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Many technical solutions are motivated 
by visual perception

*

…
Halftonning

Image & video 
compression

Display spectral emission - metamerism

Display’s subpixels

Camera’s 
Bayer pattern

Color wheel in DLPs

Perceived brightness of light
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Luminous efficiency function 
(weighting)

Light spectrum (radiance)

Luminance
} Luminance – how bright the surface will appear 

regardless of its colour. Units: cd/m2

 

LV = L(l)× V (l)dl
0

¥òLuminance
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Luminance and Luma
} Luminance

} Photometric quantity 
defined by the spectral 
luminous efficiency function

} L ≈ 0.2126 R + 0.7152 G + 
0.0722 B

} Units: cd/m2

} Luma
} Gray-scale value computed 

from LDR (gamma 
corrected) image

} Y = 0.2126 R’ + 0.7152 G’
+ 0.0722 B’
} R’ – prime denotes gamma 

correction

} Unitless

R ' = R1/γ
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Steven’s power law for brightness
} Stevens (1906-1973) measured the perceived magnitude 

of physical stimuli
} Loudness of sound, tastes, small, warmth, electric shock and 

brightness
} Using the magnitude estimation methods

} Ask to rate loudness on a scale with a known reference

} All measured stimuli followed the power law:

} For brightness (5 deg target in dark), a = 0.3

ϕ(I ) = kI aPerceived 
magnitude

Physical 
stimulus

Exponent

Constant
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Steven’s law for brightness
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Steven’s law  vs. Gamma correction
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Detection and discrimination
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Threshold versus intensity (t.v.i.) 
function
} The smallest detectable difference in luminance for a 

given background luminance

L

ΔL

L

L+ΔL
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t.v.i. measurements – Blackwell 1946
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Psychophysics
Threshold experiments 

L

L+ΔL

Luminance difference ΔL

P=0.75

Detection 
threshold

12
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t.v.i function / c.v.i. function / Sensitivity
} The same data, different representation

t.v.i. c.v.i.
S

Contrast vs. intensityThreshold vs. intensity Sensitivity

€ 

T =
ΔL
L

€ 

S =
1
T

=
L
ΔLbackgrounddisk LLL -=D
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Sensitivity to luminance
} Weber-law – the just-noticeable difference 

is proportional to the magnitude of a 
stimulus

The smallest 
detectable 
luminance 
difference

Background 
(adapting) 
luminance

Constant

L
ΔLTypical stimuli:

Ernst Heinrich Weber
[From wikipedia]
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Consequence of the Weber-law
} Smallest detectable difference in luminance

} Adding or subtracting luminance will have different visual 
impact depending on the background luminance

} Unlike LDR luma values, luminance values are not
perceptually uniform!

L ΔL

100 cd/m2 1 cd/m2

1 cd/m2 0.01 cd/m2
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For k=1%

How to make luminance (more) 
perceptually uniform?

} Using “Fechnerian” integration

luminance - L
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 -
R

1

ΔL

dR
dl
(L) = 1

ΔL(L)
Derivative of 

response
Detection 
threshold

 

R(L) =
1

DL(l)
dl

0

Lò
Luminance 
transducer:
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Assuming the Weber law

} and given the luminance transducer

} the response of the visual system to light is:

 

R(L) =
1

DL(l)
dl

0

Lò
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Fechner law

} Response of the visual system to luminance 
is approximately logarithmic

Gustav Fechner
[From Wikipedia]

 

R(L) = aln(L)

18
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But…the Fechner law does not hold for 
the full luminance range

} Because the Weber law does not hold either
} Threshold vs. intensity function:

L

ΔL

The Weber law 
region

19

Weber-law revisited
} If we allow detection threshold to vary with luminance 

according to the t.v.i. function:

} we can get more accurate estimate of the “response”:

R(L) = 1
tvi(l)

dl
0

L
∫

L

ΔL tvi(L)

