge Weights for the Crooked Casino

F B
emissio F 0.9 0.1
n B 0.1
weight(l,k,i-1) =emission,(x;) * transition,, 0.9
H T
weight (B,B,1)= transition £ 0.50 0.50
emissiong(H) ™ transitiong g = B 0.75
0.75%0.9 025

B-)B—)B—)B—)B—)

X X XXX

FmgF—> F—>F—F —> F

H H T T H H 558



Product Weight of a Hidden Path

Al—> A = A —> A —> A —>[A

N

C—>C —>C —> ( =) C —> C

Pr(x, ) = I i=1.n emission_; (x;) * transitionm_m
=1 -; ,weight of the /-th edge in path
— r i=1,n Weight('lTl_1, 'ITI, 1'1)




Dynamic Programming for Decoding Problem

score, ; : the maximum product weight among all
paths from source to node (k, i):

A—> A —>A

TEe
N ’«»‘ ‘ %i/

C—>C —>C —>C
-1 I

SCOre; ;= MaXx , states /15€0I€, .1~ Weight of edge from (/,i-1) to
(K.1)} 560




Recurrence for Viterbi Algorithm

* Recurrence:
SCOre;, = MaX | sates ;15COrE, 1 - Weight(l,k,i-1)}

* |nitialization:
score =1

source

* The maximum product weight over all paths from source to
sink:

score = MaX | states | score,n

sink —




Running Time of the Viterbi Algorithm

- (AA—— (A —— (A —— (A —— (A ——(A

G

~ (C—(C —>(C —>(C —>(Cc —>(C

Number of symbols emitted (n)

Running time ~ #edges in the Viterbi graph
~ O(IStateSIZ ¢ n) 562




Running Time of the Viterbi Algorithm

Forbidden transition: an edge not represented in
the HMM diagram.

> > A > A > A
: g /B B B B B B\
7 ™~
7

C C C

> D > D > D

Running time ~ #edges in the Viterbi graph
~ O(#edges in the HMM diagramen).




From Product of Weights to Sum of Their
Logarithms

Since score, ; may become small (danger of underflow),
biologists prefer to work with logarithms of scores:

SCOre, ; = MaX,gmes/{ SCOre., - weight(lk,i-1) }

v

log(score, ;) = max , qates 11 109(SCOrE, ;1 )*log(weight(l,k,i-1)

}

This transformation substitutes weights of edges by
their logarithms:
product of weights — sum of weights




Computing Pr(mt) Versus Computing Pr( )

* Pr(x, mt): the probability that an HMM follows the hidden
path 1t and emits the string x = x, x, . .. x,.

m F F

F B B B B B F F F
.5 .9 :

9 1 .9 .9 .9 .9 1 .9 .9

PF('IT) = Zall possible emitted strings PF(X, 1T)=I'I,=1,ntran31tlonm_

PF(X) = Z all possible hidden paths 11 PF(X, 'IT) =

PF(X) ~ Z all possible hidden paths 1t prOdUCt Weight of

SCOI€;,, mMaX | possible hidden paths 7w Product weight of 1
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What is the Most Likely Outcome of an HMM?

* Outcome Likelihood Problem. Find the probability
that an HMM emits a given string.

* Input: A string x = x, ... x, emitted by an HMM (3,
States, Transition, Emission).

e Output: The probability Pr(x) that the HMM emits x.

Can you solve the Outcome Likelihood Problem by
making a single change in the Viterbi recurrence
SCOre, ; = MaX y sates 1SCOre, g - weight(l,k,i-1)} ?




Viterbi Algorithm: From MAX to >

* forward,;: total product weight of all paths to (k,i):

A—> A —>A

S i

C— —0—0—0—(C
l-

forward, ; = ¥ i states 11 - weight of (/,i-1)->(k,i)}
= 2 il states | UOrward, ., - weight(l, k, i-1)}
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Viterbi Algorithm: From MAX to >

* forward,;: total product weight of all paths to (k,i):

A—> A —>A

<§§ &5 %i/

C— —0—0—0—(
l-
score; ; = Max  gares /1 - weight(/, k, i-1)}
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Classifying Proteins into Families

* Proteins are organized into protein families
represented by multiple alignments.

e A distant cousin may have weak
pairwise similarities with family

members failing a significance g W o et
SR SR8 SRS
test. I RS &P

' r =

BEaMBPZ" PEILE" PElIL4*

* However, it may have weak similarities with many
family members, indicating a relationship.
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From Alignment to Profile

1 2 3 4 5 6 7 8
A C D E F AC A D F
A F D A - ==cC C F
Alignment A - - E F D- F D C
A D D E F AA A D F

Remove columns if the fraction of space symbols (*-”)
exceeds 0, the maximum fraction of insertions
threshold.
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From Alignment to Profile

Alignment

Alignment®

PROFILE(Alignment®)

£ oo B w B B =

1

=

oo o o —

2

C
F

3

D
D

!

