
13/02/2017

1

Rafał Mantiuk and Alex Benton

Advanced Graphics

Computer Laboratory, University of Cambridge

Global Illumination

What’s wrong with recursive raytracing?

Soft shadows are expensive

Shadows of transparent objects require

further coding or hacks

Lighting off reflective objects follows

different shadow rules from normal

lighting

Hard to implement diffuse reflection

(color bleeding, such as in the Cornell

Box—notice how the sides of the inner

cubes are shaded red and green)

Fundamentally, the ambient term is a

hack and the diffuse term is only one

step in what should be a recursive, self-

reinforcing series.

2

The Cornell Box is a test for rendering

Software, developed at Cornell University

in 1984 by Don Greenberg. An actual

box is built and photographed; an

identical scene is then rendered in

software and the two images are

compared.

Global illumination examples

This box is white!

Rendering equation (revisited)

 Most rendering methods require solving an (approximation) of

the rendering equation:

 The solution is trivial for

point light sources

 Much harder to estimate

the contribution of other

surfaces

𝐿𝑟 𝝎𝒓 =

Ω

𝜌 𝝎𝒊, 𝝎𝒓 𝐿𝑖 𝜔𝑖 𝑐𝑜𝑠𝜃𝑖𝑑𝝎𝒊

Reflected light

Incident light

BRDF

Integral over the

hemisphere of

incident light

𝝎𝒓

𝝎𝒊 = 𝜙𝑖, 𝜃𝑖

Light transport

DD DS

SD SS

Images from Cornell University’s graphics group

http://www.graphics.cornell.edu/online/research/

Radiosity

Radiosity is an illumination method

which simulates the global dispersion

and reflection of diffuse light.

First developed for describing

spectral heat transfer (1950s)

Adapted to graphics in the 1980s

at Cornell University

Radiosity is a finite-element approach

to global illumination: it breaks the

scene into many small elements

(‘patches’) and calculates the energy

transfer between them.

6

http://www.graphics.cornell.edu/online/research/

13/02/2017

2

Radiosity—algorithm

Surfaces in the scene are divided into patches, small subsections of each

polygon or object.

For every pair of patches A, B, compute a view factor (also called a form

factor) describing how much energy from patch A reaches patch B.

The further apart two patches are in space or orientation, the less light they

shed on each other, giving lower view factors.

Calculate the lighting of all directly-lit patches.

Bounce the light from all lit patches to all those they light, carrying more

light to patches with higher relative view factors. Repeating this step will

distribute the total

light across the scene,

producing a global diffuse

illumination model.

7

Radiosity—mathematical support

The ‘radiosity’ of a single patch is the amount of energy leaving the

patch per discrete time interval.

This energy is the total light being emitted directly from the patch

combined with the total light being reflected by the patch:

This forms a system of linear equations, where…

Bi is the radiosity of patch i;

Bj is the radiosity of each of the other patches (j≠i)

Ei is the emitted energy of the patch

𝜌𝑖 is the reflectivity of the patch

Fij is the view factor of energy from patch i to patch j.

8

NNNNNNNNN

N

N

E

E

E

B

B

B

FFF

FFF

FFF

2

1

2

1

21

22222212

11121111

1

1

1

𝐵𝑖 = 𝐸𝑖 + 𝜌𝑖
𝑗=1..𝑛,
𝑗≠𝑖

𝐵𝑗𝐹𝑖𝑗

Radiosity—form factors

Finding form factors can be done procedurally

or dynamically

Can subdivide every surface into small patches

of similar size

Can dynamically subdivide wherever the 1st

derivative of calculated intensity rises above

some threshold.

Computing cost for a general radiosity solution

goes up as the square of the number of patches,

so try to keep patches down.

Subdividing a large flat white wall could be a

waste.

Patches should ideally closely aligned with lines

of shadow.

9

Radiosity—implementation

(A) Simple patch triangulation

(B) Adaptive patch generation: the floor

and walls of the room are dynamically

subdivided to produce more patches

where shadow detail is higher.

10

Images from “Automatic

generation of node spacing

function”, IBM (1998)

http://www.trl.ibm.com/

projects/meshing/nsp/
nspE.htm

(A) (B)

Radiosity—form factors
One equation for the view factor between patches i, j is:

11

High view factor

Low view factor

θ
i

θ
j

Distance

between patches

Visibility

1 – patches visible

0 - occluded

Radiosity—calculating visibility

● Calculating V(i,j) can be slow.

