Learning to Rank

Ronan Cummins and Ted Briscoe

Thursday, 19th January

Table of contents

- Motivation
 - Applications
 - Problem Formulation
- 2 Approaches
 - Pointwise
 - Pairwise
 - Listwise
- 3 Challenges/Research Questions
 - Datasets
- 4 Conclusion

Applications of L2R

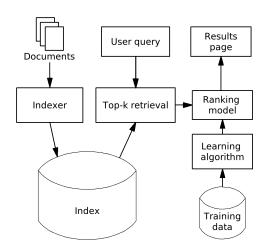
- Information Retrieval
- Collaborative Filtering
- Automated Essay Scoring
- Machine Translation
- Parsing

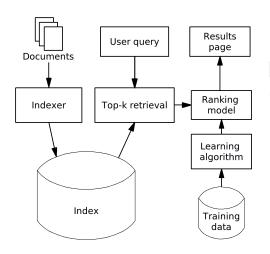
Applications of L2R

- Information Retrieval
- Collaborative Filtering
- Automated Essay Scoring
- Machine Translation
- Parsing
- Applicable to many tasks where you wish to specify an ordering over items in a collection

Difference with Other Learning Models

- No need to predict the absolute value of items (unlike regression)
- No need to predict the absolute class of items (unlike classification and ordinal regression)
- The relative ranking of items is all that is important (at least for information retrieval)





Fun Cat Facts for Kids - Interesting Facts about Cats & Kittens

www.sciencekids.co.nz/sciencefacts/animels/cat.html ▼
Read on and enjoy the wide range of interesting facts about cats and kittens. Cats are one of if not the most, popular set in the world. There are over 500 million ...

99 Interesting Facts about Cats - Random Facts facts.randomhistory.com/interesting-facts-about-cats.html *

About 12:100:000 results (0.55 seconds)

25 Jul 2010 - Random, fun cat facts, including little known statistics, history, myth, amazing anatomy, and more.

Cat Facts: 44 Facts about Cats ← FACTSlides → www.factslides.com/s-Cats *

Cat Facts: did you know that... Cats are America's most popular pets: there are 88 million cats compared to 74 million dogs?

33 More Awesome Facts About Cats - BuzzFeed

12 May 2014 - Cats are a riddle wrapped in a mystery. ... The fact that cats don't have duvets is only of small comfort here. ... How amazing does that sound?

20 Fun Facts About Our Mysterious Feline Friends | Mental ... mentalfloss.com/article/.../20-fun-facts-about-our-mysterious-feline-frien... 🔻

mentallloss.com/article/.../20-fun-facts-about-our-mysterious-feline-frien... ▼ 24 Mar 2014 - Cats aren't exactly open books. Here are a few facts that even allurophiles (cat lovers) might find surprising.

- Information retrieval often involves ranking documents in order of relevance
- E.g. highly relevant, relevant, partially-relevant, non-relevant
- Assume that we can describe documents (items) using feature vectors $\vec{x}_i^q = \Phi(q, d_i)$ that correspond to features of the query-document pair:

- Information retrieval often involves ranking documents in order of relevance
- E.g. highly relevant, relevant, partially-relevant, non-relevant
- Assume that we can describe documents (items) using feature vectors $\vec{x}_i^q = \Phi(q, d_i)$ that correspond to features of the query-document pair:

Example Features

- # of query keywords in document
- BM25 score
- document length
- page-rank
- sum of term-frequencies
- ...
- ...

Example of Input Vectors in \mathcal{R}^N

Уi	input vectors $\vec{x_i}$		
	\vec{x}_{i1}	\vec{x}_{i2}	\vec{x}_{i3}
3	7.0	9.2	3.2
2	2.0	9.2	4.1
0	2.0	3.5	0.2
2	2.0	9.2	11.2
1	3.0	5.3	2.2
0	0.0	3.2	0.5

Table : Sample Dataset

Problem Formulation

- Given a set of input vectors $\{\vec{x_i}\}_{i=1}^n$ and corresponding labels $\{y_i\}_{i=1}^n$ where $\mathcal{Y} = \{1, 2, 3, 4, ...l\}$ specifying a total order on the labels.
- Determine a function f that specifies a ranking over the vectors $\{\vec{x_i}\}_{i=1}^n$ such that f minimises some cost C
- ullet In general you would like to use a cost function ${\cal C}$ that is closely correlated to the most suitable measure of performance for the task
- This is not always easy

