Two examples involving self-application

$$M riangleq$$
 let $f=\lambda x_{1}\left(\lambda x_{2}\left(x_{1}
ight)
ight)$ in ff

$$M' \triangleq (\lambda f(ff)) \lambda x_1 (\lambda x_2 (x_1))$$

Are M and M' typeable in the Mini-ML type system? (in the empty typing environment)

Figure 1 [p15]

Constraints generated while inferring a type for let $f = \lambda x_1 (\lambda x_2 (x_1))$ in f f

$$A = ftv(\tau_2) \tag{C0}$$

(C1) $au_2 = au_3
ightarrow au_4$

(C2)

$$\tau_4 = \tau_5 \rightarrow \tau_6$$

$$\forall \{ \} (\tau_3) \succ \tau_6, \text{ i.e. } \tau_3 = \tau_6 \tag{C3}$$

$$au_7 = au_8 o au_1$$
 (C4)

$$\forall A (\tau_2) \succ \tau_7 \tag{C5} \forall A (\tau_2) \succ \tau_8 \tag{C6}$$

$$\forall A(\tau_2) \succ \tau_8$$

 $\tau_2 \stackrel{(CI)}{=} \tau_3 \rightarrow \tau_4 \stackrel{(C2)}{=} \tau_3 \rightarrow (\tau_5 \rightarrow \tau_6) \stackrel{(C3)}{=} \tau_6 \rightarrow (\tau_5 \rightarrow \tau_6)$

$$T_{2} \stackrel{(CI)}{=} T_{3} \rightarrow T_{4} \stackrel{(C2)}{=} T_{3} \rightarrow (T_{5} \rightarrow T_{6}) \stackrel{(C3)}{=} T_{6} \rightarrow (T_{5} \rightarrow T_{6})$$

Take $T_6 = \alpha_1$ } type variables. $T_5 = \alpha_2$ } type variables.

So $A = ftv(G_2) = ftv(\alpha_1 \rightarrow (\alpha_2 \rightarrow \alpha_1)) = (\alpha_1, \alpha_2)$

٠

$$T_{2} \stackrel{(CI)}{=} T_{3} \rightarrow T_{4} \stackrel{(C2)}{=} T_{3} \rightarrow (T_{5} \rightarrow T_{6}) \stackrel{(C3)}{=} T_{6} \rightarrow (T_{5} \rightarrow T_{6})$$

$$T_{4} \stackrel{(CI)}{=} T_{3} \rightarrow (T_{5} \rightarrow T_{6}) \stackrel{(C3)}{=} T_{6} \rightarrow (T_{5} \rightarrow T_{6})$$

Take
$$T_5 = \alpha_2 \int type variables.$$

So
$$A = ftv(\tau_2) = ftv(\alpha_1 \rightarrow (\alpha_2 \rightarrow \alpha_1)) = (\alpha_1, \alpha_2)$$

(C5): $\forall e(\alpha_1, \alpha_2) (\alpha_1 \rightarrow (\alpha_2 \rightarrow \alpha_1)) > \tau_7 \stackrel{(C4)}{=} \tau_8 \rightarrow \tau_1$
(C6): " " > τ_8
So $\{\tau_8 \rightarrow \tau_1 = \tau_9 \rightarrow (\tau_{10} \rightarrow \tau_9) \text{ for Some } \tau_9, \tau_{10}, \tau_8 = \tau_{11} \rightarrow (\tau_{12} \rightarrow \tau_{11}) \qquad \tau_{11}, \tau_{12}$

$$T_{2} \stackrel{(CI)}{=} T_{3} \rightarrow T_{4} \stackrel{(C2)}{=} T_{3} \rightarrow (T_{5} \rightarrow T_{6}) \stackrel{(C3)}{=} T_{6} \rightarrow (T_{5} \rightarrow T_{6})$$
Take
$$T_{6} = \alpha_{1} \quad j \text{ type variables.}$$

$$T_{5} = \alpha_{2} \quad j \text{ type variables.}$$
So
$$A = ft_{V} (T_{2}) = ft_{V} (\alpha_{1} \rightarrow (\alpha_{2} \rightarrow \alpha_{1})) = q(\alpha_{1}, \alpha_{2}) \quad j$$

$$(C5): \quad \forall q(\alpha_{1}, \alpha_{2}) \quad (\alpha_{1} \rightarrow (\alpha_{2} \rightarrow \alpha_{1})) > T_{7} \stackrel{(C4)}{=} T_{8} \rightarrow T_{1}$$

$$(C6): \quad " \quad " \quad > T_{8}$$
So
$$\begin{cases} T_{8} = T_{9} \quad \& \quad T_{1} = (T_{10} \rightarrow T_{9}) \quad \text{for Some } T_{9}, T_{10}, \\ T_{8} = T_{11} \rightarrow (T_{12} \rightarrow T_{11}) \quad T_{11}, T_{12} \end{cases}$$

