Simply typed functions:
- type of result depends on type of argument, but not its value

vs

Dependently typed functions:
- type of result depends on type of argument and on its value

[§5, p. 53 et seq.]
Functions on types

In PLC, $\Lambda \alpha (M)$ is an anonymous notation for the function F mapping each type τ to the value of $M[\tau/\alpha]$ (of some particular type).
Functions on types

In PLC, \(\Lambda \alpha (M) \) is an anonymous notation for the function \(F \) mapping each type \(\tau \) to the value of \(M[\tau/\alpha] \) (of some particular type).

If \(\Lambda \alpha (M) : \forall \alpha (\tau') \), then for each argument \(\tau \), the type of \(M[\tau/\alpha] \) is \(\tau' \), it depends on the argument \(\tau \).

So \(\forall \alpha (\tau') \) is a type of "dependently-typed" functions
Dependent Functions

Given a set A and a family of sets B_a indexed by the elements a of A, we get a set

$$\prod_{a \in A} B_a \triangleq \{ F \in A \mid \bigcup_{a \in A} B_a \} \ | \ \forall (a, b) \in F (b \in B_a)\}$$

The set of all b that are in B_a for some $a \in A$.

Dependent Functions

Given a set A and a family of sets B_a indexed by the elements a of A, we get a set

$$\prod_{a \in A} B_a \triangleq \{ F : A \rightarrow \bigcup_{a \in A} B_a \mid \forall (a, b) \in F \ (b \in B_a) \}$$

of dependent functions. Each $F \in \prod_{a \in A} B_a$ is a single-valued and total relation that associates to each $a \in A$ an element in B_a.
Dependent Functions

Given a set A and a family of sets B_a indexed by the elements a of A, we get a set

$$\prod_{a \in A} B_a \triangleq \{ F \in A \rightarrow \bigcup_{a \in A} B_a \mid \forall (a, b) \in F (b \in B_a) \}$$

of dependent functions. Each $F \in \prod_{a \in A} B_a$ is a single-valued and total relation that associates to each $a \in A$ an element in B_a (usually written F_a).

For example if $A = \mathbb{N}$ and for each $n \in \mathbb{N}$, $B_n = \{0, 1\}^n \rightarrow \{0, 1\}$, then $\prod_{n \in \mathbb{N}} B_n$ consists of functions mapping each number n to an n-ary Boolean operation.
A tautology checker

\[
\text{fun } \text{taut } x \ f = \ \text{if } x = 0 \ \text{then } f \ \text{else} \\
(\text{taut}(x - 1)(f \ \text{true})) \\
\text{andalso } (\text{taut}(x - 1)(f \ \text{false}))
\]
A tautology checker

\[
\text{fun } \textit{taut} \ x \ f = \ \text{if } x = 0 \ \text{then } f \ \text{else} \\
(taut(x - 1)(f \ \text{true})) \\
\text{andalso } (taut(x - 1)(f \ \text{false}))
\]

Defining types \textit{n AryBoolOp} for each natural number \(n \in \mathbb{N}\)

\[
\begin{cases}
0 \text{ AryBoolOp} & \triangleq \text{bool} \\
(n + 1) \text{ AryBoolOp} & \triangleq \text{bool} \to (n \text{ AryBoolOp})
\end{cases}
\]

\text{Eg. } 3 \text{ AryBoolOp} = \text{bool} \to (\text{bool} \to (\text{bool} \to \text{bool}))

\text{3 arguments}
A tautology checker

fun `taut x f` = if `x = 0` then `f` else
 (`taut (x - 1) (f `true`)`

 andalso (`taut (x - 1) (f `false`)`)

Defining types `n AryBoolOp` for each natural number `n ∈ \mathbb{N}`

\[
\begin{cases}
0
\text{AryBoolOp} & \triangleq \text{bool} \\
(n + 1) \text{AryBoolOp} & \triangleq \text{bool} \rightarrow (n \text{AryBoolOp})
\end{cases}
\]

then `taut n` has type `(n \text{AryBoolOp}) \rightarrow \text{bool}`, i.e. the result type of the function `taut` depends upon the value of its argument.
The tautology checker in Agda

data Bool : Set where
 true : Bool
 false : Bool

and : Bool -> Bool -> Bool
true and true = true
true and false = false
false and _ = false