Three Common Approaches

- Pointwise Regression, Classification, Ordinal regression (items to be ranked are treated in isolation)
- Pairwise Rank-preference models (items to be ranked are treated in pairs)
- Listwise Treat each list as an instance. Usually tries to directly optimise an evaluation measure calculated over a list (e.g. mean average precision)

Three Common Approaches

- Pointwise Regression, Classification, Ordinal regression (items to be ranked are treated in isolation)
- Pairwise Rank-preference models (items to be ranked are treated in pairs)
- Listwise Treat each list as an instance. Usually tries to directly optimise an evaluation measure calculated over a list (e.g. mean average precision)
- We'll just consider linear functions of the form $f(\vec{x}) = <\vec{x}, \vec{w}>+b$

Pointwise Outline

General Criteria

The ranking function f learns to assign an absolute score (categories) to each item in isolation.

¹Adapted from [Hang(2009)Hang]

Pointwise Outline

General Criteria

The ranking function f learns to assign an absolute score (categories) to each item in isolation.

	Regression	Classification	
Input	input vector \vec{x}		
Output	Real Number	Category	
	$y = f(\vec{x})$	$y = sign(f(\vec{x}))$	
Model	Ranking Function		
	$f(\vec{x})$		
Loss	Regression Loss	Classification Loss	

Table: Learning in Pointwise approaches¹

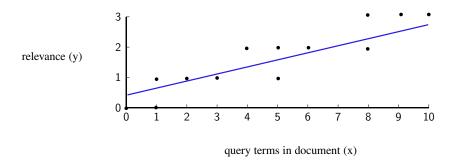
¹Adapted from [Hang(2009)Hang]

Example of Input Vectors

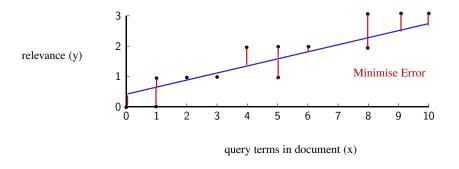
Уi	input vectors $\vec{x_i}$		
	Xi1	Xi2	Xi3
3	7.0	9.2	3.2
2	2.0	9.2	4.1
0	2.0	3.5	0.2
2	2.0	9.2	11.2
1	3.0	5.3	2.2
0	0.0	3.2	0.5

Table : Sample Dataset

A Simple Pointwise Example



A Simple Pointwise Example



Regression summary

- Each instance is treated in isolation
- The error from the absolute gold score is minimised

Regression summary

- Each instance is treated in isolation
- The error from the absolute gold score is minimised
- We have imposed some real value on the labels (possibly a poor assumption)
- In general, this is solving a more difficult problem than is necessary

Classification

- Build a multi-class classifier for the problem (highly relevant, relevant, partially relevant, non relevant)
- Each instance is treated in isolation
- Minimise the misclassification error

Classification

- Build a multi-class classifier for the problem (highly relevant, relevant, partially relevant, non relevant)
- Each instance is treated in isolation
- Minimise the misclassification error
- Ranking between classes is not used during training
- An assumption that all mis-classifications are equally poor (not true in reality)

Pairwise Outline I

General Criteria

The ranking function f learns to rank pairs of items (i.e. for $\{\vec{x_i}, \vec{x_j}\}$, is y_i greater than y_i ?).

Pairwise Outline I

General Criteria

The ranking function f learns to rank pairs of items (i.e. for $\{\vec{x_i}, \vec{x_j}\}$, is y_i greater than y_j ?).

