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Global Illumination

What’s wrong with recursive raytracing?

Soft shadows are expensive 

Shadows of transparent objects require 

further coding or hacks

Lighting off reflective objects follows 

different shadow rules from normal 

lighting

Hard to implement diffuse reflection 

(color bleeding, such as in the Cornell 

Box—notice how the sides of the inner 

cubes are shaded red and green)

Fundamentally, the ambient term is a 

hack and the diffuse term is only one 

step in what should be a recursive, self-

reinforcing series.
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The Cornell Box is a test for rendering

Software, developed at Cornell University

in 1984 by Don Greenberg.  An actual 

box is built and photographed; an 

identical scene is then rendered in 

software and the two images are

compared.

Global illumination examples

This box is white!

Rendering equation (revisited)

 Most rendering methods require solving an (approximation) of 

the rendering equation:

 The solution is trivial for

point light sources

 Much harder to estimate

the contribution of other

surfaces

𝐿𝑟 𝝎𝒓 =  

Ω

𝜌 𝝎𝒊, 𝝎𝒓 𝐿𝑖 𝜔𝑖 𝑐𝑜𝑠𝜃𝑖𝑑𝝎𝒊

Reflected light

Incident light

BRDF

Integral over the 

hemisphere of 

incident light

𝝎𝒓

𝝎𝒊 = 𝜙𝑖, 𝜃𝑖

Light transport

DD DS

SD SS

Images from Cornell University’s graphics group 

http://www.graphics.cornell.edu/online/research/

Radiosity

Radiosity is an illumination method 

which simulates the global dispersion 

and reflection of diffuse light.

First developed for describing 

spectral heat transfer (1950s)

Adapted to graphics in the 1980s 

at Cornell University

Radiosity is a finite-element approach 

to global illumination: it breaks the 

scene into many small elements 

(‘patches’) and calculates the energy 

transfer between them.
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http://www.graphics.cornell.edu/online/research/
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Radiosity—algorithm

Surfaces in the scene are divided into patches, small subsections of each 

polygon or object.

For every pair of patches A, B, compute a view factor (also called a form 

factor) describing how much energy from patch A reaches patch B.

The further apart two patches are in space or orientation, the less light they 

shed on each other, giving lower view factors.

Calculate the lighting of all directly-lit patches.

Bounce the light from all lit patches to all those they light, carrying more 

light to patches with higher relative view factors.  Repeating this step will 

distribute the total 

light across the scene, 

producing a global diffuse 

illumination model.
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Radiosity—mathematical support

The ‘radiosity’ of a single patch is the amount of energy leaving the 

patch per discrete time interval.

This energy is the total light being emitted directly from the patch 

combined with the total light being reflected by the patch:

This forms a system of linear equations, where…

Bi is the radiosity of patch i; 

Bj is the radiosity of each of the other patches (j≠i)

Ei is the emitted energy of the patch

𝜌𝑖 is the reflectivity of the patch

Fij is the view factor of energy from patch i to patch j.
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𝐵𝑖 = 𝐸𝑖 + 𝜌𝑖  
𝑗=1..𝑛,
𝑗≠𝑖

𝐵𝑗𝐹𝑖𝑗

Radiosity—form factors

Finding form factors can be done procedurally 

or dynamically

Can subdivide every surface into small patches 

of similar size

Can dynamically subdivide wherever the 1st

derivative of calculated intensity rises above 

some threshold.

Computing cost for a general radiosity solution 

goes up as the square of the number of patches, 

so try to keep patches down.

Subdividing a large flat white wall could be a 

waste.

Patches should ideally closely aligned with lines 

of shadow.
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Radiosity—implementation

(A) Simple patch triangulation

(B) Adaptive patch generation: the floor 

and walls of the room are dynamically 

subdivided to produce more patches 

where shadow detail is higher.
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Images from “Automatic

generation of node spacing 

function”, IBM (1998)

http://www.trl.ibm.com/

projects/meshing/nsp/
nspE.htm

(A) (B)

Radiosity—form factors
One equation for the view factor between patches i, j is:
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High view factor

Low view factor

θ
i

θ
j

Distance 

between patches

Visibility

1 – patches visible

0 - occluded

Radiosity—calculating visibility

● Calculating V(i,j) can be slow.