4

o

5

F

=]

- O O O O

6

F
A

3/5
1/5
0
0
1/5

7

N

D

0
1/4
3/4

0

0

0
2/5

0

0
3/5
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Alignment

Alignment*

PROFILE(Alignment®)

HMM diagram

From Profile to HMM

0o Qo

1

2

C

4

e I e B e e =i |



Toward a Profile HMM

M»]éMzéM:s >M4 >M5 >M6 >M7

A F D D A F B D

How do we model insertions?




Toward a Profile HMM: Insertions

How do we model deletions?




Toward a Profile HMM: Deletions



Toward a Profile HMM: Deletions

A I A I, lg

NV ——ava

M\\—///

A A F F D F

How many edges are in this HMM diagram?




Adding "Deletion States”
,0 ><3><3><3><3><3><3 " 8
\M —\; M —Bl M EM >\4M EM >\4M >\Mg/

A A F F D F




Adding "Deletion States”

Rk
\égg WAVAVAY,

M%M

A A F F D F

Are any edges still missing in this HMM diagram?




Adding Edges Between Deletion/Insertion States

IO/ %%%%%%% \/8 3
\M —\; M. —¥ M. \;M >\4M EM BM >\4M8/




. The Profile HMM is Ready to Use!
t D, —>(D,
t

I / ,4 %(/ / AN
WAYN

0 1

\\\

M, ——> M, ——> M, >

/73 189>E

WAL

Profile HMM Problem: Construct a profile HMM from a

multiple alignment.

* Input: A multiple alignment Alignment and a threshold
0 (maximum fraction of insertions per column).

* Output: Transition and emission matrices of the
profile HMM HMM(Alignment,0).




Hidden Paths Through Profile HMM

C
F

<% ”W%@(/WY\\

® Note thls IS a hldden path in an HMM
diagram (not in a Viterbi graph)

A (=) (=) E F D F C

D F|

D ] el Bl B
D wiH=] B lw] R

o ealleal Neall =] Wea

D"*j"f_l"ljl"f_l
I
I

)
|

o ==l Bol fel i

o o 1lola
iel

!
&
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Transition Probabilities of Profile HMM

AN D /W%@% N
LR <>>
< WWWO@Y T
S

SRR

4 transitions from@:

+1+ 1 =3into /5
1 into M,
0 into Dy

tr anSI: tl OnMatch(5),lnsertion(5) = 3/4
tr a”S’_t’_O”Match(5),Match(a) =1/4
transition yaiens) peietions) = O
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Emission Probabilities of Profile HMM

@WW <>
/
@%&M%& <>>
o /W%YW ”>
N,/
@WW “>
N\ /

symbols emitted fr
M.

C.F,.C, D

emisSioNyaisni2)(A) = 0
emisSSioNy.oni2)(C) = 2/4
emisSioNy..ni2(D) = 1/4
emissionyaniz)(E) = 0
emisSioNyaoni)(F) = 1/4
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Forbidden Transitions

>

Ml‘Dl I [ My h Me | D L D] 1 Mg Dg | 1s | E

| Gray cells:

edges in the

| HMM diagram.

Clear cells:

JE forbidden

transitions.

.33|.67

Don’t forget

: pseudocounts:

HMM(Alignment,0,0)
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Aligning a Protein Against a Profile HMM

S

A C--D E FACA D F
A F-—-D A ---C C F
Alignment » - - - E FD-F D C
A —— E Fle= A - C
A D-—-D E F AA A D F

Protein ACAFDEAF
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Aligning a Protein Against a Profile HMM
@

D, D, D, @ D, D,
e\lok i af) I K k / k I e
Q—0 u Q@ ~-un Q@
C E (=) A -) F

Dy

o—0 v
A AF D (
A C —1D E FAC A D F
A F—D A ~- B C C F
Alignment » - - - E FD-F D C
A D—D E FAA A D F
Protein ACAFDEAF

Apply Viterbi algorithm to find optimal hidden path!