	Learning	Ranking	
Input	Order input vector pair	Feature vectors	
	$\{ec{x_i},ec{x_j}\}$	$\{x_i\}_{i=1}^n$	
Output	Classifier of pairs	Permutation over vectors	
	$y_{ij} = sign(f(\vec{x_i} - \vec{x_j}))$	$y = sort(\{f(\vec{x_i})\}_{i=1}^n)$	
Model	Ranking Function		
	$f(\vec{x})$		
Loss	Pairwise misclassification	Ranking evaluation measure	

Table: Learning in Pairwise approaches²

²Adapted from [Hang(2009)Hang]

Pairwise Outline II

- Cost function typically minimises misclassification of pairwise difference vectors
- The function learns using paired input vectors $f(\vec{x_i} \vec{x_j})$
- Any binary classifier can be used for implementation
- Although svm^{rank} is a commonly used implementation³

Pairwise Transformation

Уi	input vectors $\vec{x_i}$		
	Xi1	Xi2	Xi3
hr (3)	7.0	9.2	3.2
r (2)	2.0	9.2	4.1
nr (0)	2.0	3.5	0.2
r (2)	2.0	9.2	11.2
pr (1)	3.0	5.3	2.2
nr (0)	0.0	3.2	0.5

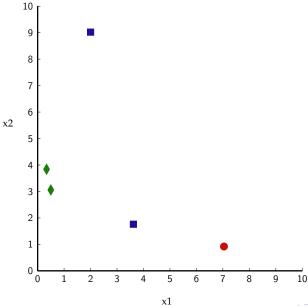
Table : Sample Dataset

Pairwise Transformation

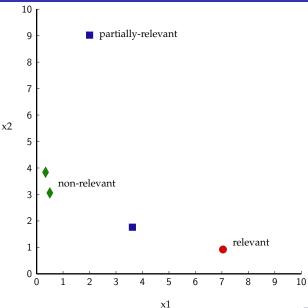
y_{ij}'	input vectors $\vec{x_i} - \vec{x_j}$		
	$x_{i1} - x_{j1}$	$x_{i2} - x_{j2}$	$x_{i3} - x_{j3}$
+(hr-r)	5.0	0.0	-0.9
+(hr-nr)	5.0	5.7	3.0
+(hr-r)	5.0	0.0	-8.0
+(hr-pr)	4.0	3.9	1.0
+(hr-nr)	7.0	6.0	2.7
+(r-nr)	0.0	5.7	3.9
+(r-pr)	-1.0	3.9	1.9
+(r-nr)	2.0	6.0	3.6
-(hr-r)	-5.0	0.0	0.9
			• • •

Table: Transformed Dataset

A Graphical Example I

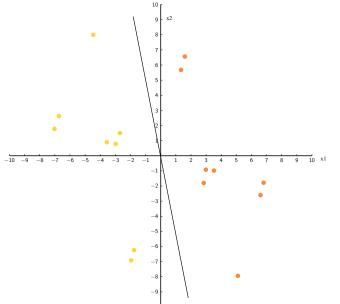


A Graphical Example I

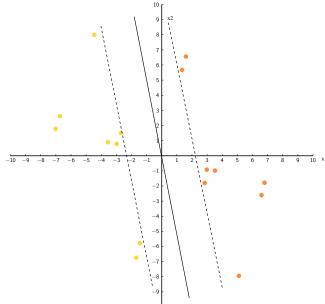


Thursday, 19th January

A Graphical Example II



A Graphical Example II



Pairwise Summary

- In general, pairwise approaches outperform pointwise approaches in IR
- Pairwise preference models can be biased towards rankings containing many instances
- However, pairwise approaches often do not optimise the cost function that is usually used for evaluation (e.g. average precision or NDCG)
- For example, correctly ranking items at the top of the list is often more important than correctly ranking items lower down

Example

Pairwise Summary

- In general, pairwise approaches outperform pointwise approaches in IR
- Pairwise preference models can be biased towards rankings containing many instances
- However, pairwise approaches often do not optimise the cost function that is usually used for evaluation (e.g. average precision or NDCG)
- For example, correctly ranking items at the top of the list is often more important than correctly ranking items lower down

Example

• $\{RRRNNN\}$ vs $\{NRRRNN\} \implies ap = 0.638$

Pairwise Summary

- In general, pairwise approaches outperform pointwise approaches in IR
- Pairwise preference models can be biased towards rankings containing many instances
- However, pairwise approaches often do not optimise the cost function that is usually used for evaluation (e.g. average precision or NDCG)
- For example, correctly ranking items at the top of the list is often more important than correctly ranking items lower down

Example

- $\{RRRNNN\}$ vs $\{NRRRNN\} \implies ap = 0.638$
- $\{RRRNNN\}$ vs $\{RRNNNR\} \implies ap = 0.833$

where R and N are relevant and non-relevant respectively.

