VI. Approximation Algorithms: Travelling Salesman Problem

Thomas Sauerwald

Easter 2018

Introduction

General TSP

Metric TSP

Formal Definition

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

Formal Definition

• Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$

Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

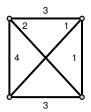
Formal Definition

- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

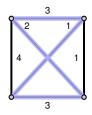
Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.

- Formal Definition

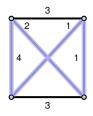
- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of *G* with minimum cost.

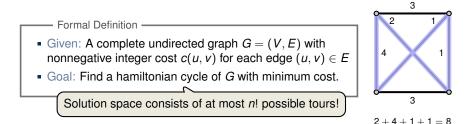


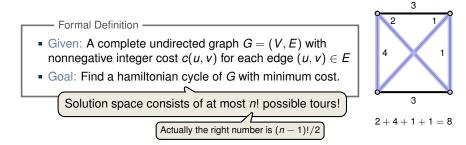
- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.

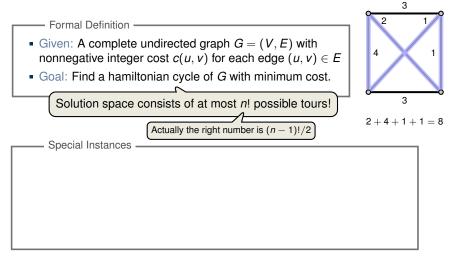


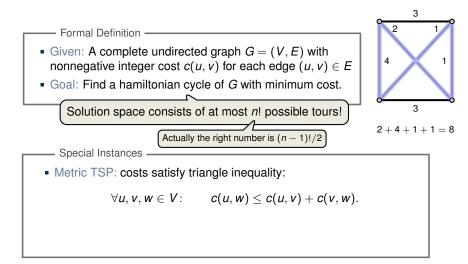
- Given: A complete undirected graph G = (V, E) with nonnegative integer cost c(u, v) for each edge $(u, v) \in E$
- Goal: Find a hamiltonian cycle of G with minimum cost.



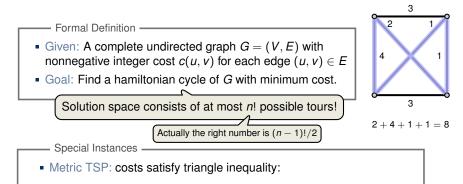






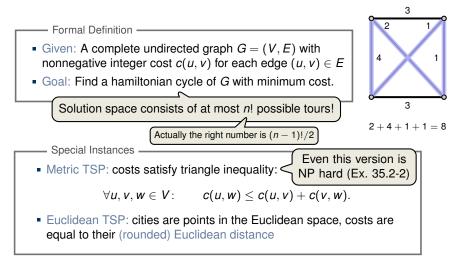


Given a set of cities along with the cost of travel between them, find the cheapest route visiting all cities and returning to your starting point.



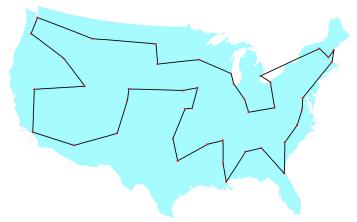
 $\forall u, v, w \in V$: $c(u, w) \leq c(u, v) + c(v, w)$.

• Euclidean TSP: cities are points in the Euclidean space, costs are equal to their (rounded) Euclidean distance



History of the TSP problem (1954)

Dantzig, Fulkerson and Johnson found an optimal tour through 42 cities.

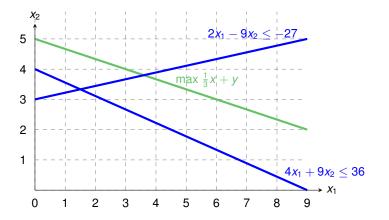


http://www.math.uwaterloo.ca/tsp/history/img/dantzig_big.html

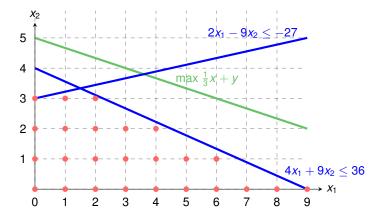
1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)

- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)

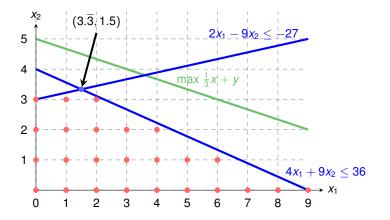
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



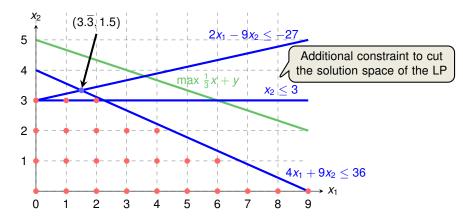
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