So $T_1 = T_{10} \rightarrow T_9 = T_{10} \rightarrow T_8 = T_{10} \rightarrow (T_{11} \rightarrow (T_{12} \rightarrow T_{11}))$

Thus

$$\begin{cases}
\begin{cases}
\xi \in \{1, 1\} \\ \xi \in \{1, 2\} \\ \xi \in \{1$$

Two examples involving self-application

$$M \triangleq ext{let} f = \lambda x_1 \left(\lambda x_2 \left(x_1
ight)
ight) ext{in} f f$$
 $M' \triangleq \left(\lambda f \left(f f
ight)
ight) \lambda x_1 \left(\lambda x_2 \left(x_1
ight)
ight)$

Are M and M' typeable in the Mini-ML type system?

[Page [7] The constraints generated from trying to type $(\lambda f(ff)) \lambda x_1(\lambda x_2(x_1))$

 $\tau_{7} \stackrel{(Cl3)}{=} \tau_{4} \stackrel{(Cl2)}{=} \tau_{6} \stackrel{(Cl1)}{=} \tau_{7} \stackrel{\tau_{7}}{\rightarrow} \tau_{5}$

[Page 17] The constraints generated from trying to type $(\lambda f(ff)) \lambda_{x_1}(\lambda_{x_2}(x_1))$ give $(C_{3})_{4} = \tau_{4} = \tau_{6} = \tau_{7} = \tau_{7}$ these Cannot be equal - they have different numbers of the symbol "→" in them

Two examples involving self-application

$$M \triangleq \operatorname{let} f = \lambda x_1 (\lambda x_2 (x_1)) \operatorname{in} f f$$
$$M' \triangleq (\lambda f (f f)) \lambda x_1 (\lambda x_2 (x_1))$$
Are M and M' typeable in the Mini-ML type system?
Hais is with typeable

A type scheme $\forall A(\tau)$ is the *principal* type scheme of a closed Mini-ML expression M if

A type scheme $\forall A(\tau)$ is the *principal* type scheme of a closed Mini-ML expression M if

(a)
$$\vdash M: \forall A(\tau)$$
 (i.e. {} $\vdash M: \tau$ is provable)
& $A = ftv(\tau)$

A type scheme $\forall A(\tau)$ is the *principal* type scheme of a closed Mini-ML expression M if

(a) $\vdash M : \forall A(\tau)$

(b) for any other type scheme $\forall A'(\tau')$, if $\vdash M : \forall A'(\tau')$, then $\forall A(\tau) \succ \tau'$

A type scheme $\forall A(\tau)$ is the *principal* type scheme of a closed Mini-ML expression M if

(a) $\vdash M : \forall A(\tau)$

(b) for any other type scheme $\forall A'(\tau')$, if $\vdash M : \forall A'(\tau')$, then $\forall A(\tau) \succ \tau'$

eg
$$\forall \alpha_1, \alpha_2, \alpha_3 (\alpha_1, \rightarrow) (\alpha_2 \rightarrow) (\alpha_3 \rightarrow) \alpha_2)$$
 is principal type scheme
let $f = \lambda \alpha_1 (\lambda \alpha_2(\alpha_1))$ in ff

Theorem (Hindley; Damas-Milner)

Theorem. If the closed Mini-ML expression M is typeable (i.e. $\vdash M : \sigma$ holds for some type scheme σ), then there is a principal type scheme for M.

Theorem (Hindley; Damas-Milner)

Theorem. If the closed Mini-ML expression M is typeable (i.e. $\vdash M : \sigma$ holds for some type scheme σ), then there is a principal type scheme for M.

Indeed, there is an algorithm which, given any closed Mini-ML expression M as input, decides whether or not it is typeable and returns a principal type scheme if it is.