● One method is the hemicube, in which each form factor is encased in a

half-cube. The scene is then ‘rendered’ from the point of view of the patch,

through the walls of the hemicube; V(i,j) is computed for each patch based

on which patches it can see (and at what percentage) in its hemicube.

● A purer method, but more computationally expensive, uses hemispheres.

12

Note: This method can be

accelerated using GPU to render

the scene. The scene is ‘rendered’

with the camera located in the

centre of the patch. Use patch

index instead of color.

13/02/2017

3

Radiosity gallery

13

Teapot (wikipedia)

Image from

GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation:

a Synthesis of Ray Tracing and Radiosity Methods,

John R. Wallace, Michael F. Cohen and Donald P. Greenberg

(Cornell University, 1987)

Shadows, refraction and caustics

Problem: shadow ray strikes

transparent, refractive object.

Refracted shadow ray will now miss

the light.

This destroys the validity of the

boolean shadow test.

Problem: light passing through a

refractive object will sometimes

form caustics (right), artifacts where

the envelope of a collection of rays

falling on the surface is bright

enough to be visible.

14

This is a photo of a real pepper-shaker.

Note the caustics to the left of the shaker, in and

outside of its shadow.
Photo credit: Jan Zankowski

Image from http://graphics.ucsd.edu/~henrik/

Generated with photon mapping

Shadows, refraction and caustics

 Solutions for shadows of transparent objects:

 Backwards ray tracing (Arvo)

 Very computationally heavy

 Improved by stencil mapping (Shenya et al)

 Shadow attenuation (Pierce)

 Low refraction, no caustics

 More general solution:

 Path tracing

 Photon mapping (Jensen)→

15

Path tracing

 Trace the rays from the camera (as in recursive ray tracing)

 When a surface is hit, either (randomly):

 shoot another ray in the random direction sampled using the BRDF (importance

sampling);

 or terminate

 For every hit-point shoot a shadow (light) ray and add the contribution of

the light

 40+ rays must be traced for

each pixel

 The method converges to

the exact solution of the

rendering equation

 But very slowly

 Monte Carlo approach to

solving the rendering equation

Image from A Practical Guide to Global Illumination

using Photon Maps by Henrik Jensen (2000)

Photon mapping

Photon mapping is the process of

emitting photons into a scene and

tracing their paths probabilistically to

build a photon map, a data structure

which describes the illumination of

the scene independently of its

geometry.

This data is then combined with ray

tracing to compute the global

illumination of the scene.

17

Image by Henrik Jensen (2000)

Photon mapping—algorithm (1/2)

Photon mapping is a two-pass algorithm:

1. Photon scattering

A. Photons are fired from each light source,

scattered in randomly-chosen directions.

The number of photons per light is a function of its surface area and

brightness.

B. Photons fire through the scene (re-use that raytracer, folks.) Where

they strike a surface they are either absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction and

energy of the photon in the photon map. The photon map data

structure must support fast insertion and fast nearest-neighbor

lookup; a kd-tree1 is often used.

18

Image by Zack Waters

http://graphics.ucsd.edu/~henrik/

13/02/2017

4

Photon mapping—algorithm (2/2)

Photon mapping is a two-pass algorithm:

2. Rendering

A. Ray trace the scene from the point of view of

the camera.

B. For each first contact point P use the ray tracer for specular but

compute diffuse from the photon map.

C. Compute radiant illumination by summing the contribution along the

eye ray of all photons within a sphere of radius r of P.

D. Caustics can be calculated directly here from the photon map. For

accuracy, the caustic map is usually distinct from the radiance map.

19

Image by Zack Waters

Photon mapping is probabilistic

This method is a great example of

Monte Carlo integration, in which a

difficult integral (the lighting equation)

is simulated by randomly sampling

values from within the integral’s domain

until enough samples average out to

about the right answer.

This means that you’re going to be

firing millions of photons. Your data

structure is going to have to be very

space-efficient.

20
Image credit: http://www.okino.com/conv/imp_jt.htm

Photon mapping is probabilistic

Initial photon direction is random. Constrained by light

shape, but random.

What exactly happens each time a photon hits a solid also

has a random component:

Based on the diffuse reflectance, specular reflectance and

transparency of the surface, compute probabilities pd, ps and pt where

(pd+ps+pt)≤1. This gives a probability map:

Choose a random value p є [0,1]. Where p falls in the probability

map of the surface determines whether the photon is reflected,

refracted or absorbed.