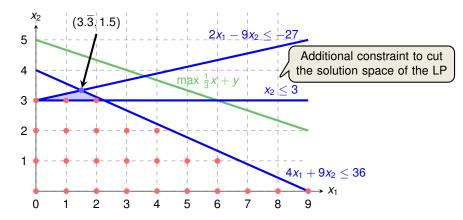
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



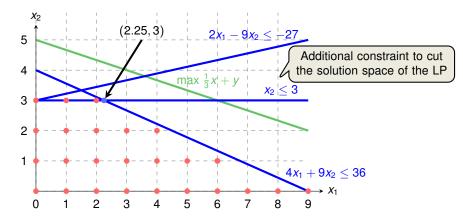
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



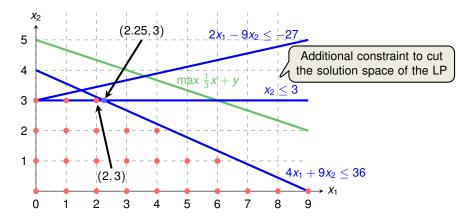
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



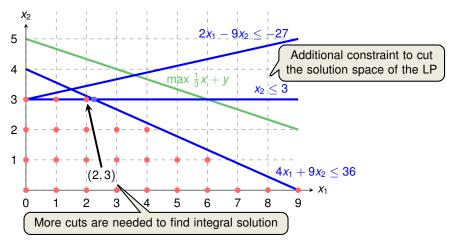
- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



- 1. Create a linear program (variable x(u, v) = 1 iff tour goes between u and v)
- 2. Solve the linear program. If the solution is integral and forms a tour, stop. Otherwise find a new constraint to add (cutting plane)



Introduction

General TSP

Metric TSP

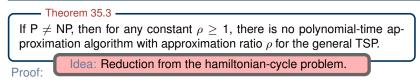
Theorem 35.3 -

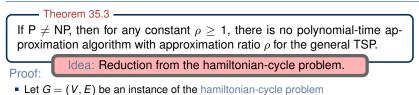
If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

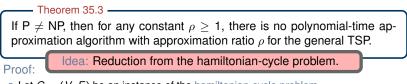
Theorem 35.3 -

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

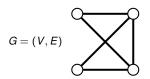
Proof:

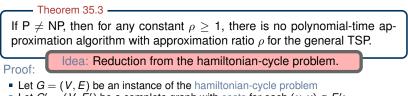




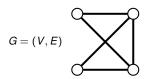


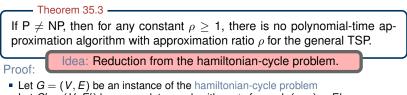
• Let G = (V, E) be an instance of the hamiltonian-cycle problem





• Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

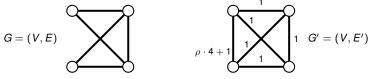




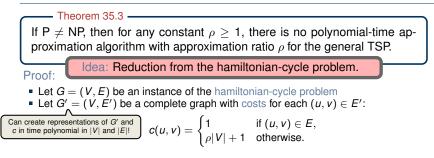
• Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

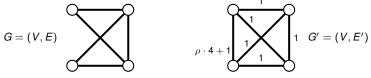
Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Let G = (V, E) be an instance of the hamiltonian-cycle problem Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

Theorem 35.3 If P \neq NP, then for any constant $\rho \ge$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

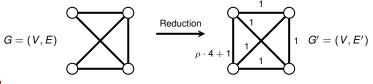


Theorem 35.3 If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho | V | + 1 & \text{otherwise.} \end{cases}$ 1 G' = (V, E')G = (V, E)



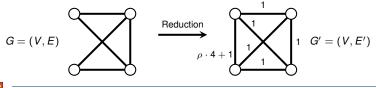


Theorem 35.3 If P \neq NP, then for any constant $\rho \ge$ 1, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$



Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

• If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|

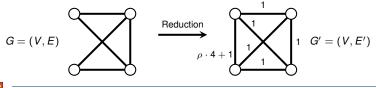


General TSP

7

Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

• If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|

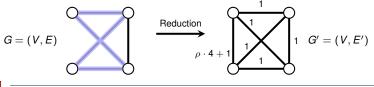


General TSP

7

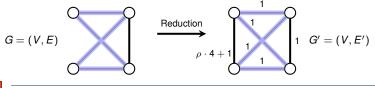
Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

• If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|



Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

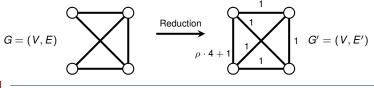
• If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|



VI. Travelling Salesman Problem

Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

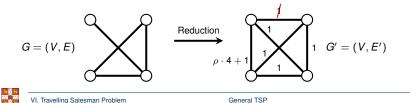


General TSP

7

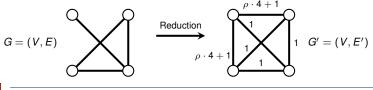
Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



