
CONTENTS 1

Contents

5 Graphs 1
5.1 Notation and representation . 2
5.2 Breadth-first search . 5
5.3 Depth-first search . 8
5.4 Dijkstra’s algorithm . 10
5.5 Bellman-Ford . 14
5.6 Johnson’s algorithm . 17
5.7 All-pairs shortest paths with matrices . 19
5.8 Prim’s algorithm . 21
5.9 Kruskal’s algorithm . 24
5.10 Topological sort . 26
5.11 Graphs and big data . 29

6 Networks and flows 31
6.1 Matchings . 32
6.2 Max-flow min-cut theorem . 35
6.3 Ford-Fulkerson algorithm . 38

IA Algorithms
Damon Wischik, Computer Laboratory, Cambridge University. Lent Term 2018

5. Graphs

5.1 Notation and representation . 2
5.2 Breadth-first search . 5
5.3 Depth-first search . 8
5.4 Dijkstra’s algorithm . 10
5.5 Bellman-Ford . 14
5.6 Johnson’s algorithm . 17
5.7 All-pairs shortest paths with matrices . 19
5.8 Prim’s algorithm . 21
5.9 Kruskal’s algorithm . 24
5.10 Topological sort . 26
5.11 Graphs and big data . 29

2 5.1 Notation and representation

5.1. NotaƟon and representaƟon
A great many algorithmic questions are about entities and the connections between them.
Graphs are how we describe them. A graph is a set of vertices (or nodes, or locations) and
edges (or connections, or links) between them.

Example. Leonard Euler in Königsberg, 1736, posed the question “Can I go for a stroll around
the city on a route that crosses earch bridge exactly once?” He proved the answer was ‘No’.
His innovation was to turn this into a precise mathematical question about a simple discrete
object—a graph.

g = { ’A’ : [’B’ , ’B’ , ’D’] ,
’B’ : [’A’ , ’A’ , ’C’ , ’C’ , ’D’] ,
’C’ : [’B’ , ’B’ , ’D’] ,
’D’ : [’A’ , ’B’ , ’C’]}

Example. Facebook’s underlying data structure is a graph. Vertices are used to represent
users, locations, comments, check-ins, etc. From the Facebook documentation,It’s up to the

programmer to
decide what counts
as a vertex and
what counts as an
edge. Why do you
think Facebook
made CHECKIN a
type of vertex,
rather than an edge
from a USER to a
LOCATION?

Example. OpenStreetMap represents its map as XML, with nodes and ways. In some parts
of the city, this data is very fine-grained. The more vertices and edges there are, the more
space it takes to store the data, and the slower the algorithms run. Later in this course we

5.1 Notation and representation 3

will discuss geometric algorithms which could be used to simplify the graph while keeping its
basic shape.

<osm version=”0.6” generator=”Overpass API”>
<node id=”687022827” user=”François Guerraz”

lat=”52.2082725” lon=”0.1379459” />
<node id=”687022823” user=”bigalxyz123”

lat=”52.2080972” lon=”0.1377715” />
<node id=”687022775” user=”bigalxyz123”

lat=”52.2080032” lon=”0.1376761” >
<tag k=”direction” v=”clockwise”/>
<tag k=”highway” v=”mini_roundabout”/>

</node>
<way id=”3030266” user=”urViator”>

<nd ref=”687022827”/>
<nd ref=”687022823”/>
<nd ref=”687022775”/>
<tag k=”cycleway” v=”lane”/>
<tag k=”highway” v=”primary”/>
<tag k=”name” v=”East Road”/>
<tag k=”oneway” v=”yes”/>

</way>
. . .

</osm>

DEFINITIONS

Some notation for describing graphs:

• Denote a graph by g = (V,E), where V is the set of vertices and E is the set of edges.
• A graph may be directed or undirected. For a directed graph, v1 → v2 denotes an edge

from v1 to v2.
• For an undirected graph, v1 − v2 denotes an edge between v1 and v2, the same edge as

v2 − v1.
• In this course we won’t allow multiple edges between a pair of nodes (such as Euler

used in his graph of Königsberg bridges).
• A path in a directed graph is a sequence of vertices connected by edges, Paths are allowed to

visit the same
vertex more than
once

v1 → v2 → · · · → vk.

• A path in an undirected graph is a sequence of vertices connected by edges,

v1 − v2 − · · · − vk.

• A cycle is a path from a vertex back to itself, i.e. a path where v1 = vk.

There are some special types of graph that we’ll look at in more detail later.

• A directed acyclic graph or DAG is a directed graph without any cycles. They’re used
all over computer science. We’ll study some properties of DAGs in Section 5.10.

• An undirected graph is connected if for every pair of vertices there is a path between It sounds perverse
to define a tree to
be a type of forest!
But you need to get
used to reasoning
about algorithms
directly from
definitions, rather
than from your
hunches and
instinct; and a
deliberately
perverse definition
can help remind you
of this.

them. A forest is an undirected acyclic graph. A tree is a connected forest. We’ll study
algorithms for finding trees and forests in Sections 5.8–5.9.

REPRESENTATION

Here are two standard ways to store graphs in computer code: as an array of adjacency lists,
or as an adjacency matrix. The former takes space O(V + E) and the latter takes space
O(V 2), so your choice should depend on the density of the graph, density = E/V 2. (Note:
V and E are sets, so we should really write O(|V | + |E|) etc., but it’s conventional to drop
the | · |.)

4 5.1 Notation and representation

5.2 Breadth-first search 5

5.2. Breadth-first search
A common task is traversing a graph and doing some work at each vertex, e.g.

• A web crawler for a search engine (a vertex is a page, and an edge is a hyperlink).
Follow all the links you can, and retrieve every page, and add it to your search index.
Don’t bother revisiting pages that you’ve already visited.

• Path finding. To find a path from one vertex v0 to some other vertex v1: start at v0
and traverse the graph. Whenever you follow an edge and reach a vertex you haven’t
seen before, remember the path that takes you there. Stop when you reach v1.

• Component finding. Assign each disconnected component of a graph a different colour.

GENERAL IDEA

Whenever you visit a vertex, look at all its neighbours, and mark them as worth exploring.
The neighbours of a vertex v are the vertices you can reach from v, i.e.

in a directed graph, neighbours(v) =
{
w ∈ V : v → w

}
in an undirected graph, neighbours(v) =

{
w ∈ V : v − w

}
.

Keep on visiting vertices-worth-exploring until you have nothing left to explore.
There is a problem: getting stuck in an infinite loop. In the example below, A is B’s

neighbour and B is A’s neighbour, and we don’t want each to keep adding the other. To
prevent this, let’s store a seen flag with each vertex, and set it to True to indicate that we
don’t need to look at that vertex again, either because we’ve already visited it or because
it’s already in the list of vertices to explore.

IMPLEMENTATION

This implementation uses a Queue to store the list of vertices waiting to be explored.

1 # Vi s i t a l l the ve r t i c e s in g reachable from sta r t vertex s
2 def bfs (g , s) :
3 for v in g . vert ices :
4 v . seen = False
5 toexplore = Queue([s]) # a Queue i n i t i a l l y containing a s i ng l e element
6 s . seen = True
7
8 while not toexplore . is_empty() :
9 v = toexplore . popright () # Now v i s i t i n g vertex v
10 for w in v . neighbours :
11 i f not w. seen :
12 toexplore . pushleft (w)
13 w. seen = True

With a small tweak, we can adapt this code to find a path between a pair of nodes. All it
takes is keeping track of how we discovered each vertex. Here’s a picture, then the code.

6 5.2 Breadth-first search

1 # Find a path from s to t , i f one e x i s t s
2 def bfs_path(g, s , t) :
3 for v in g. vert ices :
4 v . seen = False
5 v .come_from = None
6 s . seen = True
7 toexplore = Queue([s])
8
9 # Traverse the graph , v i s i t i n g everything reachable from s
10 while not toexplore . is_empty() :
11 v = toexplore . popright ()
12 for w in v . neighbours :
13 i f not w. seen :
14 toexplore . pushleft (w)
15 w. seen = True
16 w.come_from = v
17
18 # Reconstruct the f u l l path from s to t , working backwards
19 i f t .come_from i s None:
20 return None # there i s no path from s to t
21 else :
22 path = [t]
23 while path [0] .come_from != s :
24 path . prepend(path [0] .come_from)
25 path . prepend(s)
26 return path

ANALYSIS

Running Ɵme. In bfs, (a) line 4 is run for every vertex which takes O(V); (b) lines 9–10 are
run at most once per vertex, since the seen flag ensures that each vertex enters toexplore at
most once, which takes O(V); (c) line 11 is run for every edge out of every vertex that is
visited, which takes O(E). Thus the total running time is O(V + E).