21

0 1pd
pspt

This surface would

have minimal

specular highlight.

Photon mapping gallery

22
http://www.pbrt.org/gallery.phphttp://web.cs.wpi.edu/~emmanuel/courses/cs563/writ

e_ups/zackw/photon_mapping/PhotonMapping.html

http://graphics.ucsd.edu/~henrik/images/global.html

Ambient occlusion

 Approximates global

illumination

 Estimate how much occluded is

each surface

 And reduce the ambient light it

receives accordingly

 Much faster than a full global

illumination solution, yet

appears very plausible

 Commonly used in animation,

where plausible solution is more

important than physical accuracy
Image generated with ambient

component only (no light) and

modulated by ambient occlusion

factor.

Ambient occlusion in action

24 Car photos from John Hable’s presentation at GDC 2010,

“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

http://www.okino.com/conv/imp_jt.htm
http://www.pbrt.org/gallery.php
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://graphics.ucsd.edu/~henrik/images/global.html
http://filmicgames.com/archives/6

13/02/2017

5

Ambient occlusion in action

25 Car photos from John Hable’s presentation at GDC 2010,

“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Ambient occlusion

 For a point on a surface, shoot rays in random directions

 Count how many of these rays hit objects

 The more rays hit other

objects, the more occluded

is that point

 The darker is the

ambient component

Ap occlusion at point p

n normal at point p

Vp,𝜔 visibility from p in direction 𝜔
Ω integrate over a hemisphere

Ambient occlusion - Theory

 This approach is very flexible

 Also very expensive!

 To speed up computation, randomly

sample rays cast out from each

polygon or vertex (this is a Monte-

Carlo method)

 Alternatively, render the scene from

the point of view of each vertex and

count the background pixels in the

render

 Best used to pre-compute per-object

“occlusion maps”, texture maps of

shadow to overlay onto each object

 But pre-computed maps fare poorly

on animated models...

27 Image credit: “GPU Gems 1”, nVidia, 2004.

Top: without AO. Bottom: with AO.

Z
-b

u
ff

er
 -

to
w

ar
d

s
th

e
ey

e

Screen Space Ambient Occlusion - SSAO

“True ambient occlusion is hard, let’s

go hacking.”

 Approximate ambient occlusion by

comparing z-buffer values in screen

space!

 Open plane = unoccluded

 Closed ‘valley’ in depth buffer =

shadowed by nearby geometry

 Multi-pass algorithm

 Runs entirely on the GPU

28 Image: CryEngine 2. M. Mittring, “Finding Next Gen –

CryEngine 2.0, Chapter 8”, SIGGRAPH 2007 Course 28

Surface in

Z-buffer

References

Shirley and Marschner, “Fundamentals of Computer Graphics”, Chapter 24 (2009)

Ambient occlusion and SSAO

 “GPU Gems 2”, nVidia, 2005. Vertices mapped to illumination.

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html

 MITTRING, M. 2007. Finding Next Gen – CryEngine 2.0, Chapter 8, SIGGRAPH 2007 Course 28 – Advanced

Real-Time Rendering in 3D Graphics and Games, Siggraph 2007, San Diego, CA, August 2007.

http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding_NextGen_CryEngine2.pdf

 John Hable’s presentation at GDC 2010, “Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Radiosity

 nVidia: http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html

 Cornell: http://www.graphics.cornell.edu/online/research/

Wallace, J. R., K. A. Elmquist, and E. A. Haines. 1989, “A Ray Tracing Algorithm for Progressive Radiosity.”
In Computer Graphics (Proceedings of SIGGRAPH 89) 23(4), pp. 315–324.

Buss, “3-D Computer Graphics: A Mathematical Introduction with OpenGL” (Chapter XI), Cambridge University
Press (2003)

Photon mapping

 Henrik Jensen, “Global Illumination using Photon Maps”: http://graphics.ucsd.edu/~henrik/

 Henrik Jensen, “Realistic Image Synthesis Using Photon Mapping”

 Zack Waters, “Photon Mapping”:
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

29

http://filmicgames.com/archives/6
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter14.html
http://developer.amd.com/wordpress/media/2012/10/Chapter8-Mittring-Finding_NextGen_CryEngine2.pdf
http://filmicgames.com/archives/6
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter39.html
http://www.graphics.cornell.edu/online/research/
http://graphics.ucsd.edu/~henrik/
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html