Aligning a Protein Against a Profile HMM

D, Dy

°\’° A /\/\ A

o—0 @—% vy —>@ —@

A C AF D (=) A (=) F

A C — D F FFAC A D F

A F —1D A —==C C F

Alignment 2 - —— - E FD-F D C
A D-—1D F FAA A D F

Protein A CAF D E - ——A - F

Apply Viterbi algorithm to find optimal hidden path!




Profle KU << %i%i%iK%i <>>

How many rows and columns does the Viterbi
graph of this profile HMM have?
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Viterbi graph of

profile HMM:

#columns

#visited states

with this Viterbi

What is wrong
graph?
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Profile HMM /.
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Alignment with a Profile HI\/IIVI

D,

@@@ v

C AF D

Sequence Allgnment with Proflle HMM Problem:
Align a new sequence to a family of aligned
sequences using a profile HMM.
* Input: A multiple alignment Alignment, a string
Text, a threshold 8 (maximum fraction of insertions
per column), and a pseudocount o.
« Output: An optimal hidden path emitting Text in the
profile HMM HMM(Alignment, 8, o).




Have | Wasted Your Time?

D D D (D,) D, (D)) D,
INTAA \ e

Q— Q—0Q -wn Q@ % —@Q

A C AF D E (=) A (=) F
. e s
k.\l\\l>\ \\ Smg.i = max{sDU}),,_1 * weight(D(j-1), M(j),i-1)
RNRVANANAVAVANAN Suny i1 * Weight(M(-1), M(),i-1)
SNRRRERK
A M 5o Si1Ji4t+ Score(v,w)
\ \\N@\A\\ The choice of alignment path is
\sssisé‘%%I% now based on varying transition
w0 Tand emission probabilities! ..




| Have Not Wasted Your Time!

D, D, D, D, @ D, @ D,
e%hwg/&/&he
IENTNYAY y
o— Q—Q@ v @ % Q@
A C AF D E (=) A (=) F
— 8 8 8 e o >0 >
k‘.\l\\l>\\\ Smg),i = max{sDU}),,_1 * weight, (D(j-1), M()))
RVRYANANANANANAN Suny it Weight, (M(-1), M()
\Ni;\\l\\\\ Individual scoring parameters
N\, \l&\l\ \\\ for each edge in the alignment
\\K\l\\\ \ graph capture subtle similarities
g o I : that evade traditional
\ \\k‘ig.\\\ alignments.
AVANANANARNANAN c RPNN THK GPGRAF m G Q C
) ¥’>">‘l\,"\l\i‘"&. N R§ ﬂ K-—kITABE i g




HMM Parameter Estimation
 Thus far, we have assumed that the transition
and emission probabilities are known.

* I[magine that you only know that the
crooked dealer is using two coins and obse

HHTHHHTHHHTTTTHTTTTH

What are the biases of the coins and how often the
dealer switches coins?

Can we develop an algorithm for parameter estimation
for an arbitrary HMM?




If Dealer Reveals the Hidden Path...

HMM Parameter Estimation Problem: Find optimal
parameters explaining the emitted string and the
hidden path.

* Input: Astring x = x, ... x, emitted by a k-state
HMM with unknown transition and emission
probabilities following a known hidden path m =, .
LTI

 Output: Transition and Emission matrices that
maximize Pr(x, 1r) over all possible matrices of

transition and emission probabillities.
HHTHHHTHHHTTTTHTTTTH

FFBFFFBBFFBFFBBBBFF




If the Hidden Path is Known...

* T, #transitions from state / to state k in path .

transition, ,=
#transitions from state / to state k /# all transitions from /
=T,/ #visits to state /

HHTHHHTHHHTTTTHTTTTH

“FFBFFFBBFFBFFBBBBFF T =59




If the Hidden Path is Known...

* E (b): # times symbol b is emitted when path rtis in
state k.

emission,(b) =
#times symbol b is emitted in state k /# all symbols emitted in state
k
=E &bﬁ/ #visits to state /
HHTHHETHHHTTTTHTTTH EF(T)=611

FEBFFEBBFEB&EBBBEF T =5
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When BOTH HiddenPath and Parameters
Are Unknown

HMM Parameter Learning Problem. Estimate
the parameters of an HMM explaining an emitted
string.

* Input: Astring x = x, ... x, emitted by a k-state
HMM with unknown transition and emission
probabillities.

* Output: Matrices Transition and Emission that
maximize Pr(x, 1r) over all possible transition

and emission matrices and over all hidden
paths Tr.