Shortest paths. The bfs_path algorithm finds the shortest path from s to t. To understand
why, and what’s special about the Queue, here’s the same graph as before but redrawn so
that vertex A is on the right, and the other vertices are arranged by their distance from A.
(The distance from one vertex v to another vertex w is the length of the shortest path from
v to w.)

5.2 Breadth-first search 7

If you rotate this
diagram
90°anticlockwise,
you can see why the
algorithm is called
‘breadth-first
search’.

By using a Queue for toexplore (pushing new vertices on the left, popping vertices from the
right), we end up exploring the graph in order of distance from the start vertex — and every
come_from arrow points from a vertex at distance d + 1 to a vertex at distance d from the
start.

This gives us another way to interpret the bfs algorithm: keep track of the ‘disc’ of
vertices that are distance ≤ d from the start, then grow the disc by adding the ‘frontier’
of vertices at distance d + 1, and so on. What’s magic is that the bfs algorithm does this
implicitly, without needing an explicit variable to store d.

In this illustration1, we’re running bfs starting from the blob in the middle. The graph has
one vertex for each light grey grid cell, and edges between adjacent cells, and the black cells in
the left hand panel are impassable. The next three panels show some stages in the expanding
frontier.

1 These pictures are taken from the excellent Red Blob Games blog, http://www.redblobgames.com/
pathfinding/a-star/introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html
http://www.redblobgames.com/pathfinding/a-star/introduction.html

8 5.3 Depth-first search

5.3. Depth-first search
GENERAL IDEA

A Greek legend describes how Theseus navigated the labyrinth con-
taining the half-human half-bull Minotaur. His lover Ariadne gave
him a ball of thread, and he tied one end at the entrance, and he
unwound the thread as he walked through the labyrinth seeking the
Minotaur’s lair. The thread gave him a path to escape, after he slew
the Minotaur.

Here are the instructions that Ariadne might have given Theseus:

• Bring chalk with you. When you have a choice of path, pick one, and chalk the others
with a question mark, meaning ‘waiting to be explored’.

• When you come to a dead end, backtrack along the thread. While you’re backtracking,
chalk the paths you took with a cross, meaning ‘nothing here’. Keep backtracking until
you find a path that’s waiting to be explored.

IMPLEMENTATION

We can use a Stack to store all the vertices waiting to be explored. Ariadne’s instruction is
to backtrack until you come to a path waiting to be explored — and this must be the most
recently discovered among all the paths waiting to be explored. The Stack is Last-In-First-
Out, so it will automatically give us the correct next vertex.

The following code is almost identical to bfs. The only difference is that it uses a Stack
rather than a Queue.

1 # Vi s i t a l l v e r t i c e s reachable from s
2 def dfs (g , s) :
3 for v in g. vert ices :
4 v . seen = False
5 toexplore = Stack ([s]) # a Stack i n i t i a l l y containing a s i ng l e element
6 s . seen = True
7
8 while not toexplore . is_empty() :
9 v = toexplore . popright () # Now v i s i t i n g vertex v
10 for w in v . neighbours :
11 i f not w. seen :
12 toexplore . pushright(w)
13 w. seen = True

5.3 Depth-first search 9

Here is a different implementation, using recursion. Recursion means that we’re using the
language’s call stack, rather than our own data structure. Recursive algorithms are sometimes
easier to reason about, and we’ll use this implementation as part of a proof in Section 5.10.
See also Example Sheet 5, which asks you to think carefully about the subtle differences
between dfs and dfs_recurse.

1 # Vi s i t a l l v e r t i c e s reachable from s
2 def dfs_recurse(g , s) :
3 for v in g . vert ices :
4 v . v i s i ted = False
5 v i s i t (s)
6
7 def v i s i t (v) :
8 v . v i s i ted = True
9 for w in v . neighbours :
10 i f not w. v is i ted :
11 v i s i t (w)

ANALYSIS

The dfs algorithm has running time O(V +E), based on exactly the same analysis as for bfs
in Section 5.2.

The dfs_recurse algorithm also has running time O(V + E). To see this, (a) line 4 is
run once per vertex, (b) line 8 is run at most once per vertex, since the visited flag ensures
that visit(v) is run at most once per vertex; (c) line 9 is run for every edge out of every vertex
visited.

* * *

Pay close attention to the clever trick in analysing the running time of dfs_recurse. We
didn’t try to build up some complicated recursive formula about the running time of each
call to visit, instead we used mathematical reasoning to bound the total number of times that
line 8 could possibly be run during the entire execution. This is called aggregate analysis,
and we’ll see many more examples throughout the course.

10 5.4 Dijkstra’s algorithm

5.4. Dijkstra’s algorithm

In many applications it’s natural to use graphs where each edge is labelled with a cost, and
to look for paths with minimum cost. For example, suppose the graph’s edges represent road
segments, and each edge is labelled its travel time: how do we find the quickest route between
two locations?

This is called the shortest path problem. We’ll use the terms cost and distance inter-
changeably, and write ‘distance from v1 to v2’ to mean ‘the cost of a minimum-cost path
from v1 to v2’.

Here’s an illustration2. These pictures show two possible paths between the blob and
the cross. The left hand picture shows the number of hops from the blob; the right picture
shows the distance from the blob. Here, the darkest cells can’t be crossed, light cells cost 1
to cross, and darker cells cost 5.

number of hops distance

GENERAL IDEA

In breadth-first search, we visited vertices in order of how many hops they are from the start
vertex. Now, let’s visit vertices in order of distance from the start vertex. We’ll keep track
of a frontier of vertices that we’re waiting to explore (i.e. the vertices whose neighbours
we haven’t yet examined). We’ll keep the frontier vertices ordered by distance, and at each
iteration we’ll pick the next closest.

We might end up coming across a vertex multiple times, with different costs. If we’ve
never come across it, just add it to the frontier. If we’ve come across it previously and our
new path is shorter than the old path, then update its distance.

2Pictures taken from the Red Blob Games blog, http://www.redblobgames.com/pathfinding/a-star/
introduction.html

http://www.redblobgames.com/pathfinding/a-star/introduction.html
http://www.redblobgames.com/pathfinding/a-star/introduction.html

5.4 Dijkstra’s algorithm 11

PROBLEM STATEMENT

Given a directed graph where each edge is labelled with a cost ≥ 0, and a start vertex s, What goes wrong in
the algorithm below,
and in the proof, if
there are negative
costs? Try to work
it out yourself,
before reading the
answer in
Section 5.5.

compute the distance from s to every other vertex.

IMPLEMENTATION

This algorithm was invented in 1959 and is due to Dijkstra3 (1930–2002), an influential
pioneer of computer science.

Line 5 declares that toexplore is a PriorityQueue in which the key of an item v is See Section 4.3 for a
definition of
PriorityQueue. It
supports inserting
items, decreasing
the key of an item,
and extracting the
item with smallest
key.

v.distance. Line 11 iterates through all the vertices w that are neighbours of v, and retrieves
the cost of the edge v → w at the same time.

1 def di jkstra (g , s) :
2 for v in g . vert ices :
3 v . distance = ∞
4 s . distance = 0
5 toexplore = PriorityQueue ([s] , sortkey = lambda v : v . distance)
6
7 while not toexplore . isempty () :
8 v = toexplore .popmin()
9 # Assert : v . d istance i s the true shortes t d istance from s to v
10 # Assert : v i s never put back into toexplore
11 for (w, edgecost) in v . neighbours :
12 dist_w = v . distance + edgecost

3Dijkstra was an idiosyncratic character famous for his way with words. Some of his sayings: “The
question of whether Machines Can Think [. . .] is about as relevant as the question of whether Submarines
Can Swim.” And “If you want more effective programmers, you will discover that they should not waste their
time debugging, they should not introduce the bugs to start with.”

12 5.4 Dijkstra’s algorithm

13 i f dist_w < w. distance :
14 w. distance = dist_w
15 i f w in toexplore :
16 toexplore . decreasekey(w)
17 else :
18 toexplore .push(w)

Although we’ve called the variable v.distance, we really mean “shortest distance from s
to v that we’ve found so far”. It starts at∞ and it decreases as we find new and shorter paths
to v. Given the assertion on line 10, we could have coded this algorithm slightly differently:
we could put all nodes into the priority queue in line 5, and delete lines 15, 17, and 18. It
takes some work to prove the assertion...

ANALYSIS

Running Ɵme. The running time depends on how the PriorityQueue is implemented. Later in
the course, we’ll describe an implementation called the Fibonacci heap which for n items has
O(1) running time for both push() and decreasekey() and O(logn) running time for popmin().
Line 8 is run at most once per vertex (by the assertion on line 10), and lines 12–18 are run at
most once per edge. So Dijkstra has running time O(E + V logV), when implemented using
a Fibonacci heap.

