
Example sheet week 6
Trees. DAGs. Flows.

Algorithms—DJW∗—2017/2018

Questions labelled ◦ are warmup questions. Questions labelled ∗ involve more thinking and you are
not expected to attempt all of them. The questions are arranged in the order that the course is taught;
consult your supervisor to find out which questions to answer for which supervision.

Question 1 (FS55, FS56)◦. Try to find, by hand, a minimum spanning tree for this graph. Now
run, by hand, the Kruskal and Prim algorithms.

8

1

7

4

8

11

7

2

6

2
4 14

9

10

Question 2. In an undirected graph with edge weights ≥ 0, let u–v be a minimum-weight edge.
Show that u–v belongs to a minimum spanning tree.

Question 3. Prove the final claim in Section 5.8 (Prim’s algorithm), that f̂ is a spanning tree. [A
model solution will be provided at the end of the course.]

Question 4 (FS53)◦. Give an example DAG with 9 vertices and 9 edges. Pick some vertex that has
one or more edges coming in, and run through toposort starting on line 6 with this vertex. Mark
each vertex with two numbers as you proceed: the discovery time (when the vertex is coloured grey)
and the exit time (when the vertex is coloured black). Then draw a linearized DAG by arranging the
vertices on a line in order of their finishing time, and reproducing the appropriate arrows between
them. Do all the arrows go in the same direction?

Question 5*. Sometimes we want to impose a total order on a collection of objects, given a set
of pairwise comparisons that can be thought of as a ‘DAG with noise’. For example, let vertices
represent movies, and write v1→ v2 to mean “The user has said she prefers v1 to v2.” A user is likely
to give answers that are by and large consistent, but with some exceptions. Discuss what properties
you would like in an ‘approximate total order’, and how you might go about finding it. [This is an
open-ended question, and a prelude to data science and machine learning courses.]

Question 6. Give pseudocode for an algorithm that takes as input an arbitrary directed graph g, and
returns a boolean indicating whether or not g is a DAG.

Question 7 (FS54)*. Write out a formal proof of the correctness of the toposort algorithm, filling
out all the details that are skipped over in the handout. Pay particular attention to the third case, ‘v2
is coloured grey’, where it is claimed “The call stack corresponds to a path in the graph from v2 to
v1.”

∗Questions labelled FS are from Dr Stajano. Questions labelled CLRS are from Introduction to Algorithms, 3rd ed. by
Cormen, Leiserson, Rivest and Stein.

1

Question 8◦. Use the Ford-Fulkerson algorithm, by hand, to find the maximum flow from s to t in
the following graph. How many iterations did you take? What is the largest number of iterations it
might take, with unfortunate choice of augmenting path?

s

a

b

t

Question 9◦. Consider a flow f on a directed graph with source vertex s and sink vertex t. Let
f (u→ v) be the flow on edge u→ v, and set f (u→ v) = 0 if there is no such edge.
(i) Show that

∑
w6=s,t

(
∑
v

f (w→ v)−∑
v

f (v→ w)
)
= 0.

(ii) The value of the flow is defined to be the net flow out of s,

value(f) = ∑
u

f (s→ u)−∑
u

f (u→ s).

Prove that this is equal to the net flow into t. [Hint. Add the left hand side of the equation from
part (i).]

Question 10. Prove the assertion on line 25 of the ford_fulkerson, i.e. that after adding flow δ

along an augmenting path, we end up with a valid flow.

Question 11*. Devise an algorithm that takes as input a flow f on a network, and produces as
output a decomposition [(f1, p1), . . . ,(fn, pn)] where each pi is a path from the source to the sink,
and each fi is a positive number. The decomposition must satisfy f = ∑i fi pi, by which we mean
“put flow fi along path pi, and add together all these flows-along-paths, and the answer must be
equal to f ”. Explain why your algorithm works.

Question 12. The Russian mathematician A.N. Tolstoy introduced the following problem in 1930.
Consider a directed graph with edge capacities, representing the rail network. There are three types
of vertex: supplies, demands, and ordinary interconnection points. There is a single type of cargo we
wish to carry. Each demand vertex v has a requirement dv > 0. Each supply vertex v has a maximum
amount it can produce sv > 0. Tolstoy asked: can the demands be met, given the supplies and graph
and capacities, and if so then what flow will achieve this?

Explain how to translate Tolstoy’s problem into a max-flow problem of the sort we have studied.

Question 13. In the London tube system (including DLR and Overground), there are occasional
signal failures that prevent travel in either direction between a pair of adjacent stations. Find the
minimum number of disruptions that will prevent travel between Kings Cross and Embankment.
Justify your answer carefully using a max-flow formulation. [Hint. Read the Analysis section of
Section 6.1.]

Question 14*. Consider a bipartite graph, in which edges go between the left vertex set L and the
right vertex set R. A matching is called complete if every vertex in L is matched to a vertex in R, and
vice versa. For a complete matching to exist, we obviously need |L| = |R|. The following result is
known as Hall’s Theorem:

A complete matching exists if and only if, for every subset X ⊆ L, the set of vertices in
R connected to a vertex in X is at least as big as X .

Prove Hall’s Theorem, using a max-flow formulation. [Hint: Use the same construction as we used
in lectures, except with capacity ∞ on the edges between L and R. In this graph, some cuts have
infinite capacity, and some cuts have finite capacity. If a cut has finite capacity, what can you deduce
about its capacity?]

2