Reconstructing HiddenPath AND Parameters

Start from arbitrary
choice of Parameters

Decodin
g

hidden path I Parameters



Reconstructing HiddenPath AND Parameters

HMM
Parameter
Estimation

hidden path Parameters



Viterbi Learning

Iterate!

hidden path Parameters’
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Changing the Question

* The Viterbi algorithm gives a “yes” or “no” answer to
the question: "Was the HMM in state k at time i given
that it emitted string x?”

This question fails to account for how certain we are
in the “yes”/“no” answer. How can we change this
hard question into a soft one?
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What Is Pr(mt.=k, x)?

Pr(rt.=k, x): the unconditional probability Pr(mt.=k, x) that a
hidden path will pass through state k at time i and emit x.

What is the probabillity that the dealer was using the
Fair coin at the 5™ flip given that he generated a
sequence of flips HHTHTHHHTT?




Pr(ri=k, x):
Total Product Weight of All Paths Through ®

Pr(rt.=k, x): the unconditional probability that a hidden path
will pass through state k at time i and emit x.

Pr('ITi=k, X) = Z all paths 1 with 11/ =k PF(X, Tr)

%

Pr(m=k, x) =1 .

\ 4
\ 4

/’/

—_—

\ //

Z all possible states k, all possible paths x

\,M

v
\ 4




What Is Pr(mt, =k|x)?

Pr(mt; =k| x): the conditional probability that the HMM was in
state k at time j given that it emitted string x.

What is the probabillity that the dealer was using the
Fair coin at the 5™ flip given that he generated a
sequence of flips HHTHTHHHTT?

Compare with:

Pr(tr,=k, x): the unconditional probability that a hidden
path will pass through state k at time / and emit x.

What is the probabillity that the dealer will generate a
sequence of flips HHTHTHHHTT?
while using the Fair coin at the 5% flip?




What Is Pr(mt, =k|x)?

Pr(tr; =k|x): the conditional probability that the HMM
was in state k at time / given that it emitted string x.

— —

NN

5

|
L

S
v

I

Pr(tr; =k|x): the fraction of the product weight of paths
visiting over the weight of all paths:

Pr(mr; =k|x) = Pr(mr=k, x) /
= i paths Tr with T/ =k Pr(x, )/ 2 . paths Tr Pr(x,

T\




Soft Decoding Problem

Soft Decoding Problem: Find the probability that

an HMM was in a particular state at a particular

moment, given its output.

* Input: Astring x =x, ... x, emitted by an HMM
(>, States, Transition, Emission).

» Output: The conditional probability Pr(Tr, =k|x)
that the HMM was in state k at step /, given x.




Computing Pr(mt=k, x)

* Pr(mt=k, x) = total product weights of all paths through the Viterbi
graph for x that pass through the node (k, i).

* Each such path is formed by a blue subpath ending in the node
and a bpath starting in the node

\ graph

with all

\ edges
reverse

<—><—><—><—><—>"

Pr(m=k, x) =
> product weights of all blue paths > product weights of all red paths

.



Computing Pr(mt=k, x)

* Pr(mt=k, x) = total product weights of all paths through the Viterbi
graph for x that pass through the node (k, i).

* Each such path is formed by a blue subpath ending in the node
and a bpath starting in the node

\ graph

with all

\ edges
reverse

<—><—><—><—><—>"

Pr(m=k, x) =
> product weights of all blue paths > product weights of all red paths

forward, * backward, |



Forward-Backward Algorithm

Since the reverse edge connecting node (/, i+1) to node (k, i) in
the reversed graph has weight weight(k, |, i):

backward, ;=) - weight(k, |, i)

all states |

\%E@g \\\\

l+1
Combining the forward- backward algorithm with the

solution to the Outcome Likelihood Problem yields
Forward, ; *backward,;

Pr(mm; =k|x) = Pr(m=k, x)/Pr(x) = forward(sink)



The Conditional Probability Pr(rt=/, i, ,=k|x) that the
HMM Passes Through an Edge in the Viterbi Graph

A A A A
B | B B
C C C % C C
i i+1

> weights of blue paths * weight of black edge * > weights of red paths

forward, ; *weight(l, k, i) *backward, .,
Pr(m=l, 1., =k|x) = /i ght( ) K,i+1

forward(sink) 613




Node Responsibility Matrix

* Node responsibility matrix M* = (¥, ):
(" = Pr(m=k|x)

Node responsibility matrix for the crooked casino
T H T H H H T H T T H
F 0.636 0.593 0.600 0.533 0.515 0.544 0.627 0.633 0.692 0.686 0.609
B 0.364 0.407 0.400 0.467 0.485 0.456 0.373 0.367 0.308 0.314 0.391
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Responsibility Matrix

(1% = Pr(m= 1, m;,,=k|x)

AT ATAN

NSAG Y

0.043 0.022

0.265 0.293 .




