Tuning as Ranking Pairwise Ranking Optimisation (PRO) HOPKINS, M. & MAY, J. 2011

Statistical Machine Translation (MT)

- An SMT system translates from one human language to another
- Such systems typically have a lot of parameters that need to be tuned

Current Tuning Solutions

- Well-understood, easy to implement, and runs quickly
- Does not scale beyond a handful of features
- MIRA
 - Shown to perform well on large-scale tasks
 - Complex and architecturally different from MERT

Pairwise Ranking Optimisation (PRO)

- Adapts the MERT system
- Provides comparable performance to both
- Scales comparably to MIRA but is much simpler
- Should take about 2 hours to implement (supposedly)

Set-up (Definitions!)

Candidate Space $\langle \Delta, I, J, e, x \rangle$

 $\blacktriangleright \Delta$, the space's **dimensionality** (a positive integer)

I, sentence indices (a set of positive integers)

J maps

- Each sentence index
- ► To a set of **candidate indices** (positive integers)

Candidate Space $\langle \Delta, I, J, e, x \rangle$

▶ e(i, j) maps

- Each pair $(i, j) \in I \times J(i)$
- To the jth target-language candidate translation of source sentence i

x(i, j) maps

Each pair $(i, j) \in I \times J(i)$

To a Δ -dimension **feature vector** representation of e(i, j)

Policy p(i)

- A function corresponding to a candidate space
- It maps
 - Each source sentence index (i \in I)
 - ► To a candidate sentence index (\in J(i))

Scoring Function, $h_w(i, j) = \mathbf{w} \cdot \mathbf{x}(i, j)$

- Indicates how good candidate j is for source sentence i
- ▶ w is a weight vector that must be learnt
- ► Typically returns positive real numbers (higher \Rightarrow better)
- Can extend this idea to policy p by summing the costs of each candidate translation

$$H_{w}(p) = \sum_{i \in I} h_{w}(i, p(i))$$

A Gold Scoring Function, G

An idealised equivalent of $H_w(p)$

- Maps
 - Each policy
 - ► To a real-valued score
- ► Typically calculated by a library, such as IBM Bleu

Goal of Tuning

- Goal is to find a weight vector **w**
- ► For space s, we want a **w** that, equivalently
 - ► Gives an H_w which behaves "similarly" to G on s
 - Minimises a loss function $I_s(H_w, G)$

Two-Stage Feedback Loop

Candidate Generation

- Candidate translations are selected from a base candidate space s
- Translations are added the candidate pool, s'

Optimisation

- > The weight vector **w** is optimised to minimise a loss function $I_{s'}(H_w, G)$
- Loss defined to prefer weight vectors such that the gold function G scores H_w's best policy as highly as possible (0 loss if equal to G's best)
- Implemented by line optimisation

- Does not scale well with dimensionality
- MERT optimisation focuses on H_w's best policy, and not on its overall ability to rank policies

Pairwise Ranking Optimisation (PRO)

Local Scoring Function, g

Assume the gold scoring function G decomposes to:

$$G(p) = \sum_{i \in I} g(i, p(i))$$

► Here, g is a local scoring function

- It is equivalent to h_w for H_w
- It can be used to rank candidate translations for each source sentence

Example

S	ource Sentence	Candidate Translations						
i	Sentence string	j	e(i,j)	$\mathbf{x}(i, j)$	$h_{\mathbf{w}}(i,j)$	g(i,j)		
1	"il ne va pas"	1	"he goes not"	[2 4]	0	0.28		
		2	"he does not go"	[3 8]	2	0.42		
		3	"she not go"	[6 1]	-11	0.12		
2	"je ne vais pas"	1	"I go not"	[-3 -3]	3	0.15		
		2	"we do not go"	[1 -5]	-7	0.18		
		3	"I do not go"	[-5 -3]	7	0.34		

Reframing the Learning Task with g

- The task is to classify candidate pairs, (e(i, j), e(i, j')), into two categories
 - Correctly ordered (the first is better than the second)
 - Incorrectly ordered (the second is better than the first)