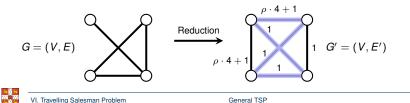
Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



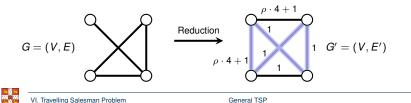
Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Proof: Let G = (V, E) be an instance of the hamiltonian-cycle problem Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



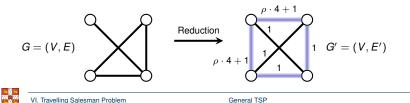
Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Proof: Let G = (V, E) be an instance of the hamiltonian-cycle problem Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Proof: Let G = (V, E) be an instance of the hamiltonian-cycle problem Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

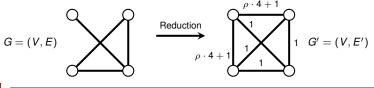
- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,



Theorem 35.3 If $P \neq NP$, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. Idea: Reduction from the hamiltonian-cycle problem. Proof: • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho | V | + 1 & \text{otherwise.} \end{cases}$ • If *G* has a hamiltonian cycle *H*, then (G', c) contains a tour of cost |V|

• If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

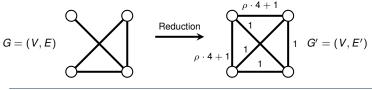
$$\Rightarrow \qquad c(T) \ge (\rho|V|+1) + (|V|-1)$$



Theorem 35.3 If $P \neq NP$, then for any constant $\rho \geq 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP. **Proof: Idea:** Reduction from the hamiltonian-cycle problem. • Let G = (V, E) be an instance of the hamiltonian-cycle problem • Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$: $c(u, v) = \begin{cases} 1 & \text{if } (u, v) \in E, \\ \rho |V| + 1 & \text{otherwise.} \end{cases}$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow \qquad c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$



Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

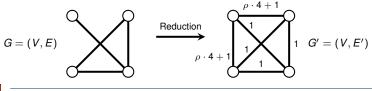
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = egin{cases} 1 & ext{if } (u,v) \in E \
ho|V|+1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow \qquad c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

■ Gap of *ρ* + 1 between tours which are using only edges in *G* and those which don't



Proof:

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

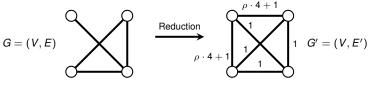
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u, v) = egin{cases} 1 & ext{if } (u, v) \in E \
ho |V| + 1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

$$\Rightarrow \qquad c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

- Gap of $\rho + 1$ between tours which are using only edges in *G* and those which don't
- ρ-Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)



Proof.

Theorem 35.3

If P \neq NP, then for any constant $\rho \ge 1$, there is no polynomial-time approximation algorithm with approximation ratio ρ for the general TSP.

Idea: Reduction from the hamiltonian-cycle problem.

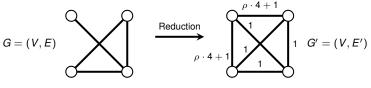
- Let G = (V, E) be an instance of the hamiltonian-cycle problem
- Let G' = (V, E') be a complete graph with costs for each $(u, v) \in E'$:

$$c(u,v) = egin{cases} 1 & ext{if } (u,v) \in E \
ho|V|+1 & ext{otherwise.} \end{cases}$$

- If G has a hamiltonian cycle H, then (G', c) contains a tour of cost |V|
- If G does not have a hamiltonian cycle, then any tour T must use some edge $\notin E$,

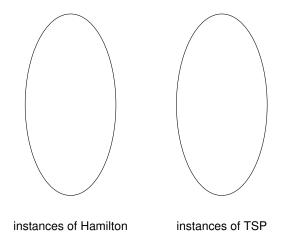
$$\Rightarrow \qquad c(T) \ge (\rho |V| + 1) + (|V| - 1) = (\rho + 1)|V|.$$

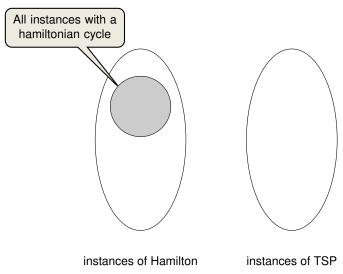
- Gap of *ρ* + 1 between tours which are using only edges in *G* and those which don't
- ρ -Approximation of TSP in G' computes hamiltonian cycle in G (if one exists)

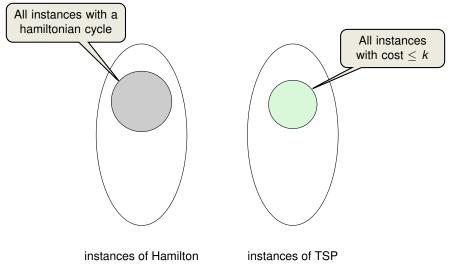


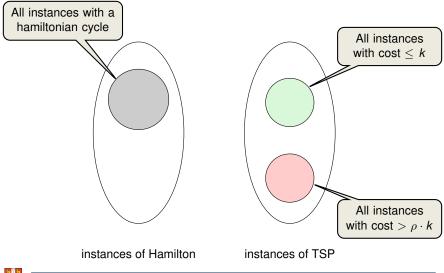
Proof.

