Constraint-Driven Rank-Based Learning for Information Extraction

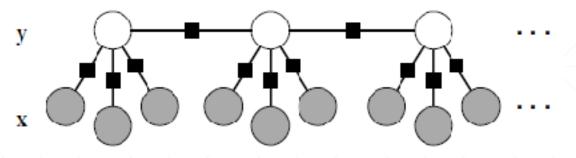
Sameer Singh, Limin Yao, Sebastian Riedel and Andrew McCallum

R222 Presentation by Yuai Liu

Conditional Random Fields (CRF)

- Undirected graphical models (Markov random field) represented as factor graphs.
- Sutton, Charles, and Andrew McCallum. "An introduction to conditional random fields." Foundations and Trends® in Machine Learning

$$p(\mathbf{y}|\mathbf{x},\Theta) = \frac{1}{Z(\mathbf{x})} \prod_{\Psi_i \in G} e^{\Theta \cdot \mathbf{f}(\mathbf{x}_i,\mathbf{y}_i)}$$



Sutton, Charles, and Andrew McCallum. "An introduction to conditional random fields." *Foundations and Trends*® *in Machine Learning* 4.4 (2012): p289.

http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf

SampleRank

- A rank-based learning framework.
- Updating parameters within Markov Chain Monte Carlo (MCMC) inference

$$\Theta \xleftarrow{+} \begin{cases} \alpha \Delta & \text{if } \frac{p(\mathbf{y}^{a}|\mathbf{x})}{p(\mathbf{y}^{b}|\mathbf{x})} < 1 \land \mathcal{F}(\mathbf{y}^{a}) > \mathcal{F}(\mathbf{y}^{b}) \\ \alpha \Delta & \text{if } \frac{p(\mathbf{y}^{a}|\mathbf{x})}{p(\mathbf{y}^{b}|\mathbf{x})} > 1 \land \mathcal{F}(\mathbf{y}^{a}) < \mathcal{F}(\mathbf{y}^{b}) \\ 0 & \text{otherwise.} \end{cases}$$

Semi-Supervised Learning

- Generalized Expectation (GE) and Alternating Projections (AP):
 - Encoding preferences by specifying constraints on feature expectations
 - Require expensive full inference
- Constraint-Driven Learning (CODL):
 - Using constraints to guide semi-supervised learning
 - Requires "Top-K" inference step

Semi-Supervised Rank-Based Learning

- Self-training:
 - Maximum a posteriori (MAP) inference is performed on the unlabeled data to estimate ground truth.
 - Self-training objective function: $\mathcal{F}_s(\mathbf{y}) = -\mathcal{L}(\mathbf{y}, \mathbf{\hat{y}}_U)$
- Encoding Constraints:
 - A constraint i is specified as: $\langle p_i, c_i
 angle$
 - Objective function: $\mathcal{F}_c(\mathbf{y}) = \sum_i p_i c_i(\mathbf{y})$
 - Constraints may prefer a wrong solution while the model favors the correct solution

Incorporate model predictions

Combine self-training with constraints:

$$\mathcal{F}_{sc}(\mathbf{y}) = \mathcal{F}_{s}(\mathbf{y}) + \lambda_{s} \mathcal{F}_{c}(\mathbf{y})$$
$$= -\mathcal{L}(\mathbf{y}, \hat{\mathbf{y}}_{U}) + \lambda_{s} \sum_{i} p_{i} c_{i}(\mathbf{y})$$

- Two limitations:
 - 1. Requires a complete inference iteration
 - 2. The model might have low confidence in its prediction

Incorporate model predictions

• An objective function incorporates the model score directly:

$$\mathcal{F}_{mc}(\mathbf{y}) = \log p(\mathbf{y}|\mathbf{x}, \Theta) + \log Z(\mathbf{x}) + \lambda_m \mathcal{F}_c(\mathbf{y})$$
$$= \sum_{\Psi_i} \Theta \cdot \mathbf{f}(\mathbf{x}_i, \mathbf{y}_i) + \lambda_m \sum_i p_i c_i(\mathbf{y})$$
$$p(\mathbf{y}|\mathbf{x}, \Theta) = \frac{1}{Z(\mathbf{x})} \prod_{\Psi_i \in G} e^{\Theta \cdot \mathbf{f}(\mathbf{x}_i, \mathbf{y}_i)}$$

1/30/2017

Experiments

- Segmenting citations into different fields.
- Cora citation dataset.
- 300 training instances, 100 development instances, 100 test instances.
- Same token-label constraints as Chang et al. (2007)

(a)-Citations

- Each field must be a consecutive list of words, and can appear at most once in a citation.
 State transitions must occur on punctuation marks.
 The citation can only start with author or editor.
- The words pp., pages correspond to PAGE.
- Four digits starting with 20xx and 19xx are DATE.
- Quotations can appear only in titles.
- The words note, submitted, appear are NOTE.
- 8) The words CA, Australia, NY are LOCATION.
- The words tech, technical are TECH_REPORT.

 The words proc, journal, proceedings, ACM are JOUR-NAL or BOOKTITLE.

11) The words ed, editors correspond to EDITOR.

Chang, Ming-Wei, Lev Ratinov, and Dan Roth. "Guiding semisupervision with constraint-driven learning." *ACL*. 2007. <u>https://pdfs.semanticscholar.org/dc9f/</u> 999632bf6d82882cc54e2d2cc2d32eaed932.pdf

Experiments

• $p_i = 1.0$, $\alpha = 1.0$, $\lambda_s = 10$, $\lambda_m = 0.0001$.

Method	5	10	15	20	25	300
Sup. (CODL)	55.1	64.6	68.7	70.1	72.7	86.1
SampleRank	66.5	74.6	75.6	77.6	79.5	90.7
CODL	71	76.7	79.4	79.4	82	88.2
Self	67.6	75.1	75.8	78.6	80.4	88
Cons	67.2	75.3	77.5	78.6	79.4	88.3
Self+Cons	71.3	77	77.5	79.5	81.1	87.4
Model+Cons	69.8	75.4	75.7	79.3	79.3	90.6

Table 1: Tokenwise Accuracy: for different methods as we vary the size of the labeled data

Conclusion

- Extends rank-based learning to semi-supervised learning
- The integrated models perform competitively compared with SampleRank and CODL.
- The objective function of Model+Cons method does not require inference.
- However, the Model+Cons method did not show higher efficiency than the others in the experiments.
- Did not mention how the parameters (λ_s and λ_m) used in the experiments are tuned.