data Nat : Set where
 zero : Nat
 succ : Nat -> Nat

_AryBool0p : Nat -> Set
zero AryBool0p = Bool
(succ x) AryBool0p = Bool -> x AryBool0p

taut : (x : Nat) -> x AryBool0p -> Bool
taut zero f = f
taut (succ x) f = taut x (f true) and taut x (f false)
The tautology checker in Agda

data Bool : Set where
 true : Bool
 false : Bool

and : Bool -> Bool -> Bool
true and true = true
true and false = false
false and _ = false

data Nat : Set where
 zero : Nat
 succ : Nat -> Nat

_AryBoolOp : Nat -> Set
zero AryBoolOp = Bool
(succ x) AryBoolOp = Bool -> x AryBoolOp

taut : (x : Nat) -> x AryBoolOp -> Bool
taut zero f = f
taut (succ x) f = taut x (f true) and taut x (f false)
Dependent function types $\Pi x : \tau (\tau')$

(written in Agda as

$$(x : \tau) \to \tau'$$

τ' may ‘depend’ on x, i.e. have free occurrences of x.

(Free occurrences of x in τ' are bound in $\Pi x : \tau (\tau')$.)
Dependent function types $\Pi x : \tau (\tau')$

\[
\frac{\Gamma, x : \tau \vdash M : \tau'}{
\Gamma \vdash \lambda x : \tau (M) : \Pi x : \tau (\tau')}
\quad \text{if } x \notin \text{dom}(\Gamma)
\]
Dependent function types $\Pi x : \tau (\tau')$

\[
\frac{\Gamma, x : \tau \vdash M : \tau'}{
\Gamma \vdash \lambda x : \tau (M) : \Pi x : \tau (\tau')}
\quad \text{if } x \notin \text{dom}(\Gamma)
\]

\[
\frac{
\Gamma \vdash M : \Pi x : \tau (\tau') \quad \Gamma \vdash M' : \tau
}{
\Gamma \vdash MM' : \tau'[M'/x]
}
\]
Conversion typing rule

Dependent type systems usually feature a rule of the form

\[
\Gamma \vdash M : \tau \\
\Gamma \vdash M : \tau' \quad \text{if } \tau \approx \tau'
\]

where \(\tau \approx \tau' \) is some relation of *equality between types* (e.g. inductively defined in some way).

For example one would expect \((1 + 1) \text{AryBoolOp} \approx 2 \text{AryBoolOp}\).
Conversion typing rule

Dependent type systems usually feature a rule of the form

\[
\frac{\Gamma \vdash M : \tau}{\Gamma \vdash M : \tau'} \quad \text{if } \tau \approx \tau'
\]

where \(\tau \approx \tau' \) is some relation of equality between types (e.g. inductively defined in some way).

For example one would expect \((1+1) \text{AryBoolOp} \approx 2 \text{AryBoolOp}\).

For decidability of type-checking, one needs \(\approx \) to be a decidable relation between type expressions.
Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped together into a single syntactic category of pseudo-terms:

\[
t ::= x \quad \text{variable}
\]
\[
| s \quad \text{sort}
\]
\[
| \Pi x : t(t) \quad \text{dependent function type}
\]
\[
| \lambda x : t(t) \quad \text{function abstraction}
\]
\[
| tt \quad \text{function application}
\]

where \(x\) ranges over a countably infinite set \(\text{Var}\) of variables and \(s\) ranges over a disjoint set \(\text{Sort}\) of sort symbols – constants that denote various universes (= types whose elements denote types of various sorts) \([\text{kind}]\) is a commonly used synonym for sort\]. \(\lambda x : t(t')\) and \(\Pi x : t(t')\) both bind free occurrences of \(x\) in the pseudo-term \(t'\).