Reframing the Learning Task with g

► Thus, for a translations e(i, j) and e(i, j'), we want **w** such that $g(i, j) > g(i, j') \Leftrightarrow h_w(i, j) > h_w(i, j')$

We can algebraically turn this into a binary classification problem!

$$g(i,j) > g(i,j') \Leftrightarrow h_{\mathbf{w}}(i,j) > h_{\mathbf{w}}(i,j')$$

$$\Leftrightarrow h_{\mathbf{w}}(i,j) - h_{\mathbf{w}}(i,j') > 0$$

$$\Leftrightarrow \mathbf{w} \cdot \mathbf{x}(i,j) - \mathbf{w} \cdot \mathbf{x}(i,j') > 0$$

$$\Leftrightarrow \mathbf{w} \cdot (\mathbf{x}(i,j) - \mathbf{x}(i,j')) > 0$$

To Create Training Instances

- 1. Compute the difference vector $\mathbf{x}(i, j) \mathbf{x}(i, j')$
- 2. Label it:
 - Positive' if the first vector is superior, according to g
 - 'Negative' if the second vector is superior, according to g
- Consider both difference vectors from a pair
- Randomly sample these vectors to create training data

Dimensional Scalability Evaluation

Set-up

- 1. Define $G = H_{w_*}$ (p) for some gold weight vector w^*
- 2. Generate a Δ -dimensionality candidate pool
 - ▶ 500 source "sentences", each with 100 candidate "translations"
 - Draw, at random, Δ -dimensional feature vector values
- 3. Run the tuners
- 4. Repeat 1-3 with different Δ values
- 5. Repeat 1-4 with Gaussian noise added to feature vectors

Results

Translation Evaluation

SBMT vs PBMT

Syntax-Based systems (SBMT)

- Based on the idea of translating syntactic units
- Rather than single words or sequences of words
- Phrase-Based systems (PBMT)
 - Based on idea of translating whole sequences of words
 - Reduces the restrictions of word-based translation
 - The sequence lengths may differ

Evaluation Feature Sets

Baseline feature set

- Correspond to a typical small feature set in MT literature
- Gives a low (around 20) dimensional candidate space
- Extended feature set
 - Only used with MIRA and PRO
 - Gives a high (thousands) dimensional candidate space

Results

	AT	SBMT							
Language	Experiment		BLEU		Longuago	Experiment		BLEU	
Language	feats	method	tune	test	Language	feats	method	tune	test
	base	MERT	20.5	17.7	Urdu-English	base	MERT	23.4	21.4
		MIRA	20.5	17.9			MIRA	23.6	22.3
Urdu-English		PRO	20.4	18.2			PRO	23.4	22.2
	ext	MIRA	21.8	17.8		ext	MIRA	25.2	22.8
		PRO	21.6	18.1			PRO	24.2	22.8
	base	MERT	46.8	41.2	Arabic-English	base	MERT	44.7	39.0
		MIRA	47.0	41.1			MIRA	44.6	39.0
Arabic-English		PRO	46.9	41.1			PRO	44.5	39.0
	ext	MIRA	47.5	41.7		ext	MIRA	45.8	39.8
		PRO	48.5	41.9			PRO	45.9	40.3
	base	MERT	23.8	22.2	Chinese-English	base	MERT	25.5	22.7
		MIRA	24.1	22.5			MIRA	25.4	22.9
Chinese-English		PRO	23.8	22.5			PRO	25.5	22.9
	avt	MIRA	24.8	22.6		ext	MIRA	26.0	23.3
	ext	PRO	24.9	22.7			PRO	25.6	23.5

Monotonicity

Summary

Successes of this Publication

- Thorough explanation of background and concepts
- Appears to perform comparably to contemporary systems
- Illustrates idea of mapping to a well-solved problem
- Surprisingly good results by solving an apparently simpler problem
- Source code not released, which is a pity
- Comparisons to alternative baselines might be interesting