di
W\Q\\?({‘\,ﬂ)ed /RAV\U\"WY\S :

N*\jpeo{? reswlt deponds o
e 3 o M,MM;% valve

VS
De/pe/v\o(ch\/\} hﬂpd Cfvmd'\'ms ;

N*\jp@ of reswlt deponds o
9 6(- o\ro],mvv\u\k) ow ke vahe

[§§‘> pS3 96;%?

Functions on types

In PLC, | Aa (M) | is an anonymous notation for the function F

mapping each type T to the value of M[t/«] (of some particular
type).

‘[}epthdmf‘/\j, hfped Functions on types

In PLC,

Awx (M)

is an anonymous notation for the function F

mapping each type T to the value of M[t/«] (of some particular

type).

N \VID{(T"
MWW@ byped® f%wxcf%w

—

T ANt (m) - \U’mtc)

W r?w e AN M?mw%\}t <
i
~ 1k

P st MLT(N) is T (Tl),
-\S__ on Tha Mg,u\wﬁk Yt

)5 o Yy Sf

Dependent Functions

Given a set A and a family of sets B, indexed by the elements a of
A, we get a set

[Toca Ba = {F € A+ Usca Ba

| V(a,b) € F (b € B,)}

e set 8 adl b Al
Ovrt 1N @U\JWSWV\L .

Dependent Functions

Given a set A and a family of sets B, indexed by the elements a of
A, we get a set

[laca Ba = {F € A —Uzea Ba | V(a,b) € F (b € B,)}

of dependent functions. Each F € [[,c4 Ba is a single-valued and
total relation that associates to each a € A an element in B,

Dependent Functions

Given a set A and a family of sets B, indexed by the elements a of
A, we get a set

[laca Ba = {F € A —Uzea Ba | V(a,b) € F (b € B,)}

of dependent functions. Each F € [[,c4 Ba is a single-valued and
total relation that associates to each a € A an element in B,
(usually written F a).

For example if A =IN and for each n € N, B, = {0,1}" - {0,1}, then
[;e Bn consists of functions mapping each number n to an n-ary
Boolean operation.

A tautology checker

fun taut x f = if x = 0 then f else
(taut(x — 1) (f true))
andalso (taut(x — 1)(f false))

A tautology checker

fun taut x f = if x = 0 then f else
(taut(x — 1) (f true))
andalso (taut(x — 1)(f false))

Defining types n AryBoolOp for each natural number n € IN

0 AryBoolOp £ bool
(n+1) AryBoolOp = bool — (n AryBoolOp)

S 2 ABol Op = Moﬂﬁﬁb&b@)
O\/r%\/\

3

A tautology checker

fun taut x f = if x = 0 then f else
(taut(x — 1) (f true))
andalso (taut(x — 1)(f false))

Defining types n AryBoolOp for each natural number n € IN

0 AryBoolOp £ bool
(n+1) AryBoolOp = bool — (n AryBoolOp)

then tautn has type (n AryBoolOp) — bool, i.e. the result type
of the function taut depends upon the value of its argument.

The tautology checker in Agda

Bool : Set
true : Bool
false : Bool

~and_ : Bool -> Bool -> Bool
true and true = true
true and false = false
false and _ = false

Nat : Set

zero : Nat
succ : Nat -> Nat

_AryBool(Op : Nat -> Set
Zero AryBoolOp = Bool
(succ x) AryBoolOp = Bool -> x AryBoolOp

taut : (x : Nat) -> x AryBoolOp -> Bool
taut zero f =1
taut (succ x) f = taut x (f true) and taut x (f false)

The tautology checker in Agda

data Bool : Set where
true : Bool (7\ g\
false : Bool é:f// YV\P
C;gnd_ : Bool -> Bool —> Bi§£:> if%f\V\ﬁ?’ NAVaN

true and true = tTrue

true and false = false
false and _ = false

data Nat : Set where
zero : Nat
succ : Nat -> Nat

_AryBoolOp : Nat -> Set N 'QN\AQV\J(‘%
Zero AryBoolOp = Bool N Uf

R
(succ x) AryBoolOp = Bool -> x AryBoolOp *\@] WAV\L}7\DQ

(:EEEE_L_SE#ifNat> -> x AryBoolOp -> Bool

taut zero f =1
taut (succ x) f = taut x (f true) and taut x (f false)

Dependent function types ITx : T (/)

(Wi A@M\ oS
(7&?)*57))

T/ may ‘depend’ on x, i.e. have free occurrences of x.

(Free occurrences of x in T/ are bound in ITx : T (7/).)