Theorem (Correctness). The dijkstra algorithm terminates. When it does, for every vertex v,
the value v.distance it has computed is equal to the true distance from s to v. Furthermore,
the two assertions are true.

Proof (of Assertion 9). Suppose this assertion fails at some point in execution, and let v be
the vertex for which it first fails. Consider a shortest path from s to v. (This means thePay close attention

to whether you’re
dealing with
abstract
mathematical
statements (which
can be stated and
proved even without
an algorithm), or if
you’re reasoning
about program
execution.

Platonic mathematical object, not a computed variable.) Write this path as

s = u1 → · · · → uk = v

Let ui be the first vertex in this sequence which has not been popped from toexplore so far
at this point in execution (or, if they have all been popped, let ui = v). Then,

distance(s to v)

< v.distance since the assertion failed
≤ ui.distance since toexplore is a PriorityQueue which had both ui and v

≤ ui−1.distance + cost(ui−1 → ui) by lines 13–18 when ui−1 was popped
= distance(s to ui−1) + cost(ui−1 → ui) assertion didn’t fail at ui−1

≤ distance(s to v) since s→ · · ·ui−1 → ui is on a shortest path s to v.

This is a contradiction, therefore the premise (that Assertion 9 failed at some point in exe-
cution) is false.
Proof (of Assertion 10). Once a vertex v has been popped, Assertion 9 guarantees that
v.distance = distance(s to v). The only way that v could be pushed back into toexplore is if
we found a shorter path to v (on line 13) which is impossible.
Rest of proof. Since vertices can never be re-pushed into toexplore, the algorithm must
terminate. At termination, all the vertices that are reachable from s must have been visited,
and popped, and when they were popped they passed Assertion 9. They can’t have had
v.distance changed subsequently (since it can only ever decrease, and it’s impossible for it to
be less than the true minimum distance, since the algorithm only ever looks at legitimate
paths from s.) □

* * *

The proof technique was proof by induction. We start with an ordering (the order in which
vertices were popped during execution), we assume the result is true for all earlier vertices,

5.4 Dijkstra’s algorithm 13

and we prove it true for the next. For some graph algorithms it’s helpful to order differently,
e.g. by distance rather than time. Whenever you use this proof style, make sure you say
explicitly what your ordering is.

14 5.5 Bellman-Ford

5.5. Bellman-Ford
In some applications, we have graphs where some edge weights are negative. This is useful
when vertices represent states that an agent can be in, and edges represent actions that take
it from one state to another; some actions might have costs and others might have rewards.

We’ll write weight rather than cost of an edge, and minimum weight rather than distance
between two vertices, and minimal weight path rather than shortest path, since the word
‘distance’ suggests a positive number.

Example (Currency trading). Let vertices represent currencies. Suppose we can exchange £1 for
$1.25, £1 for 5.01 zł, and 1 zł for $0.27. If 1 unit of v1 can be exchanged for x units of v2,
we’ll put an edge from v1 to v2 with weight − logx.

The weight of the £→zł→$ path is − log 5.01−log 0.27 = − log(5.01∗0.27) = − log 1.35,
and the weight of the direct £→$ edge is − log 1.25. Because of the log, the path weight
corresponds to the net exchange rate, and because of the minus sign the minimal weight path
corresponds to the most favourable exchange rate.

Example (NegaƟve cycles). What’s the minimum weight from a to b? By going around b →
c→ d→ b again and again, the weight of the path goes down and down. This is referred to
as a negative weight cycle, and we’d say that the minimum weight from a to b is −∞.

a→ b: weight 1
a→ b→ c→ d→ b: weight 0
a→ b→ c→ d→ b→ c→ d→ b: weight -1

GENERAL IDEA

If we’ve found a path from s to u, and there is an edge u→ v, then we have a path from s to
v. If we store the minimum weight path we’ve found so far in the variable minweight, then
the obvious update is

if v.minweight > u.minweight + weight(u→ v) :

v.minweight = u.minweight + weight(u→ v)

This update rule is known as relaxing the edge u → v. Relaxation was at the heart of
Dijkstra’s algorithm (which furthermore only applied relaxation on u→ v once u.minweight
was the true distance).

The idea of the Bellman-Ford algorithm is simply to keep on applying this rule to all
edges in the graph, over and over again, updating “best weight from s to v found so far” if a
path via u gives a lower weight. The magic is that we only need to apply it a fixed number
of times.

PROBLEM STATEMENT

Given a directed graph where each edge is labelled with a weight, and a start vertex s, (i) if
the graph contains no negative-weight cycles reachable from s then for every vertex v compute
the minimum weight from s to v; (ii) otherwise report that there is a negative weight cycle
reachable from s.

5.5 Bellman-Ford 15

IMPLEMENTATION

In this code, lines 8 and 12 iterate over all edges in the graph, and c is the weight of the edge
u→ v. The assertion in line 10 refers to the true minimum weight among all paths from s to
v, which the algorithm doesn’t know yet; the assertion is just there to help us reason about
how the algorithm works, not something we can actually test during execution.

1 def bf(g , s) :
2 for v in g . vert ices :
3 v .minweight = ∞ # best estimate so fa r of minweight from s to v
4 s .minweight = 0
5
6 repeat len (g . vert ices)−1 times :
7 # re lax a l l the edges
8 for (u, v , c) in g. edges :
9 v .minweight = min(u.minweight + c , v .minweight)
10 # Assert v . minweight >= true minimum weight from s to v
11
12 for (u, v , c) in g . edges :
13 i f u .minweight + c < v .minweight :
14 throw ”Negative−weight cycle detected”

Lines 12–14 say, in effect, “If the answer we get after V − 1 rounds of relaxation is different
to the answer after V rounds, then there is a negative-weight cycle; and vice versa.”

ANALYSIS

The algorithm iterates over all the edges, and it repeats this V times, so the overall running
time is O(V E).

Theorem. The algorithm correctly solves the problem statement. In case (i) it terminates
successfully, and in case (ii) it throws an exception in line 14. Furthermore the assertion on
line 10 is true.

Proof (of assertion on line 10). Write w(v) for the true minimum weight among all paths
from s to v, with the convention that w(v) = −∞ if there is a path that includes a negative-
weight cycle. The algorithm only ever updates v.minweight when it has a valid path to v,
therefore the assertion is true.

Proof for case (i). Pick any vertex v, and consider a minimal-weight path from s to v. Let
the path be

s = u0 → u1 → · · · → uk = v.

Consider what happens in successive iterations of the main loop, lines 8–10.

• Initially, u0.minweight is correct, i.e. equal to w(s) which is 0.
• After one iteration, u1.minweight is correct. Why? If there were a lower-weight path

to u1, then the path we’ve got here couldn’t be a minimal-weight path to v.
• After two iterations, u2.minweight is correct.
• and so on...

We can assume (without loss of generality) that this path has no cycles—if it did, the cycle
would have weight ≥ 0 by assumption, so we could cut it out. So it has at most |V |−1 edges,
so after |V | − 1 iterations v.minweight is correct.

Thus, by the time we reach line 12, all vertices have the correct minweight, hence the
test on line 13 never goes on to line 14, i.e. the algorithm terminates without an exception.

Proof of (ii). Suppose there is a negative-weight cycle reachable from s,

s→ · · · → v0 → v1 → · · · → vk → v0

where
weight(v0 → v1) + · · ·+ weight(vk → v0) < 0.

16 5.5 Bellman-Ford

If the algorithm terminates without throwing an exception, then all these edges pass the test
in line 13, i.e.

v0.minweight + weight(v0 → v1) ≥ v1.minweight
v1.minweight + weight(v1 → v2) ≥ v2.minweight

...
vk.minweight + weight(vk → v0) ≥ v0.minweight

Putting all these equations together,

v0.minweight + weight(v0 → v1) + · · ·+ weight(vk → v0) ≥ v0.minweight

hence the cycle has weight ≥ 0. This contradicts the premise—so at least one of the edges
must fail the test in line 13, and so the exception will be thrown. □

5.6 Johnson’s algorithm 17

5.6. Johnson’s algorithm
What if we want to compute shortest paths between all pairs of vertices?

• Each router in the internet has to know, for every packet it might receive, where that
packet should be forwarded to. Path preferences in the Internet are based on link
costs set by internet service providers. Routers send messages to each other advertising
which destinations they can reach and at what cost. The Border Gateway Protocol
(BGP) specifies how they do this. It is a distributed path-finding algorithm, and it is
a much bigger challenge than computing paths on a single machine.