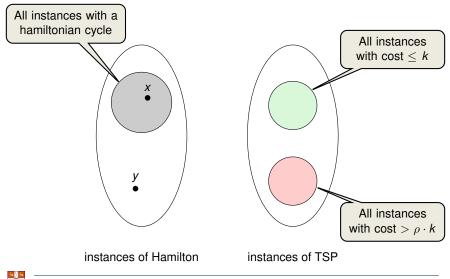
Proof of Theorem 35.3 from a higher perspective

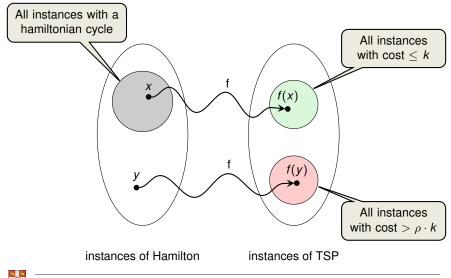




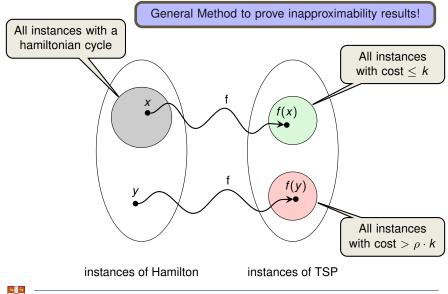








Proof of Theorem 35.3 from a higher perspective



Introduction

General TSP

Metric TSP

APPROX-TSP-TOUR(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{\min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let H be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of T_{\min}
- 6: return the hamiltonian cycle H

APPROX-TSP-TOUR(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{\min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let *H* be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of T_{\min}
- 6: return the hamiltonian cycle H

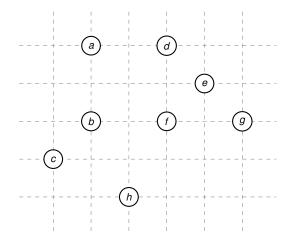
Runtime is dominated by MST-PRIM, which is $\Theta(V^2)$.

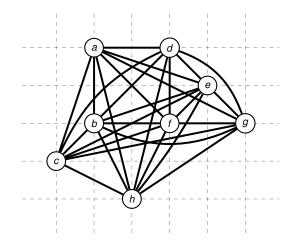
APPROX-TSP-TOUR(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{\min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: let *H* be a list of vertices, ordered according to when they are first visited
- 5: in a preorder walk of T_{\min}
- 6: return the hamiltonian cycle H

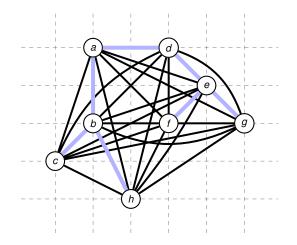
Runtime is dominated by MST-PRIM, which is $\Theta(V^2)$.

Remember: In the Metric-TSP problem, *G* is a complete graph.

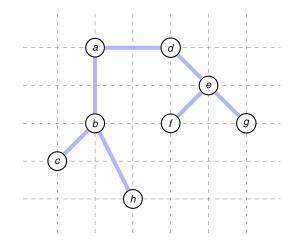




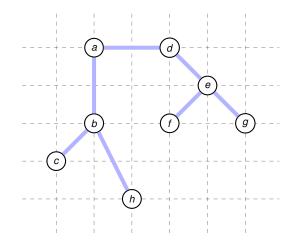
1. Compute MST T_{min}



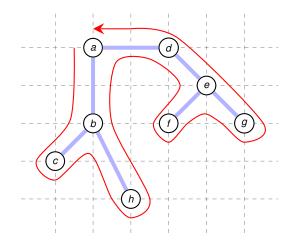
1. Compute MST T_{min}



1. Compute MST $T_{min} \checkmark$



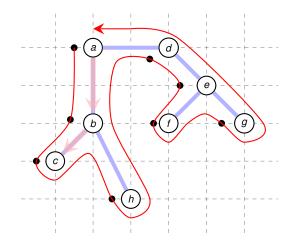
- 1. Compute MST $T_{min} \checkmark$
- 2. Perform preorder walk on MST T_{min}



