Active Learning to Rank using Pairwise Supervision

Buyue Qian Hongfei Li Jun Wang Xiang Wang Ian Davidson
Learn to Rank

- Given a collection, specify an ordering of the items
- Approaches
 - Point-wise
 - Pair-wise
 - List-wise
- Applications
 - Information retrieval
 - Automated Essay Scoring
 - Parsing
Actively learn pair-wise ranking

- Query: $x_1 > x_2$?
- Three possible answers:
 - Strongly ordered
 - $x_1 > x_2$
 - $x_1 < x_2$
 - Weakly ordered
 - $x_1 = x_2$
Task, formally...

- Learning objective: ranking function
 \[\tau(x) = w^T x, \]
- Such that a maximum number of constraints are satisfied:
 \[w^T x_i > w^T x_j, \quad \text{if} \ (i, j) \in S \]
 \[w^T x_i = w^T x_j, \quad \text{if} \ (i, j) \in W \]
- This is computationally intractable
As a large margin problem:
As an optimisation problem:

\[
\min_{w, \xi, \gamma} \frac{1}{2} w^T w + C \sum_{i,j} (\xi_{ij} + \gamma_{ij})
\]

s.t. \[w^T x_i - w^T x_j \geq 1 - \xi_{ij}, \quad \text{if } (i, j) \in S; \]
\[w^T x_i - w^T x_j \geq -\gamma_{ij}, \quad \text{if } (i, j) \in \mathcal{W}; \]
\[\xi_{ij} \geq 0; \quad \gamma_{ij} \geq 0. \]
Kernalisation

- Problem: data vectors are most likely not linearly separable
- Map data points to higher dimensional space where they are linearly separable and learn
 \[\tau(x) = w^T \phi(x) \]
- Mapping could be very expensive, because the dimension of the space points are mapped to is very high
- Express the optimisation problem in terms of dot products of instance vectors, and use kernel function instead:
 \[K(x, z) = \phi(x)^T \phi(z) \]
Kernelisation

\[\min_{w, \xi, \gamma} \max_{\alpha, \beta} L = \frac{1}{2} w^T w + C \sum_{i,j} (\xi_{ij} + \gamma_{ij}) \\
- \sum_{(i,j) \in S} \alpha_{ij} (w^T (x_i - x_j) - 1 + \xi_{ij}) \\
- \sum_{(i,j) \in W} \beta_{ij} (w^T (x_i - x_j) + \gamma_{ij}) \]

s.t. \[\xi_{ij} \geq 0; \quad \gamma_{ij} \geq 0. \]
\[\alpha_{ij} \geq 0; \quad \beta_{ij} \geq 0. \]
Kernelisation

\[w = \sum_{(i,j) \in S} \alpha_{ij}(x_i - x_j) + \sum_{(i,j) \in W} \beta_{ij}(x_i - x_j) \]

\[\tau_k(x_t) = \sum_{(i,j) \in S} \alpha_{ij}(K_{it} - K_{jt}) + \sum_{(i,j) \in W} \beta_{ij}(K_{it} - K_{jt}) \]
Kernelisation

\[
\begin{align*}
\max_{\alpha,\beta} & \quad \sum_{(i,j) \in S} \alpha_{ij} \\
- \frac{1}{2} & \quad \sum_{(i,j) \in S} \sum_{(k,l) \in S} \alpha_{ij} \alpha_{kl} (x_i - x_j)^T (x_k - x_l) \\
- \frac{1}{2} & \quad \sum_{(i,j) \in W} \sum_{(k,l) \in W} \beta_{ij} \beta_{kl} (x_i - x_j)^T (x_k - x_l) \\
- & \quad \sum_{(i,j) \in S} \sum_{(k,l) \in W} \alpha_{ij} \beta_{kl} (x_i - x_j)^T (x_k - x_l)
\end{align*}
\]

s.t. \quad 0 \leq \alpha_{ij} \leq C; \quad 0 \leq \beta_{ij} \leq C.
Query strategy

- We want to choose a pair of items whose ordering would improve the ranking function
- Pair of elements whose ordering is “ambiguous”
Local Uncertainty

• Ambiguous pair = the value that the ranking function returns is similar

\[LU(x_i, x_j) = |w^T (x_i - x_j)|^{-1} \]

• Their ranking being ambiguous might be desirable
 o They are similar instances and user would say that they are weakly ordered
 o This won’t improve our hypothesis of ranking function
 o This information could be an important constraint later on when we know about some other pairs near these two points
Global Uncertainty

- Point whose ranking is ambiguous among others

\[D(x_i, x_j) = \frac{w^T(x_i - x_j) - \min_{x_k} w^T(x_i - x_k)}{\max_{x_k} w^T(x_i - x_k) - \min_{x_k} w^T(x_i - x_k)} \]

\[GU(x_i) = - \sum_{x_j \in X, j \neq i} D(x_i, x_j) \log D(x_i, x_j) \]

- Empirically points in a “dense” region get chosen
- If we only use this uncertainty measure, we might risk choosing outliers/noise which we don’t want our ranking function to fit around
Algorithm

- **RankSVM**
 - Gradient-based optimisation
 - Input data: strong ordering
 - No kernel

- **Relative Attributes**
 - Newton’s method
 - Input data: Strong + weak ordering
 - No kernel

- **Proposed**
 - RBF kernel
Comparison

● Different algorithm + Active learning
 ○ RankSVM + Active
 ○ Relative Attributes + Active

● Proposed method - global uncertainty
 ○ Proposed + Local Uncertainty

● Query about random pairs
 ○ Proposed + Random
 ○ RankSVM + Random
 ○ Relative Attributes + Random

● Proposed method
Evaluation metric

- Normalised discounted cumulative gain

\[
\text{NDCG}(\tau) = N \sum_{i} \frac{(2^{r(i)} - 1)}{\log_2(1 + i)}
\]
Financial Risk Ranking

- Task: Rank companies w.r.t. their financial risks
- Feature: 15k features from annual revenue reports of corporations projected to 100 dimensions
- Ground truth: stock return volatility measurements
Financial Risk Ranking

![Financial Risk Ranking](image)

(a) Top 100
Election Votes Ranking

- Task: rank the 3,107 US counties w.r.t. their contributions in presidential election
- Feature: 6 dimension
 - Population > 18 yrs
 - Population with higher education
 - Number of owner-occupied housing units
 - Income
 - Latitude
 - Longitude
- Ground truth: log of the proportion of votes cast
Election Votes Ranking

(a) Top 30
Musical Retrieval

- Task: to retrieve songs released in a particular year based on the features of audio content
- Feature: 90 dimension
- Weakly ordered if a music is produced ±3 year w.r.t. Music produced in the input year
- Strongly ordered below otherwise
Musical Retrieval

(a) Top 30
Discussion

- In general clear
- Improved performance attributed to both kernelisation and active learning
- Not clear what is “weakly ordered pair” in Application 1/2
- Comparison on execution speed
- In all cases it’s clearly not linearly separable (training pairs > feature)