• The betweenness centrality of an edge is de-
fined to be the number of shortest paths that
use that edge, over all the shortest paths be-
tween all pairs of vertices in a graph. (If there
are n shortest paths between a pair of vertices,
count each of them as contributing 1/n.) The
betweenness centrality is a measure of how im-
portant that edge is, and it’s used for summa-
rizing the shape of e.g. a social network. To
compute it, we need shortest paths between all
pairs of vertices.

GENERAL IDEA

If all edge weights are ≥ 0, we can just run Dijkstra’s algorithm V times, once from each
vertex. This has running time

V ·O(E + V logV) = O(V E + V 2 logV).

If some edge weights are < 0, we could run Bellman-Ford from each vertex, which would
have running time

V ·O(V E) = O(V 2E).

But there is a clever trick, discovered by Donald Johnson in 1977, whereby we can run
Bellman-Ford once, then run Dijkstra once from each vertex, then run some cleanup for
every pair of vertices. The running time is therefore

O(V E) +O(V E + V 2 logV) +O(V 2) = O(V E + V 2 logV)

It’s as if we cope with negative edge weights for free!
The algorithm works by constructing an extra ‘helper’ graph, running a computation

in it, and applying the results of the computation to the original problem. This is a common
pattern, and we’ll see it again in Section 6.1.

PROBLEM STATEMENT

Given a directed graph where each edge is labelled with a weight, (i) if the graph contains
no negative-weight cycles then for every pair of vertices compute the weight of the minimal-
weight path between those vertices; (ii) if the graph contains a negative-weight cycle then
detect that this is so.

IMPLEMENTATION AND ANALYSIS

1. The helper graph. First build a helper graph, as shown below. Run Bellman-Ford on the
helper graph, and let the minimum weight from s to v be dv. (The direct path s → v has
weight 0, so obviously dv ≤ 0. But if there are negative-weight edges in the graph, some
vertices will have dv < 0.) If Bellman-Ford reports a negative-weight cycle, then stop.

18 5.6 Johnson’s algorithm

original graph, with
edge weights w(u→ v)

helper graph, with an
extra vertex s and
zero-weight edges
s→ v for all vertices v

a tweaked graph with
modified edge weights
w′(u→ v)

2. The tweaked graph. Define a tweaked graph which is like the original graph, but with
different edge weights:

w′(u→ v) = du + w(u→ v)− dv.

CLAIM: in this tweaked graph, every edge has w′(u → v) ≥ 0. PROOF: The relaxation
equation, applied to the helper graph, says that dv ≤ du+w(u→ v), therefore w′(u→ v) ≥ 0.

3. Dijkstra on the tweaked graph. Run Dijkstra’s algorithm V times on the tweaked graph,
once from each vertex. (We’ve ensured that the tweaked graph has edge weights ≥ 0, so
Dijkstra terminates correctly.) CLAIM: Minimum-weight paths in the tweaked graph are the
same as in the original graph. PROOF: Pick any two vertices p and q, and any path between
them

p = v0 → v1 → · · · → vk = q.

What weight does this path have, in the tweaked graph and in the original graph?This algebraic trick
is called a
telescoping sum. weight in tweaked graph

= dp + w(v0 → v1)− dv1 + dv1 + w(v1 → v2)− dv2 + · · ·
= dp + w(v0 → v1) + w(v1 → v2) + · · ·+ w(vk−1 → vk)− dq

= weight in original graph+ dp − dq.

Since dp − dq is the same for every path from p to q, the ranking of paths is the same in the
tweaked graph as in the original graph (though of course the weights are different).

4. Wrap up. We’ve just shown that

min weight
from p to q
in original graph

=
min weight
from p to q
in tweaked graph

− dp + dq

which solves the problem statement.

5.7 All-pairs shortest paths with matrices 19

5.7. All-pairs shortest paths with matrices
There is another algorithm to find shortest paths between all pairs of vertices, which is based
entirely on algebra with barely any thought about graphs. Its running time is O(V 3 logV).
This is worse than Johnson’s algorithm, but it’s very simple to implement. And it’s a nice
example of what you can do with clever notation, which is a good trick to have up your
sleeve.

GENERAL IDEA

The art of dynamic programming is figuring out how to express our problem in a way that
has easier subproblems. Sometimes, we can achieve this by turning our original problem into
something that seems harder. In this case,

Let M (ℓ) be a V × V matrix, where M
(ℓ)
ij is the minimum

weight among all paths from i to j that have ℓ or fewer edges.

We can write out a simple equation for M (ℓ) in terms of M (ℓ−1), and this leads directly to
an algorithm for computing M (ℓ). If we pick ℓ big enough (at least the maximum number of
edges in any shortest path) then we’ve solved the original problem.

PROBLEM STATEMENT

(Same as for Johnson’s algorithm.) Given a directed graph where each edge is labelled with
a weight, (i) if the graph contains no negative-weight cycles then for every pair of vertices
compute the weight of the minimal-weight path between those vertices; (ii) if the graph
contains a negative-weight cycle then detect that this is so.

IMPLEMENTATION

Let n = |V | be the number of edges, and define the n× n matrix W by

Wij =

0 if i = j

weight(i→ j) if there is an edge i→ j

∞ otherwise.

Then, thinking carefully through the definition of M (n), M (1) = W and The notation x ∧ y
means min(x, y).

M
(ℓ)
ij = M

(ℓ−1)
ij ∧

[(
M

(ℓ−1)
i1 +W1j

)
∧
(
M

(ℓ−1)
i2 +W2j

)
∧ · · · ∧

(
M

(ℓ−1)
in +Wnj

)]
=

(
M

(ℓ−1)
i1 +W1j

)
∧
(
M

(ℓ−1)
i2 +W2j

)
∧ · · · ∧

(
M

(ℓ−1)
in +Wnj

)
.

The first line expresses “To go from i to j in ≤ ℓ hops, you could either go in ≤ ℓ− 1 hops,
or you could go from i to some other node k in ≤ ℓ− 1 hops, then take the edge k → j.” The
second line is simple algebra, M (ℓ−1)

ij = M
(ℓ−1)
ij +Wjj because Wjj = 0.

This is just like regular matrix multiplication

[AB]ij = Ai1B1j +Ai2B2j + · · ·+AinBnj

except it uses + instead of multiplication and ∧ instead of addition. Let’s write it M (ℓ) =
M (ℓ−1) ⊗W . The full algorithm is like Bellman-Ford:

1 Let M (1) = W

2 Compute M (V−1) and M (V) , using M (ℓ) = M (ℓ−1) ⊗W

3 I f M (V−1) == M (V) :
4 return M (V−1) # th i s matrix cons i s t s of minimum weights
5 else :
6 throw ”negative weight cycle detected”

20 5.7 All-pairs shortest paths with matrices

ANALYSIS

Correctness. We’ve explained why M
(ℓ)
ij is the minimum weight among all paths of length

≤ ℓ. The proof that lines 3–6 are correct is almost identical to the proof for Bellman-Ford.

Running Ɵme. As with regular matrix multiplication, it takes V 3 operations to compute ⊗,
so the total running time is O(V 4). There is a cunning trick to reduce the running time.
Let’s illustrate with V = 10. Rather than applying ⊗ 8 times to compute M (9), we can
repeatedly square:

M (1) = W

M (2) = M (1) ⊗M (1)

M (4) = M (2) ⊗M (2)

M (8) = M (4) ⊗M (4)

M (16) = M (8) ⊗M (8)

= M (9) if there are no negative-weight cycles.

This trick gives overall running time O(V 3 logV).

5.8 Prim’s algorithm 21

5.8. Prim’s algorithm
Given a connected undirected graph with edge weights, a minimum spanning tree (MST) is See Section 5.1 for

the definition of
‘connect’ and ‘tree’.

a tree that ‘spans’ the graph i.e. connects all the vertices, and which has minimum weight
among all spanning trees. (The weight of a tree is just the sum of the weights of its edges.)

undirected graph
with edge weights

spanning tree of
weight 6

spanning tree of
weight 6

spanning tree of
weight 7

APPLICATIONS

• The MST problem was first posed and solved by the Czech mathematician Borůvka
in 1926, motivated by a network planning problem. His friend, an employee of the
West Moravian Powerplants company, put to him the question: if you have to build
an electrical power grid to connect a given set of locations, and you know the costs of
running cabling between locations, what is the cheapest power grid to build?

• Minimal spanning trees are a useful
tool for exploratory data analysis. In
this illustration from bioinformatics4,
each vertex is a genotype of Staphylo-
coccus aureus, and the size shows the
prevalance of that genotype in the
study sample. Let the there be edges
between all genotypes, weighted ac-
cording to edit distance. The illus-
tration shows the MST, after some
additional high-weight edges are re-
moved.

The ‘edit distance’
between two strings
is a measure of how
different they are.
See Section 1.2.1.