● One method is the hemicube, in which each form factor is encased in a 

half-cube.  The scene is then ‘rendered’ from the point of view of the patch, 

through the walls of the hemicube; V(i,j) is computed for each patch based 

on which patches it can see (and at what percentage) in its hemicube.

● A purer method, but more computationally expensive, uses hemispheres.
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Note: This method can be 

accelerated using GPU to render 

the scene.  The scene is ‘rendered’ 

with the camera located in the 

centre of the patch. Use patch 

index instead of color.
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Radiosity gallery
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Teapot (wikipedia)

Image from 

GPU Gems II, nVidia

Image from A Two Pass Solution to the Rendering Equation: 

a Synthesis of Ray Tracing and Radiosity Methods, 

John R. Wallace, Michael F. Cohen and Donald P. Greenberg 

(Cornell University, 1987)

Shadows, refraction and caustics

Problem: shadow ray strikes 

transparent, refractive object.  

Refracted shadow ray will now miss 

the light.

This destroys the validity of the 

boolean shadow test.

Problem: light passing through a 

refractive object will sometimes 

form caustics (right), artifacts where 

the envelope of a collection of rays 

falling on the surface is bright 

enough to be visible.
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This is a photo of a real pepper-shaker.

Note the caustics to the left of the shaker, in and 

outside of its shadow.
Photo credit: Jan Zankowski

Image from http://graphics.ucsd.edu/~henrik/

Generated with photon mapping

Shadows, refraction and caustics

 Solutions for shadows of transparent objects:

 Backwards ray tracing (Arvo)

 Very computationally heavy

 Improved by stencil mapping (Shenya et al)

 Shadow attenuation (Pierce)

 Low refraction, no caustics

 More general solution:

 Path tracing

 Photon mapping (Jensen)→

15

Path tracing

 Trace the rays from the camera (as in recursive ray tracing)

 When a surface is hit, either (randomly):

 shoot another ray in the random direction sampled using the BRDF (importance 

sampling);

 or terminate

 For every hit-point shoot a shadow (light) ray and add the contribution of 

the light

 40+ rays must be traced for 

each pixel

 The method converges to 

the exact solution of the 

rendering equation

 But very slowly

 Monte Carlo approach to 

solving the rendering equation

Image from A Practical Guide to Global Illumination 

using Photon Maps by Henrik Jensen (2000)

Photon mapping

Photon mapping is the process of 

emitting photons into a scene and 

tracing their paths probabilistically to 

build a photon map, a data structure 

which describes the illumination of 

the scene independently of its 

geometry. 

This data is then combined with ray 

tracing to compute the global 

illumination of the scene.
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Image by Henrik Jensen (2000)

Photon mapping—algorithm (1/2)

Photon mapping is a two-pass algorithm:

1.  Photon scattering

A. Photons are fired from each light source, 

scattered in randomly-chosen directions.  

The number of photons per light is a function of its surface area and 

brightness.

B. Photons fire through the scene (re-use that raytracer, folks.)  Where 

they strike a surface they are either absorbed, reflected or refracted.

C. Wherever energy is absorbed, cache the location, direction and 

energy of the photon in the photon map.  The photon map data 

structure must support fast insertion and fast nearest-neighbor 

lookup; a kd-tree1 is often used.
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Image by Zack Waters

http://graphics.ucsd.edu/~henrik/
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Photon mapping—algorithm (2/2)

Photon mapping is a two-pass algorithm:

2.  Rendering

A. Ray trace the scene from the point of view of 

the camera.

B. For each first contact point P use the ray tracer for specular but 

compute diffuse from the photon map.