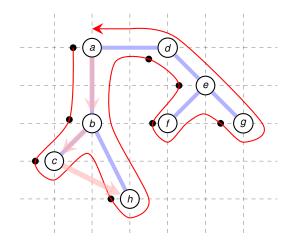
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark



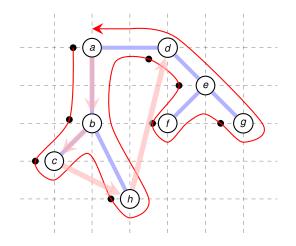
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk



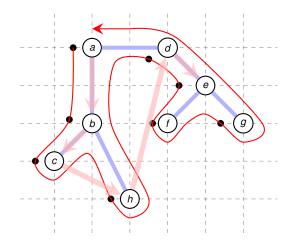
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk



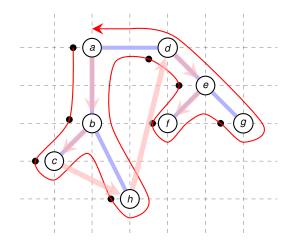
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk



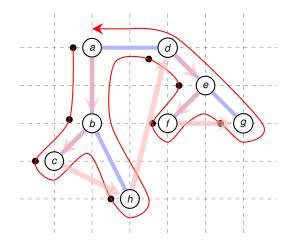
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk



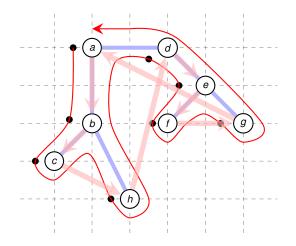
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk



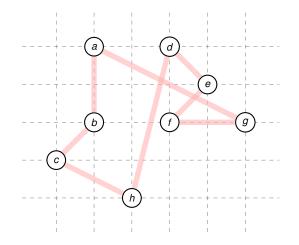
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk



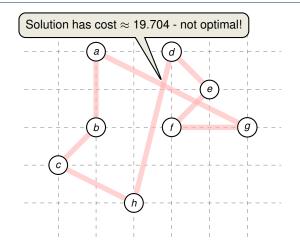
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk



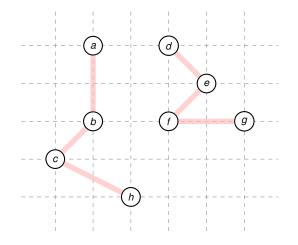
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk



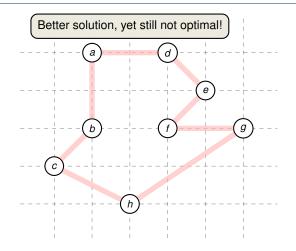
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



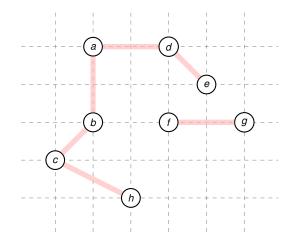
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST T_{min} \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



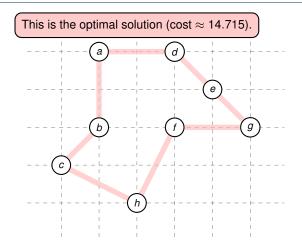
- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



- 1. Compute MST $T_{min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

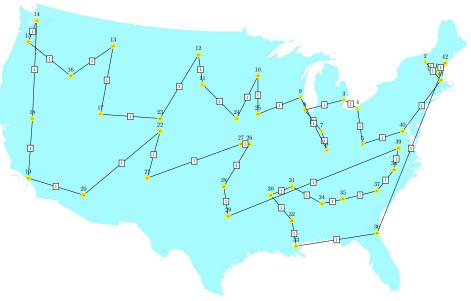


- 1. Compute MST $T_{\min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark



- 1. Compute MST $T_{min} \checkmark$
- 2. Perform preorder walk on MST $T_{\rm min}$ \checkmark
- 3. Return list of vertices according to the preorder tree walk \checkmark

Approximate Solution: Objective 921



Optimal Solution: Objective 699

Theorem 35.2

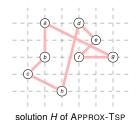
APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

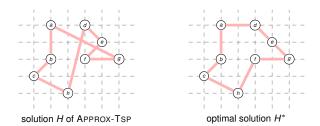
- Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

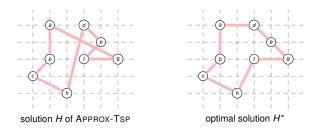


Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

Consider the optimal tour H* and remove an arbitrary edge

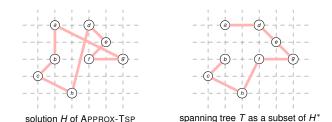


Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

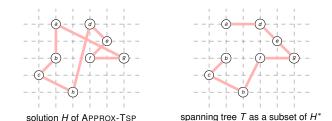
Consider the optimal tour H* and remove an arbitrary edge



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

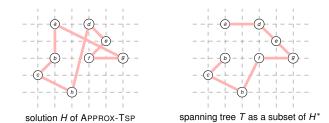
- Consider the optimal tour *H*^{*} and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree *T* and $c(T) \leq c(H^*)$



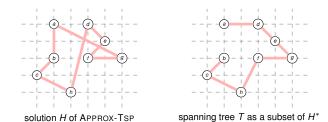
- Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour *H*^{*} and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$

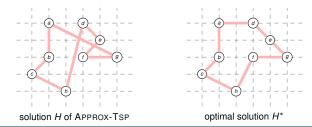
exploiting that all edge costs are non-negative!



