

Advanced image processing

Advanced Graphics

Rafał Mantiuk Computer Laboratory, University of Cambridge

Linear filtering (revision)

Output pixel value is a weighted sum of neighboring pixels

Linear filter: example

45	60	9 8	127	132	133	137	133
46	65	9 8	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

*

0.1	0.1	0.1	
0.1	0.2	0.1	
0.1	0.1	0.1	

=

69	95	116	125	129	132
68	92	110	120	126	132
66	86	104	114	124	132
62	78	94	108	120	129
57	69	83	98	112	124
53	60	71	85	100	114

f(x,y)

h(x,y)

g(x,y)

Why is the matrix g smaller than f?

3

Padding an image

clamp

blurred: zero

normalized zero

mirror

4

What is the computational cost of the convolution?

$$g(i,j) = \sum_{k,l} f(i-k,j-l)h(k,l)$$

- How many multiplications do we need to do to convolve 100x100 image with 9x9 kernel ?
 - The image is padded, but we do not compute the values for the padded pixels

Separable kernels

- Convolution operation can be made much faster if split into two separate steps:
 - I) convolve all rows in the image with a ID filter
 - > 2) convolve columns in the result of I) with another ID filter
- But to do this, the kernel must be separable

$$\begin{bmatrix} h_{1,1} & h_{1,2} & h_{1,3} \\ h_{2,1} & h_{2,2} & h_{2,3} \\ h_{3,1} & h_{3,2} & h_{3,3} \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \cdot \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix}$$

$$\vec{h} = \vec{u} \cdot \vec{v}$$

Examples of separable filters

• Box filter:

$$\begin{bmatrix} \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \\ \frac{1}{9} & \frac{1}{9} & \frac{1}{9} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$

• Gaussian filter:

$$G(x, y; \sigma) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

What are the corresponding ID components of this separable filter (u(x) and v(y))? G(x,y) = u(x) · v(y)

Unsharp masking

How to use blurring to sharpen an image ?

Why "linear" filters ?

Linear functions have two properties:

- Additivity: f(x) + f(y) = f(x+y)
- Homogenity: $f(a \cdot x) = a \cdot f(x)$ (where "f" is a linear function)
- Why is it important?
 - Linear operations can be performed in an arbitrary order
 - blur(a•F + b) = a•blur(F) + b
 - Linearity of the Gaussian filter could be used to improve the performance of your image processing operation
 - This is also how the separable filters work:

Edge stopping filters

Original

Edge-aware smoothing

Detail enhancement

Stylization

Examples from [Gastal & Oliveira 2011]

Depth-of-field

Nonlinear filters: Bilateral filter

Goal: Smooth out the image without blurring edges

How to make the bilateral filter fast?

A number of approximations have been proposed

- Combination of linear filters [Durand & Dorsey 2002, Yang et al. 2009]
- Bilateral grid [Chen et al. 2007]
- Permutohedral lattice [Adams et al. 2010]
- Domain transform [Gastal & Oliveira 2011]

Joint-bilateral filter

- The "range" term does not need to operate in the same domain as the filter output
 - Example:

A simplified

Joint bilateral filter: Flash / no-flash

Flash

No-flash

- Preserve colour and illumination from the no-flash image
- Use flash image to remove noise and add details
- [Petshnigg et al. 2004]

Example of edge preserving filtering

- Domain Transform for Edge-Aware Image and Video Processing
- Video:
 - https://youtu.be/UIIxhIIQrTY?t=4mI0s
 - From: <u>http://inf.ufrgs.br/~eslgastal/DomainTransform/</u>

Optimization-based methods

cloning

seamless cloning

sources/destinations

Poisson image editing [Perez et al. 2003]

Gradient Domain compositing

Compositing [Wang et al. 2004]

I9 images from [Drori at al. 2004]

Gradient domain methods

Operate on pixel gradients instead of pixel values

Forward Transformation

Forward Transformation

 Compute gradients as differences between a pixel and its two neighboors

$$\nabla I_{x,y} = \begin{bmatrix} I_{x+1,y} - I_{x,y} \\ I_{x,y+1} - I_{x,y} \end{bmatrix}$$