C. Compute radiant illumination by summing the contribution along the 

eye ray of all photons within a sphere of radius r of P.

D. Caustics can be calculated directly here from the photon map.  For 

accuracy, the caustic map is usually distinct from the radiance map.
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Image by Zack Waters

Photon mapping is probabilistic

This method is a great example of 

Monte Carlo integration, in which a 

difficult integral (the lighting equation) 

is simulated by randomly sampling 

values from within the integral’s domain 

until enough samples average out to 

about the right answer.

This means that you’re going to be 

firing millions of photons.  Your data 

structure is going to have to be very

space-efficient.

20
Image credit: http://www.okino.com/conv/imp_jt.htm

Photon mapping is probabilistic

Initial photon direction is random.  Constrained by light 

shape, but random.

What exactly happens each time a photon hits a solid also 

has a random component:

Based on the diffuse reflectance, specular reflectance and 

transparency of the surface, compute probabilities pd, ps and pt where 

(pd+ps+pt)≤1.  This gives a probability map:

Choose a random value p є [0,1].  Where p falls in the probability 

map of the surface determines whether the photon is reflected, 

refracted or absorbed.

21

0 1pd
pspt

This surface would 

have minimal 

specular highlight.

Photon mapping gallery
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http://www.pbrt.org/gallery.phphttp://web.cs.wpi.edu/~emmanuel/courses/cs563/writ

e_ups/zackw/photon_mapping/PhotonMapping.html

http://graphics.ucsd.edu/~henrik/images/global.html

Ambient occlusion

 Approximates global 

illumination

 Estimate how much occluded is 

each surface

 And reduce the ambient light it 

receives accordingly

 Much faster than a full global 

illumination solution, yet 

appears very plausible

 Commonly used in animation, 

where plausible solution is more 

important than physical accuracy
Image generated with ambient 

component only (no light) and 

modulated by ambient occlusion 

factor.

Ambient occlusion in action

24 Car photos from John Hable’s presentation at GDC 2010, 

“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

http://www.okino.com/conv/imp_jt.htm
http://www.pbrt.org/gallery.php
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://graphics.ucsd.edu/~henrik/images/global.html
http://filmicgames.com/archives/6


13/02/2017

5

Ambient occlusion in action

25 Car photos from John Hable’s presentation at GDC 2010, 

“Uncharted 2: HDR Lighting” (filmicgames.com/archives/6)

Ambient occlusion

 For a point on a surface, shoot rays in random directions

 Count how many of these rays hit objects

 The more rays hit other 

objects, the more occluded 

is that point

 The darker is the

ambient component

Ap occlusion at point p

n normal at point p

Vp,𝜔 visibility from p in direction 𝜔
Ω integrate over a hemisphere

Ambient occlusion - Theory

 This approach is very flexible

 Also very expensive!

 To speed up computation, randomly 

sample rays cast out from each 

polygon or vertex (this is a Monte-

Carlo method)

 Alternatively, render the scene from 

the point of view of each vertex and 

count the background pixels in the 

render

 Best used to pre-compute per-object 

“occlusion maps”, texture maps of 

shadow to overlay onto each object

 But pre-computed maps fare poorly 

on animated models...

27 Image credit: “GPU Gems 1”, nVidia, 2004.  

Top: without AO.   Bottom: with AO.
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Screen Space Ambient Occlusion - SSAO

“True ambient occlusion is hard, let’s 

go hacking.”

 Approximate ambient occlusion by 

comparing z-buffer values in screen 

space!

 Open plane = unoccluded

 Closed ‘valley’ in depth buffer = 

shadowed by nearby geometry

 Multi-pass algorithm

 Runs entirely on the GPU

28 Image: CryEngine 2.  M. Mittring, “Finding Next Gen –

CryEngine 2.0, Chapter 8”, SIGGRAPH 2007 Course 28

Surface in 

Z-buffer
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