GENERAL IDEA

We’ll build up the MST greedily. Suppose we’ve already built a tree containing some of the
vertices (start it with just a single vertex, chosen arbitrarily). Look at all the edges between
the tree we’ve built so far and the other vertices that aren’t part of the tree, pick the edge
of lowest weight among these and add it to the tree, then repeat.

This greedy algorithm will certainly give us a spanning tree. To prove that it’s a MST
takes some more thought.

a tree build up
with four edges so
far

three candidate
vertices to add
next

pick the cheapest
of the four
connecting edges
and add it to the
tree

4From Multiple-Locus Variable Number Tandem Repeat Analysis of Staphylococcus Aureus, Schouls et al.,
PLoS ONE 2009.

22 5.8 Prim’s algorithm

PROBLEM STATEMENT

Given a connected undirected graph with edge weights, construct an MST.

IMPLEMENTATION

We don’t need to recompute the nearby vertices every iteration. Instead we can use a
structure very similar to Dijkstra’s algorithm for shortest paths: store a ‘frontier’ of vertices
that are neighbours of the tree, and update it each iteration. This algorithm is due to
Jarnik (1930), and independently to Prim (1957) and Dijkstra (1959). When the algorithm
terminates, an MST is formed from the edges

{
v − v.come_from : v ∈ V, v ̸= s

}
.

Compared to Dijkstra’s algorithm, we need some extra lines to keep track of the tree
(labelled +), and two modified lines (labelled ×) because here we’re interested in ‘distance
from the tree’ whereas Dijkstra is interested in ‘distance from the start node’. The start
vertex s can be chosen arbitrarily.

1 def prim(g, s) :
2 for v in g. vert ices :
3 v . distance = ∞
4 + v . in_tree = False
5 + s .come_from = None
6 s . distance = 0
7 toexplore = PriorityQueue ([s] , lambda v : v . distance)
8
9 while not toexplore . isempty () :
10 v = toexplore .popmin()
11 + v . in_tree = True
12 # Let t be the graph made of v e r t i c e s with in_tree=True ,
13 # and edges {w−−w. come_from , fo r w in g . v e r t i c e s excluding s }.
14 # Assert : t i s part of an MST for g
15 for (w, edgeweight) in v . neighbours :
16 × i f (not w. in_tree) and edgeweight < w. distance :
17 × w. distance = edgeweight
18 + w.come_from = v
19 i f w in toexplore :
20 toexplore . decreasekey(w)
21 else :
22 toexplore .push(w)

ANALYSIS

Running Ɵme. It’s easy to check that Prim’s algorithm terminates. It is nearly identical to
Dijkstra’s algorithm, and exactly the same analysis of running time applies: is O(E+V logV),
assuming the priority queue is implemented using a Fibonacci heap.

Correctness. To prove that Prim’s algorithm does indeed find an MST (and for many other
problems to do with constructing networks on top of graphs) it’s helpful to make a definition.
A cut of a graph is an assignment of its vertices into two non-empty sets, and an edge is said
to cross the cut if its two ends are in different sets.

5.8 Prim’s algorithm 23

an undirected
graph with edge
weights

a cut into {a, b}
and {c, d}, with
two edges crossing
the cut

a cut into {a} and
{b, c, d}, with one
edge crossing the
cut

Prim’s algorithm builds up a tree, adding edges greedily. By the following theorem, Prim’s
algorithm produces an MST.

Theorem. If we have a tree which is part of an MST, and we add to it the min-weight edge
across the cut separating the tree from the other vertices, then the result is still part of an
MST.

This theorem is
pure maths, not a
statement about
program execution.

Proof. Let f be the tree, and let f̄ be an MST that f is part of (the condition of the theorem
requires that such an f̄ exists). Let e be the a minimum weight edge across the cut. We
want to show that there is an MST that includes f ∪ {e}. If f̄ includes edge e, we are done.

the tree f a MST f̄ a different MST f̂

Suppose then that f̄ doesn’t contain e. Let u and v be the vertices at either end of e, and
consider the path in f̄ between u and v. (There must be such a path, since f̄ is a spanning
tree, i.e. it connects all the vertices.) This path must cross the cut (since its ends are on
different sides of the cut). Let e′ be an edge in the path that crosses the cut. Now, let f̂ be
like f̄ but with e added and e′ removed.

It’s easy to see that weight(f̂) ≤ weight(f̄): e is a min-weight edge in the cut, so
weight(e) ≤ weight(e′). CLAIM: f̂ is also a spanning tree. If this claim is true, then f̂ is an
MST including f ∪ {e}, and the theorem is proved.

PROOF OF CLAIM. This is left to an example sheet. □

24 5.9 Kruskal’s algorithm

5.9. Kruskal’s algorithm
Another algorithm for finding a minimum spanning tree is due to Kruskal (1956). It makes
the same assumptions as Prim’s algorithm. Its running time is worse. It does however
produce intermediate states which can be useful.

GENERAL IDEA

Kruskal’s algorithm builds up the MST by agglomerating smaller subtrees together. AtKruskal’s algorithm
maintains a ‘forest’.
Look back at
Section 5.1 for the
definition.

each stage, we’ve built up some fragments of the MST. The algorithm greedily chooses two
fragments to join together, by picking the lowest-weight edge that will join two fragments.

four tree fragments
have been found so far,
including two trees
that each consist of a
single vertex

five candidate edges
that would join two
fragments

pick the cheapest of
the five candidate
edges, and add it,
thereby joining two
fragments

APPLICATION

If we draw the tree fragments another way, the operation of Kruskal’s algorithm looks like
clustering, and its intermediate stages correspond to a classication tree:

an undirected graph
with edge weights

the MST found by
Kruskal’s algorithm

draw each fragment as
a subtree, and draw
arcs when two
fragments are joined

This can be used for image segmentation. Here we’ve started with an image, put vertices on
a hexagonal grid, added edges between adjacent vertices, given low weight to edges where the
vertices have similar colour and brightness, run Kruskal’s algorithm to find an MST, split
the tree into clusters by removing a few of the final edges, and coloured vertices by which
cluster they belong to.

PROBLEM STATEMENT

(Same as for Prim’s algorithm.) Given a connected undirected graph with edge weights,
construct an MST.

5.9 Kruskal’s algorithm 25

IMPLEMENTATION

This code uses a data structure called a disjoint set. This is used to keep track of a collection
of disjoint sets (sets with no common elements), also known as a partition. We’ll learn
more about it in Section 7.4. Here, we’re using it to keep track of which vertices are in which
fragment. Initially (lines 4–5) every vertex is in its own fragment. As the algorithm proceeds,
it considers each edge in turn, and looks up the vertex-sets containing the start and the end
of the edge. If they correspond to different fragments, it’s safe to join the fragments, i.e.
merge the two sets (line 13).

Lines 6 and 8 are used to iterate through all the edges in the graph in order of edge
weight, lowest edge weight first.

1 def kruskal (g) :
2 tree_edges = []
3 part it ion = DisjointSet ()
4 for v in g . vert ices :
5 partit ion . addsingleton(v)
6 edges = sorted(g. edges , sortkey = lambda u,v , edgeweight : edgeweight)
7
8 for (u, v , edgeweight) in edges :
9 p = partit ion . getsetwith(u)
10 q = partit ion . getsetwith(v)
11 i f p != q:
12 tree_edges .append((u, v))
13 partit ion .merge(p, q)
14 # Let f be the fo r e s t made up of edges in tree_edges .
15 # Assert : f i s part of an MST
16 # Assert : f has one connected component per set in pa r t i t i on
17
18 return tree_edges

ANALYSIS

Running Ɵme. The running time of Kruskal’s algorithm depends on how DisjointSet is im-
plemented. We’ll see in Section 7.4 that all the operations on DisjointSet can be done in
O(1) time5. The total cost is O(E logE) for the sort on line 6; O(E) for iterating over edges
in lines 8–11; and O(V) for lines 12–13, since there can be at most V merges. So the total
running time is O(E logE).

The maximum possible number of edges in an undirected graph is V (V −1)/2, and the
minimum number of edges in a connected graph is V − 1, so logE = Θ(logV), and so the
running time can be written O(E logV).

Correctness. To prove that Kruskal’s algorithm finds an MST, we apply the theorem used
for the proof of Prim’s algorithm, as follows. When the algorithm merges fragments p and
q, consider the cut of all vertices into p versus not-p; the algorithm picks a minimum-weight
edge across this cut, and so by the theorem we’ve still got an MST.

5This is a white lie. The actual complexity is O(αn) for a DisjointSet with n elements, where αn is a
function that grows extraordinarily slowly.

26 5.10 Topological sort

5.10. Topological sort
A directed graph can be used to represent ordering or preferences. We might then like toThis problem is in

the same general
category as finding
a minimal spanning
tree: they are all
problems of
discovering
organisation within
a graph.

find a total ordering (also known as a linear ordering or complete ranking) that’s compatible.

