Petri nets

- Introduced in 1962 (though claimed to have been invented by 1939)
- Starting point: think of a transition system where a number of processes can be in a given state and then allow coordination
- **Conditions**: local components of state
- **Events**: transitions and coordination
- Allows study of *concurrency* of events, reasoning about *causal dependency* and how the action of one process might *conflict* with that of another
- The first of a range of models: event structures, Mazurkiewicz trace languages, asynchronous transition systems, . . .
- Many variants with different algorithmic properties and expressivity
Multisets generalise sets by allowing elements to occur some number of times. ∞-multisets generalise further by allowing infinitely many occurrences.

$$\omega^\infty = \omega \cup \{\infty\}$$

Extend addition:

$$n + \infty = \infty \quad \text{for} \quad n \in \omega^\infty$$

Extend subtraction

$$\infty - n = \infty \quad \text{for} \quad n \in \omega$$

Extend order:

$$n \leq \infty \quad \text{for} \quad n \in \omega^\infty$$

An ∞-multiset over a set X is a function

$$f : X \rightarrow \omega^\infty$$

It is a multiset if $f : X \rightarrow \omega$.
Operations on ∞-multisets

- $f \leq g$ iff $\forall x \in X. f(x) \leq g(x)$
- $f + g$ is the ∞-multiset such that

$$\forall x \in X. (f + g)(x) = f(x) + g(x)$$

- For g a multiset such that $g \leq f$,

$$\forall x \in X. (f - g)(x) = f(x) - g(x)$$
A general Petri net consists of

- a set of conditions \(P \)
- a set of events \(T \)
- a pre-condition map assigning to each event \(t \) a multiset of conditions \(\bullet t \)
- a post-condition map assigning to each event \(t \) an \(\infty \)-multiset of conditions \(t^\bullet \)
- a capacity map \(\text{Cap} \) an \(\infty \)-multiset of conditions, assigning a capacity in \(\omega^\infty \) to each condition
Dynamics

A marking is an \(\infty\)-multiset \(M\) such that
\[
M \leq \text{Cap}
\]
giving how many tokens are in each condition.

The token game:

For \(M, M'\) markings, \(t\) an event:
\[
M \xrightarrow{t} M' \quad \text{iff} \quad \bullet t \leq M \quad \& \quad M' = M - \bullet t + t^\bullet
\]

An event \(t\) has concession (is enabled) at \(M\) iff
\[
\bullet t \leq M \quad \& \quad M - \bullet t + t^\bullet \leq \text{Cap}
\]
Further examples

Cap: 5

1

Cap: 5

2

Cap: 5

2

Cap: 5

2
Basic Petri nets

Often don’t need multisets and can just consider sets.

A basic net consists of

- a set of conditions B
- a set of events E
- a pre-condition map assigning a subset of conditions $\cdot e$ to any event e
- a post-condition map assigning a subset of conditions e^{\bullet} to any event e such that

 $$\cdot e \cup e^{\bullet} \neq \emptyset$$

The capacity of any condition is implicitly taken to be 1:

$$\forall b \in B : \text{Cap}(b) = 1$$

A marking M is now a subset of conditions.

$$M \xrightarrow{e} M' \quad \text{iff} \quad \cdot q \subseteq M \land (M \setminus \cdot e) \cap e^{\bullet} = \emptyset \land M' = (M \setminus \cdot e) \cup e^{\bullet}$$
Concepts

Concurrency

Forwards conflict

Backwards conflict

Contact
Safe nets

- Contact occurs in marking M if there exists an event e such that

 $$\cdot e \subseteq M \quad (M \setminus \cdot e) \cap e^\bullet \neq \emptyset$$

- A basic net is safe if there is no marking reachable from the initial marking in which contact occurs.
A safe Petri net semantics for CCS can be constructed by ‘surgery’ on the nets:

- Nil process
- Prefixing
- $p + q$
- $p \parallel q$