E.g. if \(s\) is a sort for types

\[
\lambda x : s (\lambda y : x(y))
\]

is like PLC term \(\Lambda \alpha (\Lambda y : \alpha(y))\)
Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped together into a single syntactic category of pseudo-terms:

\[
\begin{align*}
t & ::= x & \text{variable} \\
 & | s & \text{sort} \\
 & | \Pi x : t (t) & \text{dependent function type} \\
 & | \lambda x : t (t) & \text{function abstraction} \\
 & | tt & \text{function application}
\end{align*}
\]

where \(x \) ranges over a countably infinite set \(\text{Var} \) of variables and \(s \) ranges over a disjoint set \(\text{Sort} \) of sort symbols – constants that denote various universes (= types whose elements denote types of various sorts) \([\text{kind}] \) is a commonly used synonym for sort\]. \(\lambda x : t (t') \) and \(\Pi x : t (t') \) both bind free occurrences of \(x \) in the pseudo-term \(t' \).

\[\text{Binders} : \quad \Pi x : t (-) \]
\[\lambda x : t (-) \]
Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped together into a single syntactic category of *pseudo-terms*:

\[
t ::= x \quad \text{variable} \\
| s \quad \text{sort} \\
| \Pi x : t (t) \quad \text{dependent function type} \\
| \lambda x : t (t) \quad \text{function abstraction} \\
| tt \quad \text{function application}
\]

where \(x \) ranges over a countably infinite set \(\text{Var} \) of variables and \(s \) ranges over a disjoint set \(\text{Sort} \) of *sort symbols* – constants that denote various universes (= types whose elements denote types of various sorts) [kind is a commonly used synonym for sort]. \(\lambda x : t (t') \) and \(\Pi x : t (t') \) both bind free occurrences of \(x \) in the pseudo-term \(t' \).

\[t[t'/x] \] denotes result of capture-avoiding substitution of \(t' \) for all free occurrences of \(x \) in \(t \).
Pure Type Systems (PTS) – syntax

In a PTS type expressions and term expressions are lumped together into a single syntactic category of \textit{pseudo-terms}:

\[
 t ::= x \quad \text{variable} \\
 | s \quad \text{sort} \\
 | \Pi x : t (t) \quad \text{dependent function type} \\
 | \lambda x : t (t) \quad \text{function abstraction} \\
 | tt \quad \text{function application}
\]

where \(x \) ranges over a countably infinite set \textbf{Var} of variables and \(s \) ranges over a disjoint set \textbf{Sort} of \textit{sort symbols} – constants that denote various universes (= types whose elements denote types of various sorts) \([\text{kind} \text{ is a commonly used synonym for \textit{sort}]}.\ \lambda x : t (t') \) and \(\Pi x : t (t') \) both bind free occurrences of \(x \) in the pseudo-term \(t' \).

\[
 t \rightarrow t' \triangleq \Pi x : t (t') \quad \text{where} \ x \notin \text{fv}(t').
\]

\textbf{simply-typed functions are a special case of dependently-typed functions}
Pure Type Systems – beta-conversion

- **beta-reduction** of pseudo-terms: $t \rightarrow t'$ means t' can be obtained from t (up to alpha-conversion, of course) by replacing a subexpression which is a redex by its corresponding reduct. There is only one form of redex-reduct pair:

 $$(\lambda x : t (t_1)) t_2 \rightarrow t_1[t_2/x]$$

- As usual, \rightarrow^* denotes the reflexive-transitive closure of \rightarrow.
Pure Type Systems – beta-conversion

- **beta-reduction** of pseudo-terms: $t \rightarrow t'$ means t' can be obtained from t (up to alpha-conversion, of course) by replacing a subexpression which is a *redex* by its corresponding *reduct*. There is only one form of redex-reduct pair:

$$ (\lambda x : t (t_1)) t_2 \rightarrow t_1[t_2/x] $$

- As usual, \rightarrow^* denotes the reflexive-transitive closure of \rightarrow.
- **beta-conversion** of pseudo-terms: \equiv_β is the reflexive-symmetric-transitive closure of \rightarrow (i.e. the smallest equivalence relation containing \rightarrow).
Pure Type Systems – typing judgements

take the form

$$\Gamma \vdash t : t'$$

where t, t' are pseudo-terms and Γ is a context, a form of typing environment given by the grammar

$$\Gamma ::= \diamond \mid \Gamma, x : t$$

(Thus contexts are finite ordered lists of (variable,pseudo-term)-pairs, with the empty list denoted \diamond, the head of the list on the right and list-cons denoted by $_ _$. Unlike previous type systems in this course, the order in which typing declarations $x : t$ occur in a context is important.)

eg. $$\diamond, x : s, f : x \to s \vdash fx : s$$

(s a sort, $x \& f$ variables)