Here’s a simple graph and two possible total orderings.

Does there exist a total order? If the graph has cycles, then no.

Recall the definition of a directed acyclic graph (DAG). A cycle is a path from a vertex backDon’t get muddled
by the word
‘acyclic’. A DAG
doesn’t have to be a
tree, and it might
have multiple paths
between vertices.
The top row of
graphs on this page
are all DAGs.

to itself, following the edge directions, and a directed graph is called acyclic if it has no cycles.
We will see that, in a DAG, a total ordering can always be found.

APPLICATIONS

• Deep learning systems like TensorFlow involve writing out the learning task as a col-
lection of computational steps, each of which depends on the answers of some of the
preceding steps. Write v1 → v2 to mean “Step v2 depends on the output of v1.” If
the computation graph is a DAG, then we can find an order in which to run all the
computational steps. If it’s not a DAG, then there is a circular dependency.

an image classifier,
implemented with a deep
neural network; the
magic is finding good link
weights

a DAG computational
graph depicting how the
classifier operates

a DAG computational
graph for computing how
the weights should be
updated, based on a
training dataset of
pre-labelled images

• The river Cam isn’t wide enough for a conventional race between all the rowing boats
that want to compete. Instead, the Bumps evolved, as a way of ranking boats based
on pairwise comparisons. The competition takes place over four days. On the first
day, the boats start out spaced evenly along a stretch of the river, in order of last
year’s ranking. They start rowing all at the same time, and each boat tries to catch
up—bump—the boat ahead. If this happens, then both boats move to the side of the
river and withdraw from this day’s race, and they switch their starting positions for
the next day’s race. Four days of the Bumps give us a set of pairwise comparisons: if
boat v1 bumps v2, then we know v1 is faster than v2. Here are the men’s bumps from
May 2016. What are the total orderings consistent with this data, if any?

5.10 Topological sort 27

If the pairwise comparisons don’t form a DAG, then it’s impossible to find a total
order—but we can still look for a order that’s mostly consistent. There are many
applications in machine learning with this flavour, where we think there is some hidden
order or structure which we have to reconstruct based on noisy data.

GENERAL IDEA

Recall depth-first search. After reaching a vertex v, it visits all v’s children and other
descendants. We want v to appear earlier in the ordering than all its descendants. So,
can we use depth-first search to find a total ordering?

Here again is the depth-first search algorithm. This is dfs_recurse from Section 5.3, but
modified so that it visits the entire graph (rather than just the part reachable from some
given start vertex).

1 def dfs_recurse_all (g) :
2 for v in g . vert ices :
3 v . v i s i ted = False
4 for v in g . vert ices :
5 i f not v . v i s i ted :
6 v i s i t (v) # sta r t dfs from v
7
8 def v i s i t (v) :
9 v . v i s i ted = True
10 for w in v . neighbours :
11 i f not w. v is i ted :
12 v i s i t (w)

A standard way to visualise program execution is with a flame chart. Time goes on the
horizontal axis, each function call is shown as a rectangle, and if function f calls function g
then g is drawn above g. Here is a flame chart for the graph at the beginning of this section.

If we order vertices by when the algorithm first visits them, it turns out not to be a total
order. A better guess is to order vertices by when visit(v) returns.

PROBLEM STATEMENT

Given a directed acyclic graph (DAG), return a total ordering of all its vertices, such that if
v1 → v2 then v1 appears before v2 in the total order.

28 5.10 Topological sort

ALGORITHM

This algorithm is due to Knuth. It is based on dfs_recurse_all, with some extra lines (labelled
+). These extra lines build up a linked list for the rankings, as the algorithm visits and leaves
each vertex.

1 def toposort(g) :
2 for v in g. vert ices :
3 v . v i s i ted = False
4 # v . colour = ’ white ’
5 + totalorder = [] # an empty l i s t
6 for v in g. vert ices :
7 i f not v . v i s i ted :
8 v i s i t (v , totalorder)
9 + return totalorder
10
11 def v i s i t (v , totalorder) :
12 v . v i s i ted = True
13 # v . colour = ’ grey ’
14 for w in v . neighbours :
15 i f not w. v is i ted :
16 v i s i t (w, totalorder)
17 + totalorder . prepend(v)
18 # v . colour = ’ black ’

This listing also has some commented lines which aren’t part of the algorithm itself, but which
are helpful for arguing that the algorithm is correct. They’re a bit like assert statements:
they’re there for our understanding of the algorithm, not for its execution.

ANALYSIS

Running Ɵme. We haven’t changed anything substantial from dfs_recurse so the analysis in
Section 5.3 still applies: the running time is O(V + E).

Theorem (Correctness). The toposort algorithm terminates and returns totalorder which solves
the problem statement.

Proof. Pick any edge v1 → v2. We want to show that v1 appears before v2 in totalorder. It’s
easy to see that every vertex is visited exactly once, and on that visit (1) it’s coloured grey,
(2) some stuff happens, (3) it’s coloured black. Let’s consider the instant when v1 is coloured
grey. At this instant, there are three possibilities for v2:

• v2 is black. If this is so, then v2 has already been prepended to the list, so v1 will be
prepended after v2, so v1 appears before v2.

• v2 is white. If this is so, then v2 hasn’t yet been visited, therefore we’ll call visit(v2) at
some point during the execution of lines 14–16 in visit(v1). This call to visit(v2) must
finish before returning to the execution of visit(v1), so v2 gets prepended earlier and v1
gets prepended later, so v1 appears before v2.

• v2 is grey. If this is so, then there was an earlier call to visit(v2) which we’re currently
inside. The call stack corresponds to a path in the graph from v2 to v1. But we’ve
picked an edge v1 → v2, so there is a cycle, which is impossible in a DAG. This is a
contradiction, so it’s impossible that v2 is grey. □

5.11 Graphs and big data 29

5.11. Graphs and big data
FACEBOOK

Facebook sees the world as a graph of objects and associations, their social graph6:

Facebook represents this internally with classic database tables:

id otype attributes
105 USER {name: Alice}
244 USER {name: Bob}
379 USER {name: Cathy}
471 USER {name: David}
534 LOCATION {name: Golden Gate Bridge, loc: (38.9,-77.04)}
632 CHECKIN
771 COMMENT {text: Wish we were there!}

from_id to_id edge_type
105 244 FRIEND
105 379 FRIEND
105 632 AUTHORED
244 105 FRIEND
244 379 FRIEND
244 632 TAGGED_AT

Why not use an adjacency list? Some possible reasons:
• Backups! Years of bitter experience have gone into today’s databases, and they are

very good and reliable for mundane tasks like backing up your data. The data is too
big to fit in memory, and database tables are a straightforward way to store it on disk.

• Database tables can be indexed on many keys. If I have a query like “Find all edges to
or from user 379 with timestamp no older than 24 hours”, and if the edges table has
indexes for columns from_id and to_id and timestamp, then the query can be answered
quickly. In an adjacency list representation, we’d just have to trawl through all the
edges.
When you visit your home page, Facebook runs many queries on its social graph to

populate the page. It needs to ensure that the common queries run very quickly, and so it
has put considerable effort into indexing and caching.

Twitter also has a huge graph, with vertices for tweets and users, and edges for @men-
tions and follows. Like Facebook, it has optimized its graph database to give rapid answers
to ‘broad but shallow’ queries on the graph, such as “Who is following both the tweeter and
the @mentioned user?”

6TAO: Facebook’s Distributed Data Store for the Social Graph, Bronson et al., Usenix 2013

30 5.11 Graphs and big data

GOOGLE, SPARK

Google first came to fame because they had a better search engine than anyone else. The
key idea, by Brin and Page when they were PhD students at Stanford, was this: a webpage
is likely to be ‘good’ if other ‘good’ webpages link to it. They built a search engine which
ranked results not just by how well they matched the search terms, but also by the ‘goodness’
of the pages. They use the word PageRank rather than goodness, and the equation they used
to define it is

PRv =
1− δ

|V |
+ δ

∑
u : u→v

PRu

|u.neighbours|

where δ = 0.85 is put in as a ‘dampening factor’ that ensures the equations have a well-
behaved unique solution.

How do we solve an equation like this, on a giant graph with one vertex for every
webpage? Google said in 2013 that it indexes more than 30 trillion unique webpages, so the
graph needs a cluster of machines to store it, and the computation has to be run on the
cluster.

A popular platform for distributed computation (as of writing these notes in 2018) is
called Spark7. It has a library that is tailor-made for distributed computation over graphs,
and friendly tutorials.

KNOWLEDGE GRAPHS AND GRAPH DATABASES

A knowledge graph is a graph designed to capture facts about real-world objects and their
relationships.