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

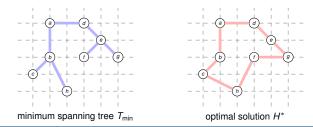
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

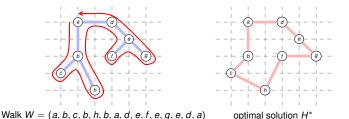
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

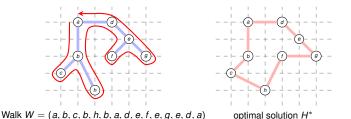
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

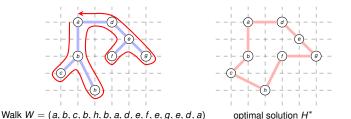


Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree *T* and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min})$$



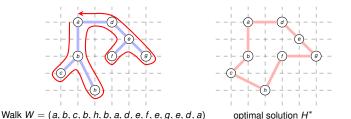
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree *T* and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$



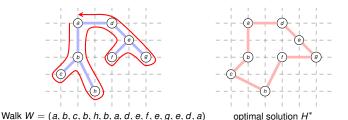
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree *T* and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$



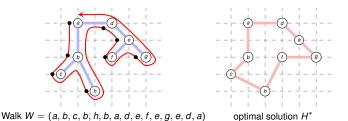
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree *T* and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$



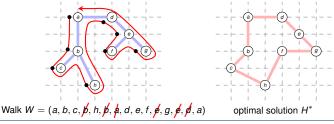
Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree *T* and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$



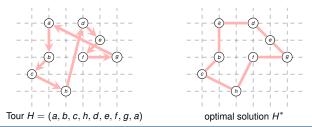
- Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree *T* and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

 $c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

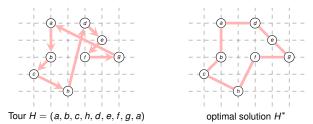
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:



Metric TSP

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

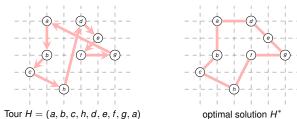
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:

$$c(H) \leq c(W)$$



Metric TSP

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

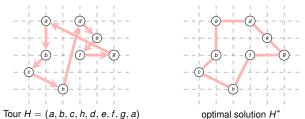
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:

$$c(H) \leq c(W) \leq 2c(H^*)$$



Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Proof:

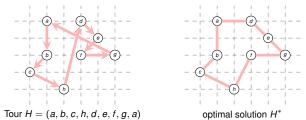
- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree T and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:

$$c(H) \leq c(W) \leq 2c(H^*)$$



Metric TSP

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

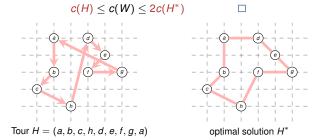
Proof:

- Consider the optimal tour H* and remove an arbitrary edge
- \Rightarrow yields a spanning tree *T* and $c(T) \leq c(H^*)$
 - Let W be the full walk of the minimum spanning tree T_{min} (including repeated visits)
- \Rightarrow Full walk traverses every edge exactly twice, so

$$c(W) = 2c(T_{\min}) \leq 2c(T) \leq 2c(H^*)$$

exploiting triangle inequality!

Deleting duplicate vertices from W yields a tour H with smaller cost:



Metric TSP

- Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

- Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

Theorem 35.2 -

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

Can we get a better approximation ratio?

CHRISTOFIDES(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{\min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching M_{\min} with minimum weight in the complete graph
- 5: over the odd-degree vertices in T_{min}
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of $T_{\min} \cup M_{\min}$
- 8: **return** the hamiltonian cycle *H*

Theorem 35.2

APPROX-TSP-TOUR is a polynomial-time 2-approximation for the traveling-salesman problem with the triangle inequality.

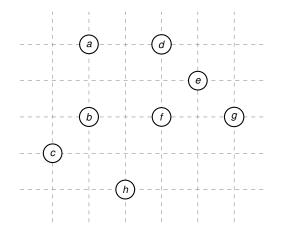
Can we get a better approximation ratio?