An ML expression with a principal type scheme hundreds of pages long

$$\begin{aligned} \det pair &= \lambda x \left(\lambda y \left(\lambda z \left(z \, x \, y\right)\right)\right) \text{ in} \\ \det x_1 &= \lambda y \left(pair \, y \, y\right) \text{ in} \\ \det x_2 &= \lambda y \left(x_1(x_1 \, y)\right) \text{ in} \\ \det x_3 &= \lambda y \left(x_2(x_2 \, y)\right) \text{ in} \\ \det x_4 &= \lambda y \left(x_3(x_3 \, y)\right) \text{ in} \\ \det x_5 &= \lambda y \left(x_4(x_4 \, y)\right) \text{ in} \\ x_5(\lambda y \left(y\right)) \end{aligned}$$

There is an algorithm mgu which when input two Mini-ML types τ_1 and τ_2 decides whether τ_1 and τ_2 are *unifiable*, i.e. whether there exists a type-substitution $S \in Sub$ with

There is an algorithm mgu which when input two Mini-ML types τ_1 and τ_2 decides whether τ_1 and τ_2 are *unifiable*, i.e. whether there exists a type-substitution $S \in Sub$ with

(a) $S(\tau_1) = S(\tau_2)$.

There is an algorithm mgu which when input two Mini-ML types τ_1 and τ_2 decides whether τ_1 and τ_2 are *unifiable*, i.e. whether there exists a type-substitution $S \in Sub$ with

(a) $S(\tau_1) = S(\tau_2)$.

Moreover, if they are unifiable, $mgu(\tau_1, \tau_2)$ returns the most general unifier—an S satisfying both (a) and

There is an algorithm mgu which when input two Mini-ML types τ_1 and τ_2 decides whether τ_1 and τ_2 are *unifiable*, i.e. whether there exists a type-substitution $S \in Sub$ with

(a) $S(\tau_1) = S(\tau_2)$.

Moreover, if they are unifiable, $mgu(\tau_1, \tau_2)$ returns the most general unifier—an S satisfying both (a) and

(b) for all $S' \in Sub$, if $S'(\tau_1) = S'(\tau_2)$, then S' = TS for some $T \in Sub$

There is an algorithm mgu which when input two Mini-ML types τ_1 and τ_2 decides whether τ_1 and τ_2 are *unifiable*, i.e. whether there exists a type-substitution $S \in Sub$ with

(a) $S(\tau_1) = S(\tau_2)$.

Moreover, if they are unifiable, $mgu(\tau_1, \tau_2)$ returns the most general unifier—an S satisfying both (a) and

(b) for all $S' \in Sub$, if $S'(\tau_1) = S'(\tau_2)$, then S' = TS for some $T \in Sub$

(any other substitution S' can be factored through

S, by specialising S with T)

There is an algorithm mgu which when input two Mini-ML types τ_1 and τ_2 decides whether τ_1 and τ_2 are *unifiable*, i.e. whether there exists a type-substitution $S \in Sub$ with

(a) $S(\tau_1) = S(\tau_2)$.

Moreover, if they are unifiable, $mgu(\tau_1, \tau_2)$ returns the most general unifier—an S satisfying both (a) and

(b) for all $S' \in Sub$, if $S'(\tau_1) = S'(\tau_2)$, then S' = TS for some $T \in Sub$

(any other substitution S' can be factored through

S, by specialising S with T)

By convention $mgu(\tau_1, \tau_2) = FAIL$ if (and only if) τ_1 and τ_2 are not unifiable.

A *solution* for the typing problem $\Gamma \vdash M$: ? is a pair (S, σ) consisting of a type substitution S and a type scheme σ satisfying

 $S\Gamma \vdash M : \sigma$

(where $S \Gamma = \{x_1 : S \sigma_1, ..., x_n : S \sigma_n\}$, if $\Gamma = \{x_1 : \sigma_1, ..., x_n : \sigma_n\}$).

A *solution* for the typing problem $\Gamma \vdash M$: ? is a pair (S, σ) consisting of a type substitution S and a type scheme σ satisfying

 $S\Gamma \vdash M: \sigma$

(where
$$S\Gamma = \{x_1 : | S\sigma_1\}, x_n : S\sigma_n\}$$
, if $\Gamma = \{x_1 : \sigma_1, \dots, x_n : \sigma_n\}$)
continue-avoiding substitution
eq if $S = \{\alpha \mapsto \beta\}$ and $\sigma_1 = \forall \beta(\alpha)$
Here $S\sigma_1 = \forall \gamma(\beta)$ (any $\gamma \neq \beta$)
 $S\sigma_1 \neq \forall \beta(\beta)$

A *solution* for the typing problem $\Gamma \vdash M$:? is a pair (S, σ) consisting of a type substitution S and a type scheme σ satisfying

 $S\Gamma \vdash M: \sigma$

(where $S \Gamma = \{x_1 : S \sigma_1, ..., x_n : S \sigma_n\}$, if $\Gamma = \{x_1 : \sigma_1, ..., x_n : \sigma_n\}$).

Such a solution is *principal* if given any other, (S', σ') , there is some $T \in Sub$ with TS = S' and $T(\sigma) \succ \sigma'$.