Result: 2D gradient map (2 x more values then the number of pixels)

Processing gradient field

 Usually gradient magnitudes are modified while gradient direction (angle) remains the same

$$G_{x,y} =
abla I_{x,y} \cdot f(||
abla I_{x,y}||)$$

Examples of gradient editing functions:

Inverse transform: the difficult part

 There is no strightforward transformation from gradients to luminance

Instead, a minimization problems is solved:

$$\underset{I}{\operatorname{arg\,min}} \sum_{x,y} \left[\left(I_{x+1,y} - I_{x,y} - G_{x,y}^{(x)} \right)^2 + \left(I_{x,y+1} - I_{x,y} - G_{x,y}^{(y)} \right)^2 \right]$$

$$\underbrace{\left[\operatorname{Image\,Pixels} \right]}_{\text{Image Pixels}}$$

Inverse transformation

- Convert modified gradients to pixel values
 - Not trivial!
 - Most gradient fields are inconsistent - do not produce valid images
 - If no accurate solution is available, take the best possible solution
 - Analogy: system of springs

Gradient field reconstruction: derivation

• The minimization problem is given by:

$$\arg\min_{I} \sum_{x,y} \left[\left(I_{x+1,y} - I_{x,y} - G_{x,y}^{(x)} \right)^2 + \left(I_{x,y+1} - I_{x,y} - G_{x,y}^{(y)} \right)^2 \right]$$

After equating derivatives over pixel values to 0 we get:

Derivation done in the lecture

$$I_{x-1,y} + I_{x+1,y} + I_{x,y-1} + I_{x,y+1} - 4I_{x,y} = G_{x,y}^{(x)} - G_{x-1,y}^{(x)} + G_{x,y}^{(y)} - G_{x,y-1}^{(y)}$$

In matrix notation:

$$\begin{array}{c} \begin{array}{c} \mbox{Laplace operator} \\ (NxN matrix) \end{array} & \bigtriangledown & \nabla^2 I = {\rm div} G \end{array} & \begin{array}{c} \mbox{Divergence of a vector} \\ {\rm field (Nx1 vector)} \end{array} \\ \\ \nabla^2 I_{x,y} = I_{x-1,y} + I_{x+1,y} + I_{x,y-1} + I_{x,y+1} - 4I_{x,y} \end{array} & \begin{array}{c} I_{1,1} \\ I_{2,1} \\ ... \\ I_{N,M} \end{array} & \begin{array}{c} \mbox{div} G_{x,y} = G_{x,y}^{(x)} - G_{x-1,y}^{(x)} + G_{x,y}^{(y)} - G_{x,y-1}^{(y)} \\ \\ \end{array} \\ \end{array} \\ \end{array}$$

$$\nabla^{2} = \begin{bmatrix} -2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & -3 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & -2 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & -3 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & -4 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & -3 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -2 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 1 & -3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & -2 \end{bmatrix}$$

26

Solving sparse linear systems

Just use "\" operator in Matlab / Octave:

- ▶ x = A \ b;
- Great "cookbook":
 - TEUKOLSKY, S.A., FLANNERY, B.P., PRESS, W.H., AND VETTERLING, W.T. 1992. Numerical recipes in C. Cambridge University Press, Cambridge.

Some general methods

- Cosine-transform fast but cannot work with weights (next slides) and may suffer from floating point precision errors
- Multi-grid fast, difficult to implement, not very flexible
- Conjugate gradient / bi-conjugate gradient general, memory efficient, iterative but fast converging

Pinching artefacts

- A common problem of gradient-based methods is that they may result in "pinching" artefacts (left image)
- Such artefacts can be avoided by introducing weights to the optimization problem

Weighted gradients

The new objective function is:

$$\arg\min_{I} \sum_{x,y} \left[w_{x,y}^{(x)} \left(I_{x+1,y} - I_{x,y} - G_{x,y}^{(x)} \right)^2 + w_{x,y}^{(y)} \left(I_{x,y+1} - I_{x,y} - G_{x,y}^{(y)} \right)^2 \right]$$

 so that higher weights are assigned to low gradient magnitudes (in the original image).