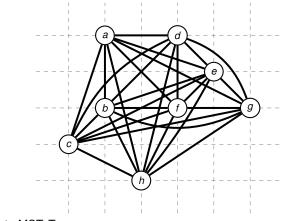
CHRISTOFIDES(G, c)

- 1: select a vertex $r \in G.V$ to be a "root" vertex
- 2: compute a minimum spanning tree T_{\min} for G from root r
- 3: using MST-PRIM(G, c, r)
- 4: compute a perfect matching M_{\min} with minimum weight in the complete graph
- 5: over the odd-degree vertices in T_{min}
- 6: let H be a list of vertices, ordered according to when they are first visited
- 7: in a Eulearian circuit of $T_{\min} \cup M_{\min}$
- 8: return the hamiltonian cycle H

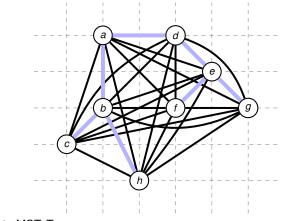
- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

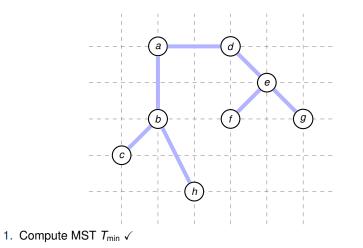


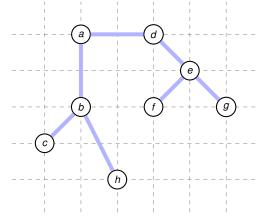


1. Compute MST T_{min}

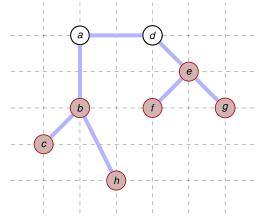


1. Compute MST T_{min}

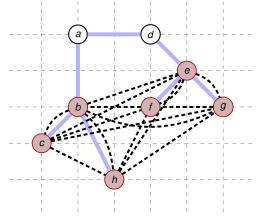




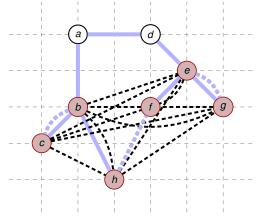
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{min} of the odd vertices in T_{min}



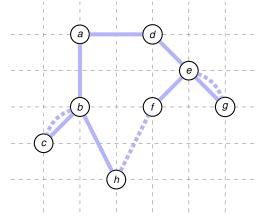
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{min} of the odd vertices in T_{min}



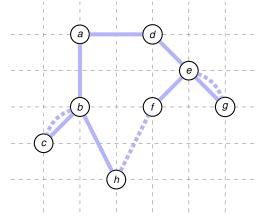
- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{min} of the odd vertices in T_{min}



- 1. Compute MST T_{min} \checkmark
- 2. Add a minimum-weight perfect matching M_{min} of the odd vertices in T_{min}

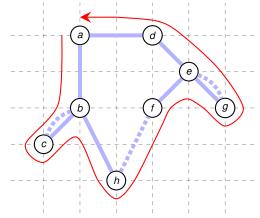


- 1. Compute MST $T_{\min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark



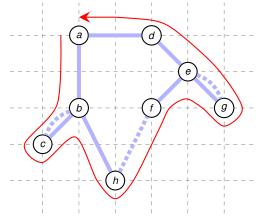
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min}$

All vertices in $T_{min} \cup M_{min}$ have even degree!

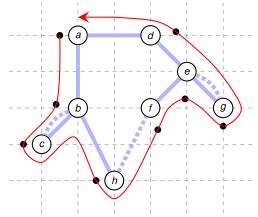


- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$

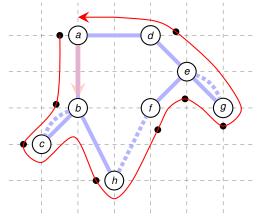
All vertices in $T_{min} \cup M_{min}$ have even degree!



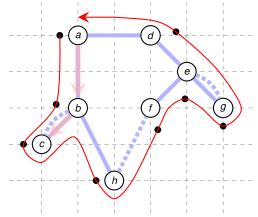
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



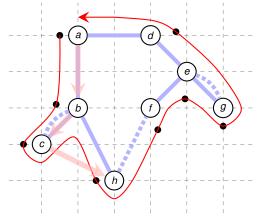
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



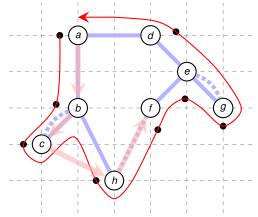
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



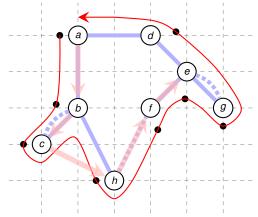
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



