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Type-inference versus proof search

Type-inference: given G and M, is there a type t such that
G ` M : t?
(For PLC/2IPC this is decidable.)

Proof-search: given G and f, is there a proof term M such that
G ` M : f?
(For PLC/2IPC this is undecidable.)
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Pure Type Systems – typing rules

(axiom) ⇧ ` s
1

: s
2

if (s
1

, s
2

) 2 A

(start)
G ` A : s

G, x : A ` x : A
if x /2 dom(G)

(weaken)
G ` M : A G ` B : s

G, x : B ` M : A
if x /2 dom(G)

(conv)
G ` M : A G ` B : s

G ` M : B
if A =b B

(prod)
G ` A : s

1

G, x : A ` B : s
2

G ` Px : A (B) : s
3

if (s
1

, s
2

, s
3

) 2 R

(abs)
G, x : A ` M : B G ` Px : A (B) : s

G ` lx : A (M) : Px : A (B)

(app)
G ` M : Px : A (B) G ` N : A

G ` M N : B[N/x]
(A, B, M, N range over pseudoterms, s, s

1

, s
2

, s
3

over sort symbols)



Calculus of Constructions
is the Pure Type System lC, where C = (S

C

,A
C

,R
C

) is the
PTS specification with

S
C

,{Prop, Set} (Prop = a sort of propositions, Set = a sort of types)

A
C

,{(Prop, Set)} (Prop is one of the types)

R
C

,{(Prop, Prop, Prop), (Set, Prop, Prop),

(Prop, Set, Set), (Set, Set, Set)}

1. Prop has implications, f � y = Px : f (y) (where f, y : Prop and

x /2 fv(q)).

2. Prop has universal quantifications over elements of a type, Px : A (f(x))
(where A : Set and x : A ` f(x) : Prop).

N.B. A might be Prop (l2 ✓ lC).

3. Set has types of function dependent on proofs of a proposition,

Px : p (A(x)) (where p : Prop and x : p ` A(x) : Set).

4. Set has dependent function types, Px : A (B(x)) (where A : Set and

x : A ` B(x) : Set).
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Some general properties of lC

I It extends both l2 (PLC) and lw (Fw).

I lC is strongly normalizing.
I Type-checking and typeability are decidable.

I lC is logically consistent (relative to the usual foundations of
classical mathematics), that is, there is no pseudo-term t
satisfying ⇧ ` t : Pp : Prop (p).
Indeed there is no proof of LEM (Pp : Prop (¬p _ p)).
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Logical operations definable in 2IPC

I Truth > , 8p (p � p)
I Falsity ? , 8p (p)
I Conjunction f ^ y , 8p ((f � y � p)� p)

(where p /2 fv(f, y))
I Disjunction f _ y , 8p ((f � p)� (y � p)� p) (where

p /2 fv(f, y))
I Negation ¬f , f �?
I Bi-implication f $ y , (f � y)^ (y � f)

I Existential quantification 9 p (f) , 8q (8p (f � q)� q)
(where q /2 fv(f, p))

LEM 8p (p _¬p) = 8p, q ((p � q)� ((p � 8r (r))� q)� q)

Fact: {} ` M : 8p (p _¬p) is not provable in PLC for any
expression M.
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Leibniz equality in lC

Gottfried Wilhelm Leibniz (1646–1716),
identity of indiscernibles:
duo quaedam communes proprietates eorum nequaquam possit
(two distinct things cannot have all their properties in common).

Given G ` A : Set in lC, we can define

EqA , lx, y : A (PP : A � Prop (P x $ P y))

satisfying G ` EqA : A � A � Prop and giving a well-behaved (but
not extensional) equality predicate for elements of type A.
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Extensionality

Functional extensionality:

FunExtA,B , P f , g : A � B (

(Px : A (EqB ( f x) (g x)))� EqA�B f g)

If G ` A, B : Set in lC, then G ` ExtA,B : Prop is derivable, but
for some A,B there does not exist a pseudo-term t for which
G ` t : ExtA,B is derivable.

Propositional extensionality:

PropExt , Pp, q : Prop ((p $ q)� Eq
Prop

p q)

⇧ ` PropExt : Prop is derivable in lC, but there does not exist a
pseudo-term t for which ⇧ ` t : PropExt is derivable.
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