Listwise outline

- Many listwise approaches aim to directly optimise the most appropriate task-specific metric (e.g. for IR it may be average precision or NDCG)
- However, for rank-based approaches these metrics are often non-continuous w.r.t the scores
- E.g. the score of documents could change without any change in ranking
- Two-broad approaches to handling this:
 - Modify the cost function to a continuous (smooth) version
 - Use (or modify) an algorithm that can navigate discrete spaces

Listwise example I

- We'll use SVM^{map}
 [Yue et al.(2007)Yue, Finley, Radlinski, and Joachims] as a brief
 example
- Each permutation (list) of items is treated as an instance
- Aim to find weight vector \vec{w} that ranks these permutations according to a loss function
- $h(\vec{q}; \vec{w}) = arg_max_{\vec{y} \in \mathcal{Y}} F(\vec{q}, \vec{y}; \vec{w})$
- And $F(\vec{q}, \vec{y}; \vec{w}) = \vec{w} \Psi(\vec{q}, \vec{y})$

Listwise example II

- One idea is to encode each permutation as summation of pairwise difference vectors in the ranking
- ullet As a result, each list instance is mapped to a feature vector in \mathcal{R}^N
- As each input vector is a list, a list-based metric can be used as a smooth loss function (hinge-loss)

Listwise example II

- One idea is to encode each permutation as summation of pairwise difference vectors in the ranking
- ullet As a result, each list instance is mapped to a feature vector in \mathcal{R}^N
- As each input vector is a list, a list-based metric can be used as a smooth loss function (hinge-loss)
- Number of permutations (rankings) is extremely large and so all lists are not used for training (see [Yue et al.(2007)Yue, Finley, Radlinski, and Joachims] for details)

Other Listwise Approaches

- In general when you can represent a list as a vector in \mathbb{R}^N , you can optimize w such that it can rank these lists
- lambdaRANK [Burges et al.(2006)Burges, Ragno, and Le]
- softRANK [Taylor et al.(2008) Taylor, Guiver, Robertson, and Minka]

Open Questions

- Learning to rank for other tasks/domains (e.g. essay scoring)
- Optimising the "true loss" for ranking. What might that be?
- Ranking using deep learning
- Ranking natural language texts using distributed representations

Datasets

- LETOR Datasets ⁴
- Yahoo! Learning to Rank Challenge https://webscope.sandbox.yahoo.com/#datasets
- FCE dataset (ESL essays)
 http://ilexir.co.uk/datasets/index.html

⁴http://research.microsoft.com/en-us/um/beijing/projects/letor/

Take-away Messages

- Applications of learning to rank abound
- Three main categories of approaches:
 - pointwise
 - pairwise
 - listwise
- Challenges in L2R
- Many open research questions

- Burges, C. J. C., Ragno, R., and Le, Q. V. (2006). Learning to Rank with Nonsmooth Cost Functions. In B. Schölkopf, J. C. Platt, T. Hoffman, B. Schölkopf, J. C. Platt, and T. Hoffman, editors, *NIPS*, pages 193–200. MIT Press.
- Hang, L. (2009). Learning to rank. ACL-IJCNLP 2009.
- Taylor, M., Guiver, J., Robertson, S., and Minka, T. (2008).

 Softrank: Optimizing non-smooth rank metrics.

 In *Proceedings of the 2008 International Conference on Web Search and Data Mining*, WSDM '08, pages 77–86, New York, NY, USA. ACM.
- Yeh, J.-Y., Lin, J.-Y., Ke, H.-R., and Yang, W.-P. (2007). Learning to rank for information retrieval using genetic programming. In T. Joachims, H. Li, T.-Y. Liu, and C. Zhai, editors, *SIGIR 2007 workshop: Learning to Rank for Information Retrieval*.
- Yue, Y., Finley, T., Radlinski, F., and Joachims, T. (2007).

A support vector method for optimizing average precision.

In Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval, pages 271–278. ACM.