$$w_{x,y}^{(x)} = w_{x,y}^{(y)} = \frac{1}{||\nabla I_{x,y}^{(o)}|| + \epsilon}$$

- The linear system can be derived again
 - but this is a lot of work and is error-prone

Least-squares – matrix notation

• Given an error function (in the matrix notation):

$$F = (Ax - b)'(Ax - b)$$

It's derivative is given by:

$$\frac{\partial F}{\partial x} = 2 A' A x - 2 A' b$$

See for example 15.4 in Numerical Recipes

Weighted gradients - matrix notation (1)

The objective function:

$$\arg\min_{I} \sum_{x,y} \left[w_{x,y}^{(x)} \left(I_{x+1,y} - I_{x,y} - G_{x,y}^{(x)} \right)^2 + w_{x,y}^{(y)} \left(I_{x,y+1} - I_{x,y} - G_{x,y}^{(y)} \right)^2 \right]$$

In the matrix notation:

$$\underset{I}{\arg\min} \left(W \nabla_x I - W G^{(x)} \right)' \left(W \nabla_x I - W G^{(x)} \right) + \left(W \nabla_y I - W G^{(y)} \right)' \left(W \nabla_y I - W G^{(y)} \right).$$

Gradient operators (for 3x3 pixel image):

31

Weighted gradients - matrix notation (2)

The objective function again:

$$\arg\min_{I} \left(W \nabla_{x} I - W G^{(x)} \right)' \left(W \nabla_{x} I - W G^{(x)} \right) + \left(W \nabla_{y} I - W G^{(y)} \right)' \left(W \nabla_{y} I - W G^{(y)} \right).$$

Derivates with respect to I:

$$\frac{\partial E}{\partial I} = 2 \left(W \nabla_x \right)' W G^{(x)} + 2 \left(W \nabla_y \right)' W G^{(y)} - 2 \left[(W \nabla_x)' (W \nabla_x) + (W \nabla_y)' (W \nabla_y) \right] I$$

$$F = (Ax - b)'(Ax - b)$$
$$\frac{\partial F}{\partial x} = 2 A'Ax - 2 A'b$$

The equation above can be solved using a sparse matrix solver

WLS filter: Edge stopping filter by optimization

Weighted-least-squares optimization

[Farbman et al., SIGGRAPH 2008]

0.8

0

0

0.2

0.4

0.6 α

Poisson image editing

- Reconstruct unknown values f given a source guidance gradient field v and the boundary conditions $f|_{\partial\Omega} = f^*|_{\partial\Omega}$
- [Perez et al. 2003]

Color 2 Gray

- Transform color images to gray scale
- Preserve color saliency
 - When gradient in luminance close to 0
 - Replace it with gradient in chrominance
 - Reconstruct an image from gradients
- [Gooch et al. 2005]

Gradient Domain: applications

- More applications:
 - Lightness perception (Retinex) [Horn 1974]
 - Matting [Sun et al. 2004]
 - Color to gray mapping [Gooch et al. 2005]
 - Video Editing [Perez at al. 2003, Agarwala et al. 2004]
 - Photoshop's Healing Brush [Georgiev 2005]

References

- F. Durand and J. Dorsey, "Fast bilateral filtering for the display of high-dynamic-range images," ACM Trans. Graph., vol. 21, no. 3, pp. 257–266, Jul. 2002.
- E. S. L. Gastal and M. M. Oliveira, "Domain transform for edge-aware image and video processing," *ACM Trans. Graph.*, vol. 30, no. 4, p. 1, Jul. 2011.
- Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing. ACM Trans. Graph. 22, 3 (July 2003), 313-318. DOI: <u>http://dx.doi.org/10.1145/882262.882269</u>
- Zeev Farbman, Raanan Fattal, Dani Lischinski, and Richard Szeliski. 2008. Edgepreserving decompositions for multi-scale tone and detail manipulation. ACM Trans. Graph. 27, 3, Article 67 (August 2008), 10 pages. DOI: https://doi.org/10.1145/1360612.1360666