A *solution* for the typing problem $\Gamma \vdash M$:? is a pair (S, σ) consisting of a type substitution S and a type scheme σ satisfying

 $S\Gamma \vdash M: \sigma$

(where $S \Gamma = \{x_1 : S \sigma_1, ..., x_n : S \sigma_n\}$, if $\Gamma = \{x_1 : \sigma_1, ..., x_n : \sigma_n\}$).

Such a solution is *principal* if given any other, (S', σ') , there is some $T \in Sub$ with TS = S' and $T(\sigma) \succ \sigma'$.

(For type schemes σ and σ' , with $\sigma' = \forall A'(\tau')$ say, we define $\sigma \succ \sigma'$ to mean $A' \cap ftv(\sigma) = \{\}$ and $\sigma \succ \tau'$.)

A *solution* for the typing problem $\Gamma \vdash M$: ? is a pair (S, σ) consisting of a type substitution S and a type scheme σ satisfying

 $S\Gamma \vdash M: \sigma$

(where $S \Gamma = \{x_1 : S \sigma_1, ..., x_n : S \sigma_n\}$, if $\Gamma = \{x_1 : \sigma_1, ..., x_n : \sigma_n\}$).

Such a solution is *principal* if given any other, (S', σ') , there is some $T \in Sub$ with TS = S' and $T(\sigma) \succ \sigma'$.

(For type schemes σ and σ' , with $\sigma' = \forall A'(\tau')$ say, we define $\sigma \succ \sigma'$ to mean $A' \cap ftv(\sigma) = \{\}$ and $\sigma \succ \tau'$.)

eg
$$\forall \alpha (\alpha \rightarrow \beta) > (\beta \neg \beta) \neg \beta$$

but $\forall \alpha (\alpha \rightarrow \beta) \not = \forall \beta ((\beta \rightarrow \beta) \rightarrow \beta)$

Typing problem

$$x: \forall \alpha \ (\beta
ightarrow (\gamma
ightarrow \alpha)) \vdash x \, \texttt{true}: ?$$

Typing problem

$$x: \forall \alpha \ (\beta
ightarrow (\gamma
ightarrow \alpha)) \vdash x \, true:?$$

$$\blacktriangleright S_1 = \{\beta \mapsto bool\}, \sigma_1 = \forall \alpha \ (\gamma \to \alpha)$$

Typing problem

$$x: \forall \alpha \ (\beta
ightarrow (\gamma
ightarrow \alpha)) \vdash x \, \texttt{true}: ?$$

•
$$S_1 = \{\beta \mapsto bool\}, \sigma_1 = \forall \alpha \ (\gamma \to \alpha)$$

$$S_{2} = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_{2} = \forall \alpha' (\alpha \to \alpha')$$

$$\underbrace{NB}_{=} S_{2} \left(\forall \alpha (\beta \to (\gamma \to \alpha)) = \forall \alpha' (bool \to (\alpha \to \alpha')) \right)$$

$$(any \alpha' \neq \alpha)$$

Typing problem

$$x: \forall \alpha \ (\beta
ightarrow (\gamma
ightarrow \alpha)) \vdash x \, ext{true}:?$$

- $S_1 = \{\beta \mapsto bool\}, \sigma_1 = \forall \alpha \ (\gamma \rightarrow \alpha)$
- $\blacktriangleright S_2 = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_2 = \forall \alpha' (\alpha \to \alpha')$
- $\blacktriangleright S_3 = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_3 = \forall \alpha' (\alpha \to (\alpha' \to \alpha'))$

Example typing problem and solutions

Typing problem

$$x: \forall \alpha \ (\beta
ightarrow (\gamma
ightarrow \alpha)) \vdash x \, ext{true}:?$$

has solutions:

- $S_1 = \{\beta \mapsto bool\}, \sigma_1 = \forall \alpha \ (\gamma \to \alpha)$
- $\blacktriangleright S_2 = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_2 = \forall \alpha' (\alpha \to \alpha')$
- $\blacktriangleright S_3 = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_3 = \forall \alpha' (\alpha \to (\alpha' \to \alpha'))$
- ► $S_4 = \{\beta \mapsto bool, \gamma \mapsto bool\}, \sigma_3 = \forall \{\} (bool \rightarrow bool)$

Example typing problem and solutions

Typing problem

$$x: \forall \alpha \ (\beta
ightarrow (\gamma
ightarrow \alpha)) \vdash x \, ext{true}:?$$

has solutions:

- $S_1 = \{\beta \mapsto bool\}, \sigma_1 = \forall \alpha \ (\gamma \rightarrow \alpha)$
- $\blacktriangleright S_2 = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_2 = \forall \alpha' (\alpha \to \alpha')$
- $\blacktriangleright S_3 = \{\beta \mapsto bool, \gamma \mapsto \alpha\}, \sigma_3 = \forall \alpha' (\alpha \to (\alpha' \to \alpha'))$

• $S_4 = \{\beta \mapsto bool, \gamma \mapsto bool\}, \sigma_3 = \forall \{\} (bool \rightarrow bool)$ Both (S_1, σ_1) and (S_2, σ_2) are in fact principal solutions. Properties of the Mini-ML typing relation with respect to substitution and type scheme specialisation

▶ If $\Gamma \vdash M : \sigma$, then for any type substitution $S \in Sub$

$S\Gamma \vdash M : S\sigma$

Properties of the Mini-ML typing relation with respect to substitution and type scheme specialisation

▶ If $\Gamma \vdash M : \sigma$, then for any type substitution $S \in Sub$

$S\Gamma \vdash M : S\sigma$

• If $\Gamma \vdash M : \sigma$ and $\sigma \succ \sigma'$, then

 $\Gamma \vdash M : \sigma'$

Requirements for a principal typing algorithm, *pt*

pt operates on typing problems $\Gamma \vdash M$: ? (consisting of a typing environment Γ and a Mini-ML expression M).

It returns either a pair (S, τ) consisting of a type substitution $S \in Sub$ and a Mini-ML type τ , or the exception *FAIL*.

- If Γ ⊢ M : ? has a solution (cf. Slide 28), then pt(Γ ⊢ M : ?) returns (S, τ) for some S and τ; moreover, setting A = (ftv(τ) ftv(SΓ)), then (S, ∀A(τ)) is a principal solution for the problem Γ ⊢ M : ?.
- ► If $\Gamma \vdash M$: ? has no solution, then $pt(\Gamma \vdash M$: ?) returns *FAIL*.

How the principal typing algorithm *pt* works

$pt(\Gamma \vdash M:?) = (S,\tau) \mid FAIL$

- Call *pt* recursively following the structure of *M* and guided by the typing rules, bottom-up.
- Thread substitutions sequentially and compose them together when returning from a recursive call.
- When types need to agree to satisfy a typing rule, use mgu (and pt returns FAIL only if mgu does).
- When types are unknown, generate a fresh type variable.

Some of the clauses in a definition of *pt*

Function abstractions:
$$pt(\Gamma \vdash \lambda x (M) : ?) \triangleq$$

 let α = fresh in

 let $(S, \tau) = pt(\Gamma, x : \alpha \vdash M : ?)$ in $(S, S(\alpha) \rightarrow \tau)$

$$(f_n) \frac{\Gamma_1 \times :\tau_1 + M :\tau_2}{\Gamma_1 \times :\tau_1 + M :\tau_2} \qquad x \notin \partial om \Gamma$$

$$\Gamma_1 \times \lambda_2 (M) :\tau_1 \to \tau_2$$

Some of the clauses in a definition of *pt*

$$(app) \frac{\Gamma + M : \tau_1 \rightarrow \tau_2}{\Gamma + M N : \tau_2} \quad [\Gamma + N : \tau_1]$$

Function applications: $pt(\Gamma \vdash M_1 M_2 : ?) \triangleq$ let $(S_1, \tau_1) = pt(\Gamma \vdash M_1 : ?)$ in let $(S_2, \tau_2) = pt(S_1 \Gamma \vdash M_2 : ?)$ in let α = fresh in let $S_3 = mgu(S_2 \tau_1, \tau_2 \rightarrow \alpha)$ in $(S_3S_2S_1, S_3(\alpha))$

 $pt(\Gamma M_1:?)=(S_1, \tau)$ $S, \Gamma \vdash M, : \tau$

 $\rightarrow pt(\Gamma' + M_1M_2:?) =$

 $pt(\Gamma M_1:?)=(S_1, \tau)$ $pt(S_1\Gamma + M_2;?) = (S_2, Z_2)$ +slide 28 $S_2S_1\Gamma + M_2: T_2$ $S_2S_1\Gamma + M_1:S_2\tau_1$

 $\rightarrow p \in (\Gamma' + M_1 M_2 : ?) =$

 $pt(\Gamma M_1:?)=(S_1, G)$ $pt(S_1\Gamma + M_2;?) = (S_2, Z_2)$ $\operatorname{Mgu}(S_2\tau_1,\tau_2 \to \alpha) = S_3$ +Slide 28 S₃τ₂ → S₃α $S_3 S_2 S_1 \Gamma + M_2 : S_3 \tau_2$ $S_3S_2S_1\Gamma + M_1:S_3S_2\tau_1$