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Two vending machine implementations
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User
def
= coin.coffee.change.work

Specification and correctness:

Assertions and logic (e.g. (User ‖ Ven) \ {coin, change, coffee, tea}
always outputs work)

Equivalence
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Language equivalences

A trace of a process p is a (possibly infinite) sequence of actions

(a1, a2, . . . , ai , ai+1, . . .)

such that
p

a1−→ p1
a2−→ . . . pi−1

ai−→ pi
ai+1−−→ . . .

Two processes are trace equivalent iff they have the same sets of
traces

Are Ven and Ven′ trace equivalent?

Are (User ‖ Ven) \ {coin, change, coffee, tea} and
(User ‖ Ven′) \ {coin, change, coffee, tea} trace equivalent?
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Completed trace equivalence

A trace is maximal if it cannot be extended (it is either infinite or
ends in a state from which there is no transition)

Processes are completed trace equivalent iff they have the same sets
of maximal traces.

Are Ven and Ven′ completed trace equivalent?

Are (User ‖ Ven) \ {coin, change, coffee, tea} and
(User ‖ Ven′) \ {coin, change, coffee, tea} completed trace
equivalent?

A more subtle form of equivalence is needed to reason compositionally
about processes
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Bisimulation — a process equivalence

To

support equational reasoning

simplify verification



Strong bisimulation

A (strong) bisimulation is a relation R between states for which
If p R q then:

1 ∀α, p′. p
α−→ p′ =⇒

∃q′. q
α−→ q′ & p′ R q′

2 ∀α, q′. q
α−→ q′ =⇒

∃p′. p
α−→ p′ & p′ R q′

(Strong) bisimilarity is an equivalence on states

p ∼ q iff p R q for some (strong) bisimulation R



Exhibiting bisimilarity

To show p1 ∼ p2, we give a relation R such that R is a bisimulation and
p1 R p2.

Examples: Give bisimulations to show

a ‖ b ∼ a.b + b.a

On transition systems, s ∼ v where

s

t

u

a

a

b

b v

wa
b



Examples: Looping

s0

a

? ∼?
t0 t1 t2 t3

· · ·a a a a



Examples: Inessential branching
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a b



Examples: Internal choice

s0 s1

s2

s3

τ

a

b
? ∼?

t0

t1

t2

t3

τ

τ

a

b



Bisimulations

If R, S , Ri for i ∈ I are strong bisimulations then so are:

1 Id , the identity relation the set of states of any transition system

2 Rop, the converse/opposite relation

3 R ◦ S , the composition (when the transition systems involved match
up so that the composition makes sense)

4
⋃

i∈I Ri , the union (when the relations are over the same transition
systems)

(1)–(3) imply that ∼ is an equivalence relation, and (4) that ∼ is a
bisimulation.



Equational properties of bisimulation

+ and ‖ are commutative and associative w.r.t. ∼, with unit nil

If p ∼ q then:

α.p ∼ α.q
p + r ∼ q + r

p ‖ r ∼ q ‖ r

p \ L ∼ q \ L

p[f ] ∼ q[f ]

. . . bisimilarity is a congruence
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Expansion laws for CCS

In general,

p ∼
∑
{α.p′ | p

α−→ p′}

We can use this to remove everything but prefixing and sums:

Suppose p ∼
∑

i∈I αi .pi and q ∼
∑

j∈J βj .qj .

p \ L ∼
∑
{αi .(pi \ L) | αi 6∈ L}

p[f ] ∼
∑
{f (αi ).(pi [f ]) | i ∈ I}

p ‖ q ∼
∑
i∈I

αi .(pi ‖ q) +
∑
j∈J

βj .(p ‖ qj)

+
∑
{τ.(pi ‖ qj) | αi = βj}
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Strong bisimilarity and specifications

An example:

Sem
def
= get.put.Sem

P1
def
= get.a1.a2.put.P1

P2
def
= get.b1.b2.put.P2

Sys
def
= (Sem ‖ P1 ‖ P2) \ {get, put}

Spec
def
= τ.a1.a2.Spec + τ.b1.b2.Spec

Do we have
? Sys ∼ Spec ?



Weak bisimulation

Hiding τ actions

τ

a τ

τ
=⇒ def

= (
τ−→
∗
)

a
=⇒ def

= (
τ

=⇒ a−→ τ
=⇒)

We get a transition system

τ

a τ
τ

τ

τ τ

a Weak bisimulation is bisimulation w.r.t. =⇒
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Weak bisimulation

A weak bisimulation is a relation R between states for which
If p R q then:

1 ∀α, p′. p
α

=⇒ p′ =⇒
∃q′. q

α
=⇒ q′ & p′ R q′

2 ∀α, q′. q
α

=⇒ q′ =⇒
∃p′. p

α
=⇒ p′ & p′ R q′

Weak bisimulation is not a congruence  observational congruence.
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