Baum-Welch Learning

Baum-Welch learning alternates between two steﬁs:

e Re-estimating the responsibility profile N given the

current HMM parameters (the E-step):

* Re-estimating the HMM parameters given the current
responsibility profile (the M-step): ‘

N\

o-@®

(emitted string, ?, Parameters) — 1

(emitted string, 1, ?) — Parameters




Using a Responsibility Matrix to Compute
Parameters

* We have defined a transformation
(x, i, ?) > Parameters
that uses estimators T, , and E(b) based on a path 1.

* We now want to define a transformation:
(x, M, ?) = Parameters
but the path is unknown.

Idea: Use expected values T,, and E,(b) over
all possible paths.




Redefining Estimators for Parameters
(for a known path )

* T, #transitions from state / to state k in path it

77 {1|frr—land77 =K
O otherwise

Rewriting Tc=2

i
i=1,n-1 Tl,k
estimators:

HHTHHHTHHHTTTTHTTTTH

R L R O
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Redefining Estimators for Parameters
(for a known path )

* E (b): #times b is emitted when the path 1tis in state k

1if m;=1and m,,, Ei (b)=1 if m;=kand x,=b
0 otherwise g otherwise
How would you redefine these estimators if 17 is rewriting

unknown?
estimators: | |
E(T)=001 1 1011 1
HHTHHHTHHHTTTTHTTTTH ELT)=6

BER e R P T =5

T"B’F=100100001OOIOOOOOlOO oo




Redefining the Estimators T, and E'(b)
When the Path is Unknown

Wl,k={1 if IT; = | and My = k E’k(b)_{1 if m; = k and X; =

b
O otherwise O otherwise
. . Pr(m; =k|x) if x,= b
77,’k=Pr(rr,- =[, M., =K|x) E’k(b)=é cgtherv\llis)e
. o . ", ifx,=b
T =T E'(b)={ .

O otherwise
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Baum-Welch Learning

Baum-Welch learning alternates between two steﬁs:

e Re-estimating the responsibility profile 1 given the

current HMM parameters (the E-step):

* Re-estimating the HMM parameters given the current
responsibility profile (the M-step): ‘

N\

-0

(emitted string, ?, Parameters) — 1

(emitted string, 1, ?) — Parameters




Stopping Rules for the Baum-Welch Learning

 Compute the probability that the HMM emits
the string x under current Parameters:
Pr(emitted string| Parameters)

— Compare with the probability for previous values of
Parameters and stop if the difference is small.

— Stop after a certain number of iterations.



Nature is a Tinkerer and Not an Inventor

Protein domain: a conserved
part of a protein that often can
function independently.

Nature uses domains as building
blocks, shuffling them to create
multi-domain proteins.

Goal: classify domains into
families even though sequence A multi-domain
similarities between domains from protein

the same family can be low.

623




Searching for Protein Domains with Profile HMMs

1. Use alighments to break proteins ABCDEFGHKLMNP
into domains. ERGHKLNPABTD
KLSNPACDEFTH

2. Construct alignment of domains
from a given family (starting from ABCD  KLMNP
highly similar domains whose ABTD KL-NP
attribution to a family is non- AL=D KLONP
controversial).

3. For each family, construct a
profile HMM and estimate its
parameters.

4. Align the new sequence against

each such HMM to find the best '
fitting HMM. @ @ @ /K/K /



Pfam: Profile HMM Database

Each domain family in Pfam has:

* Seed alignment: Initial multiple alighment of domains
in this family.

e HMM: Built from seed alignment for new searches.

* Full alignment: Enlarged multiple alignment generated
by alighing new domains against the seed HMM.

Final Challenge: Using the Pfam HMM for gp120
(constructed from a seed alignment of just 24 gp120 HIV
proteins), construct alignments of all known gp120
proteins and identify the “most diverged” gp120
sequence.



Related work

* Mixture Hidden Markov Models (MHMMs)
can be used to cluster data into homogenous
subsets on the basis of latent characteristics