20

Fechnerian integration and Stevens’ law

21

R(L) - function 
derived from the 

t.v.i. function

R(L) = 1
tvi(l)

dl
0

L
∫

Applications of JND encoding – R(L)
} DICOM grayscale function

} Function used to encode signal for medial 
monitors

} 10-bit JND-scaled (just noticeable 
difference)

} Equal visibility of gray levels

} HDMI 2.0a (HDR10)
} PQ (Perceptual Quantizer) encoding
} Dolby Vision
} To encode pixels for high dynamic range 

images and video 

22

Spatial contrast sensitivity

24

Fourier analysis
} Every N-dimensional function (including images) can be 

represented as a sum of sinusoidal waves of different 
frequency and phase

} Think of “equalizer” in audio software, which manipulates 
each frequency

=∑

25
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Spatial frequency in images
} Image space units: cycles per sample (or cycles per pixel)

} What are the screen-space frequencies of the red and green 
sinusoid?

} The visual system units: cycles per degree
} If the angular resolution of the viewed image is 55 pixels per 

degree, what is the frequency of the sinusoids in cycles per 
degree?

26

Nyquist frequency
} What is the highest frequency that can be reconstructed 

for a given sampling density?
} Sampling density – how many pixels per image/visual angle/…

} Any number of sinusoids can be fitted to this set of samples
} It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency
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Nyquist frequency
} What is the highest frequency that can be reconstructed 

for a given sampling density?
} Sampling density – how many pixels per image/visual angle/…

} Any number of sinusoids can be fitted to this set of samples
} It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency

28

Nyquist frequency
} What is the highest frequency that can be reconstructed 

for a given sampling density?
} Sampling density – how many pixels per image/visual angle/…

} Any number of sinusoids can be fitted to this set of samples
} It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency
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Nyquist frequency
} What is the highest frequency that can be reconstructed 

for a given sampling density?
} Sampling density – how many pixels per image/visual angle/…

} Any number of sinusoids can be fitted to this set of samples
} It is possible to fit an infinite number of sinusoids if we allow 

infinitely high frequency
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Nyquist frequency / aliasing
} Nuquist frequency is the highest frequency that can be 

represented by a discrete set of uniform samples (pixels)
} Nuquist frequency = 0.5 sampling rate

} For audio
} If the sampling rate is 44100 samples per second (audio CD), then the 

Nyquist frequency is 22050 Hz

} For images (visual degrees)
} If the sampling rate is 60 pixels per degree, then the Nyquist 

frequency is 30 cycles per degree

} When resampling an image to lower resolution, the 
frequency content above the Nyquist frequency needs to 
be removed (reduced in practice)
} Otherwise aliasing is visible

31
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Spatial frequency  [cycles per degree]

C
on

tra
st

Campbell & Robson contrast sensitivity chart
32 33

Contrast Sensitivity
} Sensitivity: 

1 / threshold contrast
} Contrast = ΔL/L
} Maximum sensitivity 2-5 

cycles/degree
} Decrease toward low 

frequencies: lateral inhibition
} Decrease toward high 

frequencies
} Upper limit: 60-70 

cycles/degree

www.psychology.psych.ndsu.nodak.edu

Rationale: if we were sensitive to low 
frequencies, the vision would be 
affected by changes of illumination. 
There are physical limitations to the 
perception of high frequencies.

35

Implications of CSF
} As objects get further away, they get smaller; spatial 

frequencies get higher
} At some point we cannot see the details
} That is the upper limit of the CSF (60-70 cpd)

} When we get to close to low frequency patterns, they 
seem to be constant
} The background of this slide contains a smooth gradient
} It is well visible when you look at it from a normal viewing 

distance
} Now enlarge the slide to full screen and move your head very 

close
} The gradient should disappear
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Explaining the effects with CSF
} Can you explain 

the effects 
described on the 
previous slide using 
the CSF plot?

37

CSF as a function of spatial frequency

Background 
luminance

38
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CSF as a function of background 
luminance

Spatial 
frequency

39

Contrast constancy

40

Contrast constancy
Match?Experiment: Adjust the 

amplitude of one sinusoidal 
grating until it matches the 
perceived magnitude of 
another sinusoidal grating.

