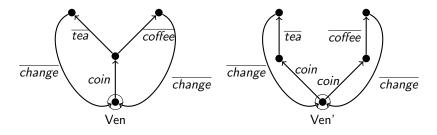
Topics in Concurrency Lectures 4–5

Jonathan Hayman

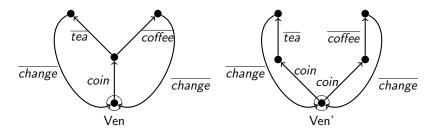
20 October 2016

Two vending machine implementations



 $\textit{User} \stackrel{\mathrm{def}}{=} \overline{\textit{coin.coffee.change.work}}$

Two vending machine implementations



 $\textit{User} \stackrel{\mathrm{def}}{=} \overline{\textit{coin.coffee.change.work}}$

Specification and correctness:

- Assertions and logic (e.g. (User || Ven) \ {coin, change, coffee, tea} always outputs work)
- Equivalence

• A trace of a process p is a (possibly infinite) sequence of actions

$$(a_1, a_2, \ldots, a_i, a_{i+1}, \ldots)$$

such that

$$p \xrightarrow{a_1} p_1 \xrightarrow{a_2} \ldots p_{i-1} \xrightarrow{a_i} p_i \xrightarrow{a_{i+1}} \ldots$$

• Two processes are trace equivalent iff they have the same sets of traces

• A trace of a process p is a (possibly infinite) sequence of actions

$$(a_1, a_2, \ldots, a_i, a_{i+1}, \ldots)$$

such that

$$p \xrightarrow{a_1} p_1 \xrightarrow{a_2} \ldots p_{i-1} \xrightarrow{a_i} p_i \xrightarrow{a_{i+1}} \ldots$$

- Two processes are trace equivalent iff they have the same sets of traces
- Are Ven and Ven' trace equivalent?
- Are (User || Ven) \ {coin, change, coffee, tea} and (User || Ven') \ {coin, change, coffee, tea} trace equivalent?

Completed trace equivalence

- A trace is maximal if it cannot be extended (it is either infinite or ends in a state from which there is no transition)
- Processes are completed trace equivalent iff they have the same sets of *maximal* traces.

Completed trace equivalence

- A trace is maximal if it cannot be extended (it is either infinite or ends in a state from which there is no transition)
- Processes are completed trace equivalent iff they have the same sets of *maximal* traces.
- Are Ven and Ven' completed trace equivalent?
- Are (User || Ven) \ {coin, change, coffee, tea} and (User || Ven') \ {coin, change, coffee, tea} completed trace equivalent?

Completed trace equivalence

- A trace is maximal if it cannot be extended (it is either infinite or ends in a state from which there is no transition)
- Processes are completed trace equivalent iff they have the same sets of *maximal* traces.
- Are Ven and Ven' completed trace equivalent?
- Are (User || Ven) \ {coin, change, coffee, tea} and (User || Ven') \ {coin, change, coffee, tea} completed trace equivalent?

A more subtle form of equivalence is needed to reason compositionally about processes

Bisimulation — a process equivalence

То

- support equational reasoning
- simplify verification

Strong bisimulation

A (strong) bisimulation is a relation R between states for which If p R q then:

(Strong) bisimilarity is an equivalence on states

 $p \sim q$ iff p R q for some (strong) bisimulation R

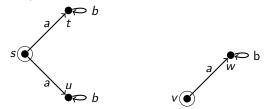
Exhibiting bisimilarity

To show $p_1 \sim p_2$, we give a relation R such that R is a bisimulation and $p_1 R p_2$.

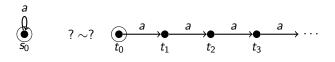
Examples: Give bisimulations to show

a || b ∼ a.b + b.a

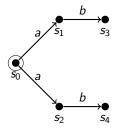
• On transition systems, $s \sim v$ where



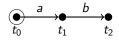
Examples: Looping



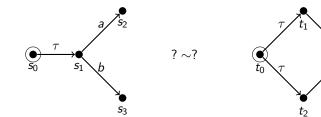
Examples: Inessential branching



 $?\sim?$



Examples: Internal choice



t₃

- If R, S, R_i for $i \in I$ are strong bisimulations then so are:
 - Id, the identity relation the set of states of any transition system
 - R^{op}, the converse/opposite relation
 - **(a)** $R \circ S$, the composition (when the transition systems involved match up so that the composition makes sense)
 - $\bigcup_{i \in I} R_i$, the union (when the relations are over the same transition systems)

(1)–(3) imply that \sim is an equivalence relation, and (4) that \sim is a bisimulation.