Dependent function types Ilx : T (/)

x:tH-M: 1
FTFAx:Tt (M) :IIx: t(T")

if x & dom(T')

Dependent function types Ilx : T (/)

x:tH-M: 1

TFAx:c(M):Te:c(o) 1~ &dom(D)

TEFM:IIx:t(t/) THFM:t
[-MM : o [Mx]

Conversion typing rule

Dependent type systems usually feature a rule of the form

'-M:T
r-M:t

if t~1

where T = T’ is some relation of equality between types
(e.g. inductively defined in some way).

For example one would expect (1+ 1) AryBoolOp = 2 AryBool0Op.

Conversion typing rule

Dependent type systems usually feature a rule of the form

T'EFM:T

e o ifr~t
. T

where T = T’ is some relation of equality between types
(e.g. inductively defined in some way).

For example one would expect (1+ 1) AryBoolOp = 2 AryBool0Op.

For decidability of type-checking, one needs = to be a decidable
relation between type expressions.

Pure Type Systems (PTS) — syntax

In a PTS type expressions and term expressions are lumped
together into a single syntactic category of pseudo-terms:

I = x variable

s sort

ITx: t (t) dependent function type
Ax :t(t) function abstraction

tt function application

where x ranges over a countably infinite set Var of variables and s ranges over
a disjoint set Sort of sort symbols — constants that denote various universes (=
types whose elements denote types of various sorts) [kind is a commonly used
synonym for sort]. Ax:t(t') and IIx: t (') both bind free occurrences of x

in the pseudo-term t’.

Pure Type Systems (PTS) — syntax

In a PTS type expressions and term expressions are lumped
together into a single syntactic category of pseudo-terms:

I = x variable

s sort

ITx: t (t) dependent function type
Ax :t(t) function abstraction

tt function application

where x ranges over a countably infinite set Var of variables and s ranges over
a disjoint set Sort of sort symbols — constants that denote various universes (=
types whose elements denote types of various sorts) [kind is a commonly used
synonym for sort]. Ax:t(t') and IIx: t (') both bind free occurrences of x

Bindurs - ﬂk;Jt(~>
Ao B (=)

Pure Type Systems (PTS) — syntax

In a PTS type expressions and term expressions are lumped
together into a single syntactic category of pseudo-terms:

I = x variable

s sort

ITx: t (t) dependent function type
Ax :t(t) function abstraction

tt function application

where x ranges over a countably infinite set Var of variables and s ranges over
a disjoint set Sort of sort symbols — constants that denote various universes (=
types whose elements denote types of various sorts) [kind is a commonly used
synonym for sort]. Ax:t(t') and IIx: t (') both bind free occurrences of x

in the pseudo-term t’.

t[t'/x] | denotes result of capture-avoiding substitution of # for all
free occurrences of x in t.

Pure Type Systems (PTS) — syntax

In a PTS type expressions and term expressions are lumped
together into a single syntactic category of pseudo-terms:

I = x variable

s sort

ITx: t (t) dependent function type
Ax :t(t) function abstraction

tt function application

where x ranges over a countably infinite set Var of variables and s ranges over
a disjoint set Sort of sort symbols — constants that denote various universes (=
types whose elements denote types of various sorts) [kind is a commonly used

synonym for sort]. Ax:t(t') and Ix: ¢t (t') both bind free occurrences of x

in the pseudo-term #’. ? %, JFV) mj J%\AV\ QL}W\S

O\N“ﬂ
t mge x & fo(t'). %ﬁjﬂﬂﬁb\j }/\7]}@

Pure Type Systems — beta-conversion

» beta-reduction of pseudo-terms: |+ — t’ | means t’ can be
obtained from t (up to alpha-conversion, of course) by
replacing a subexpression which is a redex by its corresponding
reduct. There is only one form of redex-reduct pair:

(Ax: £ (1)) tr — E1[talx]

» As usual, =™ denotes the reflexive-transitive closure of —.

Pure Type Systems — beta-conversion

» beta-reduction of pseudo-terms: |+ — t’ | means t’ can be
obtained from t (up to alpha-conversion, of course) by
replacing a subexpression which is a redex by its corresponding
reduct. There is only one form of redex-reduct pair:

(Ax: £ (1)) tr — E1[talx]

» As usual, =™ denotes the reflexive-transitive closure of —.

> beta-conversion of pseudo-terms: =g is the
reflexive-symmetric-transitive closure of — (i.e. the smallest
equivalence relation containing —).

Pure Type Systems — typing judgements

take the form

r—t:t

where t, t' are pseudo-terms and T is a context, a form of typing
environment given by the grammar

Fu=¢o|Tx:t

(Thus contexts are finite ordered lists of (variable,pseudo-term)-pairs,
with the empty list denoted ¢, the head of the list on the right and
list-cons denoted by _, _. Unlike previous type systems in this course, the
order in which typing declarations x : t occur in a context is important.)

Q/@' O)x"gﬂclxﬂg - 7[1 - S
(5 o se/b |)(&f \/N{Q/IOU/J)