From: Georgeson and Sullivan. 1975. J. Phsysio.41

Contrast constancy
No CSF above the detection threshold

42

Contrast constancy
} For high (supra-threshold) contrast, the perceived 

magnitude of contrast does not change with spatial 
frequency

} The CSF gets “flat” above the detection threshold
} A common mistake - using CSF as a linear filter:

} why CSF cannot be used as a linear filter?

Image FFT

CSF

FFT-1x “Perceived”
image

43

Multi-resolution models

44
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Spatial-frequency selective channels
} The visual information is 

decomposed in the visual cortex 
into multiple channels
} The channels are selective to spatial 

frequency, temporal frequency and 
orientation

} Each channel is affected by different 
„noise” level

} The CSF is the net result of 
information being passed in noise-
affected visual channels

From: Wandell, 1995

45

Multi-resolution visual model
} Convolution kernels 

are band-pass, 
orientation selective 
filters

} The filters have the 
shape of a Gabor 
function

From: Wandell, 1995
46

Multi-scale decomposition

Steerable pyramid
decomposition

47

Applications of multi-scale models
} JPEG2000

} Wavelet decomposition

} JPEG / MPEG
} Frequency transforms

} Image pyramids
} Blending & stitching
} Hybrid images

Hybrid Images by Aude Oliva
http://cvcl.mit.edu/hybrid_gallery

48

Mach Bands – evidence for band-pass 
visual processing

• “Overshooting“ along edges
– Extra-bright rims on bright sides
– Extra-dark rims on dark sides

• Due to “Lateral Inhibition“

49

Centre-surround (Lateral Inhibition)
} “Pre-processing” step within the retina

} Surrounding brightness level weighted negatively
} A: high stimulus, maximal bright inhibition
} B: high stimulus, reduced inhibition & stronger response
} D: low stimulus, maximal inhibition
} C: low stimulus, increased inhibition &

weaker response

Center-surround 
receptive fields

(groups of 
photoreceptors)

50
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Centre-surround: Hermann Grid
• Dark dots at crossings
• Explanation

– Crossings (A)
• More surround stimulation 

(more bright area)
Þ Less inhibition
Þ Weaker response

– Streets (B)
• Less surround stimulation
Þ More inhibition
Þ Greater response

• Simulation
– Darker at crossings, brighter in streets
– Appears more steady
– What if reversed ?

A B

Sim
ulation

51

Psychedelic

some further weirdness
52

Light and dark adaptation

53

Light and dark adaptation

} Light adaptation: from dark to bright
} Dark adaptation: from bright to dark (much slower)

54

Time-course of 
adaptation

Bright -> Dark Dark -> Bright

55

Temporal adaptation mechanisms
} Bleaching & recovery of photopigment

} Slow assymetric (light -> dark, dark -> light) 
} Reaction times (1-1000 sec)
} Separate time-course for rods and cones

} Neural adaptation
} Fast
} Approx. symmetric reaction times (10-3000 ms)

56
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Night and daylight vision

Luminous efficiency

57

Opponent colours and 
spatial colour vision

58

Colour processing
Light
spectra

S M L

* * *

= = =

- ++
-

black/whitered/greenblue/yellow

} Light is sensed by L, M and 
S, cones
} Each cone type is 

sensitive to different 
wavelengths 

} Responses from L, M and S 
cones are combined into 
three opponent pathways
} achromatic 

(black/white) pathway –
luminance

} 2 colour opponent 
pathways

} Rationale: improve coding 
efficiency for natural scenes

59

Colour perception
} Di-chromaticity (dogs, cats)

} Yellow & blue-violet
} Green, orange, red indistinguishable

} Tri-chromaticity (humans, monkeys)
} Red, green, blue
} Colour-blindness

} Most often men, green-red colour-blindness 

www.lam.mus.ca.us/cats/color/

www.colorcube.com/illusions/clrblnd.html
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Colour Contrast Sensitivity

} Colour vs. luminance 
vision system
} Higher sensitivity at lower 

frequencies for colour
} High frequencies less visible

From: Kim et al., HVEI 201361

Visibility of blur

} The same amount of blur was introduced into light-dark, 
red-green and blue-yellow colour opponent channels

} The blur is only visible in light-dark channel
} This property is used in image and video compression

} Sub-sampling of colour channels (4:2:1)

62
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Depth perception

The  slides in this section are the courtesy of 
Piotr Didyk (http://people.mpi-inf.mpg.de/~pdidyk/)

63

Depth perception

Stereoscopic depth cues:
binocular disparity

We see depth due to depth cues.