Knowledge graphs are used by
Alexa and Google Assistant and
so on, to hopefully be able to
answer questions like “In what
cities can I see art by Leonardo
da Vinci?”.

When the Panama Papers
dataset was leaked8, uncovering
a complex network of offshore
trusts, the journalists who got
hold of it used a graph database
called neo4j to help them under-
stand it. You have learnt (or
will learn) more about neo4j in
IA/IB Databases.

7http://spark.apache.org/docs/latest/graphx-programming-guide.html#pagerank
8https://offshoreleaks.icij.org/pages/database

http://spark.apache.org/docs/latest/graphx-programming-guide.html#pagerank
https://offshoreleaks.icij.org/pages/database

6. Networks and flows

6.1 Matchings . 32
6.2 Max-flow min-cut theorem . 35
6.3 Ford-Fulkerson algorithm . 38

32 6.1 Matchings

6.1. Matchings
A bipartite graph is one in which the vertices are split into two sets, and all the edges have
one end in one set and the other end in the other set. We’ll assume the graph is undirected.
For example

• Vertices for medical school graduates, vertices for hospitals offering residency training,
and edges for each application the medic has made to a hospital.

• Vertices for Yelp users, vertices for restaurants, and edges labelled with weights to
indicate the user’s rating of the restaurant.

A matching in a bipartite graph is a selection of some or all of graph’s edges, such that no
vertex is connected to more than one edge in this selection. For example, kidney transplant
donors and recipients, with edges to indicate compatibility. The size of a matching is the
number of edges it contains. A maximum matching is one with the largest possible size.
There may be several maximum matchings.

APPLICATIONS

Example (Internet switches). The silicon in the heart of an Internet router has the job of for-
warding packets from inputs to outputs. Every clock tick, it can take at most one packet
from each input, and it can send at most one packet to each output—in other words, it
selects a matching from inputs to outputs. It turns out to be useful to weight the edges by
the number of packets waiting to be sent, and to pick a matching with the highest possible
total weight.

6.1 Matchings 33

Example (Taxi scheduling). A company like Uber has to match taxis to passengers. When there
are passengers who have made requests, which taxis should they get9? This is an example of
an online matching problem. (As opposed to the offline matching problem, in which all the
vertices and edges are known in advance.) In online problems, bad choices will have kock-on
effects.

The simple greedy strategy ‘pick the nearest available taxi as soon as a request is made’
might lead to shortages on the perimeter of the network, or to imbalanced workloads among
drivers. We could turn it into an offline problem by batching, for example ‘once a minute,
put edges from each waiting passenger to the ten nearest available vehicles, and look for a
maximum matching’.

IMPLEMENTATION

An good way to find a maximum matching in a bipartite graph is to turn it into what looks
like a harder problem, the maximum flow problem. Read Sections 6.2 and 6.3 now. The
translation is as follows:

1. start with a bipartite graph
2. add a source s with edges to each left-hand vertex; add a sink with edges from each

right-hand vertex; turn the original edges into directed edges from left to right; give all
edges capacity 1

3. run the Ford-Fulkerson algorithm to find a maximum flow from s to t

4. interpret that flow as a matching

ANALYSIS

It’s easy to not even notice that there’s something that needs to be proved here. It’s actually
a rather subtle argument. We’re relying on an equivalence between ‘solution to matching
problem’ and ‘solution to flow problem’, and we have to show that the equivalence goes both
ways. A question on Example Sheet 6 requires the same proof style, to relate flow problems
to London tube disruptions.

Theorem. 1. The maximum matching algorithm described above terminates.
2. It produces a matching.
3. There is no matching with larger size (i.e., it produces a maximum matching.)

Proof (of 1). The lemma in Section 6.3 on page 40 tells us that the Ford-Fulkerson algorithm
terminates, since all edge capacities are integer.

Proof (of 2). Write f∗ for the flow produced by Ford-Fulkerson. The lemma tells us further-
more that f∗ is integer on all edges. Since the edge capacities are all 1, the flow must be 0

9Figure elements from Randall Munroe, https://what-if.xkcd.com/9/ and https://what-if.xkcd.com/
93/

https://what-if.xkcd.com/9/
https://what-if.xkcd.com/93/
https://what-if.xkcd.com/93/

34 6.1 Matchings

or 1 on all edges. Translate f∗ into a matching m∗, by simply selecting all the edges in the
original bipartite graph that got f∗ = 1. The capacity constraints on edges from s means
that each left-hand vertex has either 0 or 1 flow coming in, so it must have 0 or 1 flow going
out, therefore it is connected to at most one edge in m∗. Similarly, each right-hand vertex is
connected to at most one edge in m∗. Therefore m∗ is a matching.

Proof (of 3). Consider any other matching m. We can translate m into a flow f , in the
obvious way. The translation between flows and matchings means that

size(m) = value(f), size(m∗) = value(f∗).

We know that f∗ is a maximum flow, therefore

value(f) ≤ value(f∗) =⇒ size(m) ≤ size(m∗)

Hence m∗ is a maximum matching. □

6.2 Max-flow min-cut theorem 35

6.2. Max-flow min-cut theorem
To describe a transportation network, we can use a directed graph with edge weights: vertices
for the junctions, edges for the roads or railway links or water pipes or electrical cables,
whatever it may be that is being transported. An interesting question is: how much stuff
can be carried by this network, and what flow achieves this?

* * *

Consider a directed graph. Let each edge have a label c(u→ v) > 0 called the capacity. Let
there be a source vertex s, and a sink vertex t. A flow is a set of edge labels f(u→ v) such It’s easy to

generalise to
multiple sources
and sinks, rather
harder to generalise
to multiple types of
stuff.

that

0 ≤ f(u→ v) ≤ c(u→ v) on every edge

and ∑
u: u→v

f(u→ v) =
∑

w: v→w

f(v → w) at all vertices v ∈ V \ {s, t}.

The second equation is called flow conservation, and it says that as much stuff comes in as
goes out. The value of a flow is the net flow out of s,

value(f) =
∑

u: s→u

f(s→ u)−
∑

u: u→s

f(u→ s).

(It’s easy to prove that the net flow out of s must be equal to the net flow into t. See Example
Sheet 6.) A cut is a partition of the vertices into two sets, V = S ∪ S̄, with s ∈ S and t ∈ S̄.
The capacity of a cut is

capacity(S, S̄) =
∑

u∈S, v∈S̄ :
u→v

c(u→ v).

In this section we will analyse the mathematical properties of flows and cuts. In Section 6.3
we will study an algorithm for computing flows.

A flow of value 12, and a cut
of capacity 37

ANALYSIS

Theorem (Max-flow min-cut theorem). For any flow f and any cut (S, S̄),

value(f) ≤ capacity(S, S̄).

We could exhaustively enumerate all possible cuts to find the minimum possible value on the
right hand side, and this would give an upper bound on the value of any possible flow. Thus,

maximum possible flow value ≤ minimum cut capacity.

Is it possible to achieve this bound? It is, and the most natural proof is via a flow-finding
algorithm, which we’ll study in Section 6.3.

36 6.2 Max-flow min-cut theorem

Proof. To simplify notation in this proof, we’ll extend f and c to all pairs of vertices: if there
is no edge u→ v, let f(u→ v) = c(u→ v) = 0.

value(f) =
∑
u

f(s→ u)−
∑
u

f(u→ s) by definition of flow value

=
∑
v∈S

(∑
u

f(v → u)−
∑
u

f(u→ v)

)
by flow conservation

(the term in brackets is zero for v ̸= s)

=
∑
v∈S

∑
u∈S

f(v → u) +
∑
v∈S

∑
u̸∈S

f(v → u)

−
∑
v∈S

∑
u∈S

f(u→ v)−
∑
v∈S

∑
u̸∈S

f(u→ v)

(splitting the sum over u into two sums, u ∈ S and u ̸∈ S)

=
∑
v∈S

∑
u̸∈S

f(v → u)−
∑
v∈S

∑
u̸∈S

f(u→ v) by ‘telescoping’ the sum

≤
∑
v∈S

∑
u̸∈S

f(v → u) since f ≥ 0 (1)

≤
∑
v∈S

∑
u̸∈S

c(v → u) since f ≤ c (2)

= capacity(S, S̄) by definition of cut capacity.

This completes the proof. □

APPLICATION

We’ve already seen how a matching problem can be turned into a flow problem (and then
solved!) Now here is a pair of flow problems10 that inspired the algorithm we’ll describe
shortly.

The Russian applied mathematician A.N.Tolstoy was the first to formalize the flow
problem. He was interested in the problem of shipping cement, salt, etc. over the rail
network. Formally, he posed the problem “Given a graph with edge capacities, and a list
of source vertices and their supply capacities, and a list of destination vertices and their
demands, find a flow that meets the demands.”