+ and \parallel are commutative and associative w.r.t. \sim , with unit nil

- If $p \sim q$ then:
 - α.p ~ α.q
 - $p + r \sim q + r$
 - $p \parallel r \sim q \parallel r$
 - $p \setminus L \sim q \setminus L$
 - $p[f] \sim q[f]$

+ and \parallel are commutative and associative w.r.t. \sim , with unit nil

- If $p \sim q$ then:
 - α.p ~ α.q
 - $p + r \sim q + r$
 - $p \parallel r \sim q \parallel r$
 - $p \setminus L \sim q \setminus L$
 - $p[f] \sim q[f]$

... bisimilarity is a congruence

Expansion laws for CCS

In general,

$$p \sim \sum \{ \alpha. p' \mid p \xrightarrow{\alpha} p' \}$$

We can use this to remove everything but prefixing and sums:

Suppose $p \sim \sum_{i \in I} \alpha_i p_i$ and $q \sim \sum_{j \in J} \beta_j q_j$.

$$p \setminus L \sim \sum \{ \alpha_i . (p_i \setminus L) \mid \alpha_i \notin L \}$$

Expansion laws for CCS

In general,

$$p \sim \sum \{ \alpha. p' \mid p \xrightarrow{\alpha} p' \}$$

We can use this to remove everything but prefixing and sums:

Suppose $p \sim \sum_{i \in I} \alpha_i p_i$ and $q \sim \sum_{j \in J} \beta_j q_j$.

$$p \setminus L \sim \sum \{ \alpha_i . (p_i \setminus L) \mid \alpha_i \notin L \}$$

$$p[f] \sim \sum \{ f(\alpha_i) . (p_i[f]) \mid i \in I \}$$

Expansion laws for CCS

In general,

$$p \sim \sum \{ \alpha. p' \mid p \xrightarrow{\alpha} p' \}$$

We can use this to remove everything but prefixing and sums:

Suppose $p \sim \sum_{i \in I} \alpha_i p_i$ and $q \sim \sum_{j \in J} \beta_j q_j$.

$$p \setminus L \sim \sum \{ \alpha_i . (p_i \setminus L) \mid \alpha_i \notin L \}$$

$$p[f] \sim \sum \{ f(\alpha_i) . (p_i[f]) \mid i \in I \}$$

$$p \parallel q \sim \sum_{i \in I} \alpha_i . (p_i \parallel q) + \sum_{j \in J} \beta_j . (p \parallel q_j)$$

$$+ \sum \{ \tau . (p_i \parallel q_j) \mid \alpha_i = \overline{\beta_j} \}$$

Strong bisimilarity and specifications

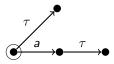
An example:

 $Sem \stackrel{\text{def}}{=} get.put.Sem$ $P_1 \stackrel{\text{def}}{=} \overline{get.a_1.a_2}.\overline{put.P_1}$ $P_2 \stackrel{\text{def}}{=} \overline{get.b_1.b_2}.\overline{put.P_2}$ $Sys \stackrel{\text{def}}{=} (Sem \parallel P_1 \parallel P_2) \setminus \{get, put\}$ $Spec \stackrel{\text{def}}{=} \tau.a_1.a_2.Spec + \tau.b_1.b_2.Spec$

Do we have

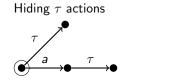
Weak bisimulation

Hiding τ actions



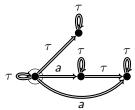
$$\stackrel{\tau}{\Rightarrow} \stackrel{\text{def}}{=} \left(\stackrel{\tau}{\rightarrow} ^{*} \right)$$
$$\stackrel{a}{\Rightarrow} \stackrel{\text{def}}{=} \left(\stackrel{\tau}{\Rightarrow} \stackrel{a}{\rightarrow} \stackrel{\tau}{\Rightarrow} \right)$$

Weak bisimulation



$$\stackrel{\tau}{\Rightarrow} \stackrel{\text{def}}{=} \left(\stackrel{\tau}{\rightarrow} ^{*} \right)$$
$$\stackrel{a}{\Rightarrow} \stackrel{\text{def}}{=} \left(\stackrel{\tau}{\Rightarrow} \stackrel{a}{\rightarrow} \stackrel{\tau}{\Rightarrow} \right)$$

We get a transition system



Weak bisimulation

$$\stackrel{\tau}{\Rightarrow} \stackrel{\text{def}}{=} \left(\stackrel{\tau}{\rightarrow} ^{*} \right)$$
$$\stackrel{a}{\Rightarrow} \stackrel{\text{def}}{=} \left(\stackrel{\tau}{\Rightarrow} \stackrel{a}{\rightarrow} \stackrel{\tau}{\Rightarrow} \right)$$

We get a transition system



Weak bisimulation is bisimulation w.r.t. \Rightarrow

A weak bisimulation is a relation R between states for which If p R q then:

A weak bisimulation is a relation R between states for which If p R q then:

Weak bisimulation is not a congruence \rightsquigarrow observational congruence.