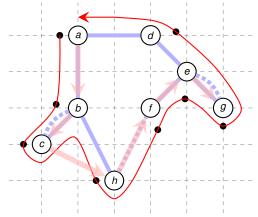
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



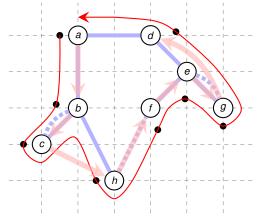
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



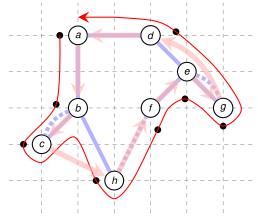
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



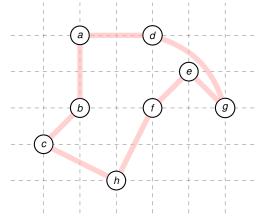
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



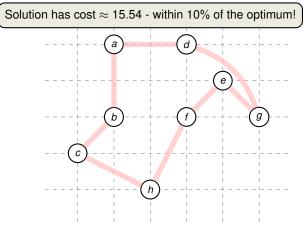
- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle



- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle \checkmark



- 1. Compute MST $T_{min} \checkmark$
- 2. Add a minimum-weight perfect matching $M_{\rm min}$ of the odd vertices in $T_{\rm min}$ \checkmark
- 3. Find an Eulerian Circuit in $T_{\min} \cup M_{\min} \checkmark$
- 4. Transform the Circuit into a Hamiltonian Cycle \checkmark

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

As before, let H^{*} denote the optimal tour

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit *W* uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
(1)

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit *W* uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$

$$(1)$$

• Let H^*_{odd} be an optimal tour on the odd-degree vertices in T_{min}

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit W uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
(1)

- Let H^*_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H^*_{odd})$

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit *W* uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
(1)

- Let H^*_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H^*_{odd})$
- By shortcutting and the triangle inequality,

(2)

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit *W* uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
(1)

- Let H^{*}_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H^*_{odd})$
- By shortcutting and the triangle inequality,

$$c(M_{\min}) \leq \frac{1}{2}c(H_{odd}^{*}) \leq \frac{1}{2}c(H^{*}).$$
 (2)

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit *W* uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
(1)

- Let H^{*}_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H^*_{odd})$
- By shortcutting and the triangle inequality,

$$c(M_{\min}) \leq \frac{1}{2}c(H_{odd}^{*}) \leq \frac{1}{2}c(H^{*}).$$
 (2)

Combining 1 with 2 yields

- Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}\text{-approximation}$ algorithm for the travelling salesman problem with the triangle inequality.

Proof (Approximation Ratio):

Proof is quite similar to the previous analysis

- As before, let H^{*} denote the optimal tour
- The Eulerian Circuit *W* uses each edge of the minimum spanning tree T_{\min} and the minimum-weight matching M_{\min} exactly once:

$$c(W) = c(T_{\min}) + c(M_{\min}) \le c(H^*) + c(M_{\min})$$
(1)

- Let H^{*}_{odd} be an optimal tour on the odd-degree vertices in T_{min}
- Taking edges alternately, we obtain two matchings M_1 and M_2 such that $c(M_1) + c(M_2) = c(H^*_{odd})$
- By shortcutting and the triangle inequality,

$$c(M_{\min}) \leq \frac{1}{2}c(H_{odd}^*) \leq \frac{1}{2}c(H^*).$$
 (2)

Combining 1 with 2 yields

$$c(W) \leq c(H^*) + c(M_{\min}) \leq c(H^*) + \frac{1}{2}c(H^*) = \frac{3}{2}c(H^*).$$

Theorem (Christofides'76) .

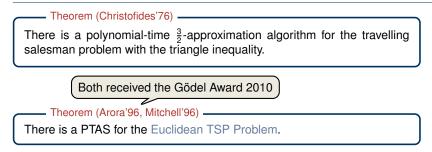
There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

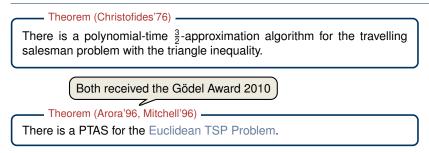
Theorem (Christofides'76)

There is a polynomial-time $\frac{3}{2}$ -approximation algorithm for the travelling salesman problem with the triangle inequality.

Theorem (Arora'96, Mitchell'96) -

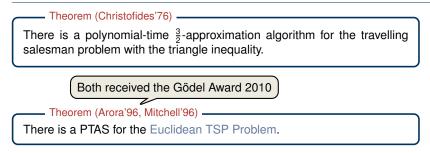
There is a PTAS for the Euclidean TSP Problem.





"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991



"Christos Papadimitriou told me that the traveling salesman problem is not a problem. It's an addiction."

Jon Bentley 1991