From Methods of find-
ing the minimum totoal
kilometrage in cargo-
transportation planning in
space, A.N.Tolstoy, 1930.

In this illustration, the cir-
cles mark sources and sinks
for cargo, from Omsk in the
north to Tashkent in the
south.

10For further reading, see On the history of the transportation and maximum flow problems by Alexander
Schrijver, http://homepages.cwi.nl/~lex/files/histtrpclean.pdf; and Flows in railway optimization by
the same author, http://homepages.cwi.nl/~lex/files/flows_in_ro.pdf.

http://homepages.cwi.nl/~lex/files/histtrpclean.pdf
http://homepages.cwi.nl/~lex/files/flows_in_ro.pdf

6.2 Max-flow min-cut theorem 37

The US military was also interested in flow networks during the cold war. If the Soviets
were to attempt a land invasion of Western Europe through East Germany, they’d need to
transport fuel to the front line. Given their rail network, and the locations and capacities
of fuel refineries, how much could they transport? More importantly, which rail links should
the US Air Force strike and how much would this impair the Soviet transport capacity?

From Fundamentals of a method for evaluat-
ing rail net capacities, T.E. Harris and F.S.
Ross, 1955, a report by the RAND Corpo-
ration for the US Air Force (declassified by
the Pentagon in 1999).

38 6.3 Ford-Fulkerson algorithm

6.3. Ford-Fulkerson algorithm
PROBLEM STATEMENT

Given a weighted directed graph g with a source s and a sink t, find a flow from s to t with
maximum value (also called a maximum flow).

GENERAL IDEA

An obvious place to start is with a simple greedy algorithm: keep on pushing as much flow
as we can, starting from s and going to its neighbours, then their neighbours, and so on.

1 start with flow = 0
2 while True :
3 l e t S = {s}
4 # bui ld up S by adding neighbours to which we can push more flow
5 while there i s v ∈ S , w ̸∈ S with f(v → w) < c(v → w) :
6 add w to S
7 # add flow i f poss ib le , using S as a guide
8 i f S includes the sink t :
9 pick any path from s to t in S
10 add as much flow as we can on this path
11 (this path i s cal led the ’augmenting path ’)
12 else :
13 break

This greedy algorithm found a flow of size 12, then it finished. But we can easily see a flow
of size 17 (10 on the top path, 7 on the bottom path). It turns out there is a very simple
modification to line 5, to allow the algorithm to reassign flows to ‘undo’ a mistake.

6.3 Ford-Fulkerson algorithm 39

4 # bui ld up S by adding neighbours to which we can send more flow
5 while there i s v ∈ S , w ̸∈ S with f(v → w) < c(v → w) or f(w → v) > 0 :
6 add w to S

Here’s how the algorithm proceeds, with this modification. It first adds v to S, since the
edge s → v is under capacity. Line 5 then sees that f(w → v) > 0, and so it adds w to
S, meaning ‘I could reduce the flow w → v, so in effect I can push more flow to w.’ The
augmenting path now includes an ‘antisense’ edge, going against the flow, and line 10 has to
be interpreted carefully: we should decrease the flow on that edge.

It’s important to understand why this is a valid step. Mathematically speaking, we
need to prove that after adding flow on the augmenting path, we still have a valid flow i.e. a
flow that satisfies the flow conservation equation. To help you build your intuition, Example
Sheet 6 asks you to prove it.

In this example network, our clever-greedy algorithm managed to find a maximum flow. We
still need to justify why it works for any network (if indeed it does).

IMPLEMENTATION

1 def ford_fulkerson(g, s , t) :
2 # l e t f be a flow , i n i t i a l l y empty
3 for u→v in g. edges :
4 f (u→v) = 0
5 # Repeatedly f ind an augmenting path and add flow to i t
6 while True :
7 S = Set ([s]) # the set of v e r t i c e s to which we can increase flow
8 while there are vert ices v∈S, w̸∈S with f (v→w)<c(v→w) or f (w→v)>0:
9 S.add(w)
10 i f t in S:
11 pick any path p from s to t made up of pairs (v ,w) from l ine 7
12 write p as s = v0 , v1 , v2 , . . . , vk = t
13 δ = ∞ # amount by which we’ l l augment the flow
14 for each edge (vi ,vi+1) along p:
15 i f vi→vi+1 i s an edge of g :
16 δ = min(c(vi→vi+1) − f (vi→vi+1) , δ)
17 else vi←vi+1 must be an edge of g :
18 δ = min(f (vi+1→vi) , δ)
19 # asse r t : δ > 0
20 for each edge (vi ,vi+1) along p:
21 i f vi→vi+1 i s an edge of g :

40 6.3 Ford-Fulkerson algorithm

22 f (vi → vi+1) = f (vi→vi+1) + δ
23 else vi←vi+1 must be an edge of g :
24 f (vi+1→vi) = f (vi+1→vi) − δ
25 # asse r t : f i s s t i l l a f low (according to defn . in Section 6.2)
26 else :
27 break # f in i shed −− can ’ t add any more flow

This pseudocode doesn’t tell us how to choose the path in line 11. One sensible idea is ‘pick
the shortest path’, and this version is called the Edmonds–Karp algorithm. Another sensible
idea is ‘pick the path that makes δ as large as possible’, also due to Edmonds and Karp.

ANALYSIS OF RUNNING TIME

Be scared of the while loop in line 6: how can we be sure it will terminate? In fact, there
are simple graphs with irrational capacities where the algorithm does not terminate. On the
other hand,

Lemma. If all capacities are integers then the algorithm terminates, and the resulting flow on
each edge is an integer.

Proof. Initially, the flow on each edge is 0, i.e. integer. At each execution of lines 13–18,
we start with integer capacities and integer flow sizes, so we obtain δ an integer ≥ 0. It’s
not hard to prove the assertion on line 19, i.e. that δ > 0. Therefore the total flow has
increased by an integer after lines 20–24. The value of the flow can never exceed the sum of
all capacities, so the algorithm must terminate. □

Now let’s analyse running time, under the assumption that capacities are integer. We
execute the while loop at most f∗ times, where f∗ is the value of maximum flow. We can
build the set S and find a path using breadth first search or depth first search, so lines 7–11
can be accomplished in running time O(V + E). Lines 13–24 involve some operations per
edge of the augmenting path, which is O(V) since the path is of length ≤ V . Thus the total
running time is O

(
(E+V)f∗). There’s no point including the vertices that can’t be reached

from s, so we might as well assume that all vertices can be reached from s, so E ≥ V − 1
and the running time can be written O(Ef∗).

It is unsatisfactory that the running time we found depends on the values in the input
data (via f∗) rather than just the size of the data. This is unfortunately a common feature
of many optimization algorithms, and of machine learning algorithms.

The Edmonds–Karp version of the algorithm can be shown to have running time
O(E2V).

ANALYSIS OF CORRECTNESS

The assertion on line 25, namely that the algorithm does indeed produce a flow, is an exercise
on Example Sheet 6. Does it produce a maximum flow?

Theorem. If the algorithm terminates, and f∗ is the final flow it produces, then

1. the value of f∗ is equal to the capacity of the cut found in lines 7–9;
2. f∗ is a maximum flow.

Proof (of 1). Let (S, S̄) be the cut. By the condition on line 8, f∗(w → v) = 0 for all v ∈ S,
w ̸∈ S, so inequality (1) on page 36 is an equality. By the same condition, f∗(v → w) =
c(v → w) for all v ∈ S, w ̸∈ S, so inequality (2) is also an equality. Thus, value(f∗) is equal
to capacity(S, S̄).

Proof (of 2). Recall the Max-Flow Min-Cut theorem from Section 6.2. It says that for any
flow f and any cut (S, S̄),

value(f) ≤ capacity(S, S̄).

6.3 Ford-Fulkerson algorithm 41

Therefore
max

all flows f
value(f) ≤ capacity(S, S̄).

But by part 1 we have a flow f∗ with value equal to this capacity. Therefore f∗ is a maximum
flow. □

A cut corresponding to a maximum flow is called a bottleneck cut. (The bottleneck cut might
not be unique, and the maximum flow might not be unique either, but the maximum flow
value and bottleneck cut capacity are unique.) The RAND report shows a bottleneck cut,
and suggests it’s the natural target for an air strike.

	Graphs
	Notation and representation
	Breadth-first search
	Depth-first search
	Dijkstra's algorithm
	Bellman-Ford
	Johnson's algorithm
	All-pairs shortest paths with matrices
	Prim's algorithm
	Kruskal's algorithm
	Topological sort
	Graphs and big data

	Networks and flows
	Matchings
	Max-flow min-cut theorem
	Ford-Fulkerson algorithm