Depth perception

Ocular depth cues:
accommodation, vergence

We see depth due to depth cues.

Vergence

Stereoscopic depth cues:
binocular disparity

Depth perception

Pictorial depth cues:
occlusion, size, shadows…

We see depth due to depth cues.

Ocular depth cues:
accommodation, vergence

Stereoscopic depth cues:
binocular disparity

Cues sensitivity

0.001

0.01

0.1

1.0

1.0 10 100 1000 10000

D
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th
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Depth [meters]

Personal
space

Action
space Vista space

Occlusion

Relative size

Relative density

“Perceiving layout and knowing  distances: The integration, relative potency, 
and contextual use of different information about depth” 

by Cutting and Vishton [1995]

Depth perception

Challenge:
Consistency is 

required! 
Pictorial depth cues:

occlusion, size, shadows…

We see depth due to depth cues.

Ocular depth cues:
accommodation, vergence

Stereoscopic depth cues:
binocular disparity
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Simple conflict example

• Size
• Shadows
• Perspective

• Occlusion

Present cues:

Disparity & occlusion conflict

Objects in front

Disparity & occlusion conflict

Disparity & occlusion
conflict

Depth perception

Pictorial depth cues:
occlusion, size, shadows…

We see depth due to depth cues.

Ocular depth cues:
accommodation, vergence

Stereoscopic depth cues:
binocular disparity

Reproducible on a flat displays

Require 3D space
We cheat our Human Visual System!

Cheating our HVS

Comfort zone

Screen

Object in left eye

Object in right eye

Object perceived in 3D

Pixel disparityVergence

Depth

Vi
ew

in
g 

di
sc

om
fo

rt

Accommodation
(focal plane)

Single Image Random Dot Stereograms

} Fight the vergence vs. accommodation conflict to see the 
hidden image

74
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Viewing discomfort Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

2 – 20 m0.3 – 0.5 m

Simple scene

70 cm

Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

0.5 – 2 m0.2 – 0.3 m

Simple scene, user allowed to look away 
from screen

70 cm

Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

8 – 15 cm10 – 30 cm

Difficult scene

70 cm

Comfort zones

“Controlling Perceived Depth in Stereoscopic Images” by Jones et al. 2001

Comfort zone size depends on:
• Presented content
• Viewing condition

6 – 15 cm11 cm

Difficult scene, user allowed to look away from screen

70 cm

Comfort zones

Comfort zone size 
depends on:

• Presented content
• Viewing condition
• Screen distance

“The zone of comfort: Predicting visual discomfort with stereo displays” by Shibata et al. 2011

Other factors:

• Distance between eyes
• Depth of field
• Temporal coherence
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Depth manipulation

Comfort zone

Viewing discomfortViewing comfortScene manipulation

High(er) level vision

82

Simultaneous contrast

83

High-Level Contrast Processing

84

High-Level Contrast Processing

85

Shape Perception

http://www.panoptikum.net/optischetaeuschungen/index.html

• Depends on surrounding primitives
– Directional emphasis
– Size emphasis

86
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Shape Processing: Geometrical Clues

http://www.panoptikum.net/optischetaeuschungen/index.html

• Automatic geometrical interpretation
– 3D perspective
– Implicit scene depth

87

Impossible Scenes

http://www.panoptikum.net/optischetaeuschungen/index.html

• Escher et.al.
– Confuse HVS by presenting 

contradicting visual clues
– Local vs. global processing

88

Virtual Movement

caused by saccades, motion from dark to bright areas 
89

Law of closure

90
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