
Dialogue and Discourse 1(3) (2010) 1-33 doi: 10.5087/dad.2010.003

HILDA: A Discourse Parser Using
Support Vector Machine Classification∗

Hugo Hernault HUGO@MI.CI.I.U-TOKYO.AC.JP
Graduate School of Information Science & Technology
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Helmut Prendinger HELMUT@NII.AC.JP
National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

David A. duVerle DAVE@KUICR.KYOTO-U.AC.JP
Bioinformatics Center, Institute for Chemical Research
Kyoto University
Gokasho, Uji, Kyoto 611-0011, Japan

Mitsuru Ishizuka ISHIZUKA@I.U-TOKYO.AC.JP

Graduate School of Information Science & Technology
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Editor: Tim Paek

Abstract
Discourse structures have a central role in several computational tasks, such as question–answering
or dialogue generation. In particular, the framework of the Rhetorical Structure Theory (RST) offers
a sound formalism for hierarchical text organization. In this article, we present HILDA, an imple-
mented discourse parser based on RST and Support Vector Machine (SVM) classification. SVM
classifiers are trained and applied to discourse segmentation and relation labeling. By combining
labeling with a greedy bottom-up tree building approach, we are able to create accurate discourse
trees in linear time complexity with respect to the length of the input text. Importantly, our parser
can parse entire texts, whereas the publicly available parser SPADE (Soricut and Marcu, 2003) is
limited to sentence level analysis. HILDA outperforms other discourse parsers for tree structure
construction and discourse relation labeling. For the discourse parsing task, our system reaches
78.3% of the performance level of human annotators. Compared to a state-of-the-art rule-based
discourse parser, our system achieves an performance increase of 11.6%.

Keywords: Discourse Parser, Rhetorical Structure Theory, Support Vector Machines

1. Introduction

In the last twenty years, the study of discourse has received continuous attention from the Natu-
ral Language Processing community (Moore and Wiemer-Hastings, 2003). Discourse structure is
fundamental to many text-based applications, such as question–answering (Chai and Jin, 2004) or

∗. This article is a significantly improved and extended version of duVerle and Prendinger (2009).

c©2010 Hugo Hernault, Helmut Prendinger, David A. duVerle, and Mitsuru Ishizuka Submitted 2/10; Accepted 11/10; Published online 12/10

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

dialogue generation (Prendinger et al., 2007). Those applications require the availability of robust
and efficient discourse parsers.

Several attempts have been made to create discourse parsers in the framework of the Rhetorical
Structure Theory (Mann and Thompson, 1988), which is one of the most widely used theories of
text organization. In RST, a text is first divided into non-overlapping text chunks, called elementary
discourse units (abbreviated: EDUs). For instance, the following sentence, taken from the RST
Discourse Treebank corpus (Carlson et al., 2001):

Farm lending was enacted to correct this problem by providing a reliable flow of lend-
able funds.

can be segmented into EDUs as shown in Figure 1.

[Farm lending was enacted]1A [to correct this problem]1B [by providing a reliable
flow of lendable funds.]1C (wsj1131)

Figure 1: Segmentation of a sentence into EDUs

Next, consecutive EDUs are put in relation with each other, using a pre-defined set of rhetorical,
or discourse, relations. The final goal of the discourse parser is to produce a tree structure as a
representation of how all units of the text relate to each other.

Figure 2 shows two types of discourse relations in RST: hypotactic (‘mononuclear’) and parat-
actic (‘multi-nuclear’). The left-hand tree is an example of a mononuclear relation. Here the two
discourse units connected by the relation have different status, which is indicated by the direction
of the arrow. The endpoint of the arrow denotes the ‘nucleus’ of the relation, whereas the unit at
the other end is referred to as the ‘satellite’. The nucleus is considered as more prominent than the
satellite. For example, CONDITION is defined in Carlson et al. (2001) as: “In a CONDITION rela-
tion, the truth of the proposition associated with the nucleus is a consequence of the fulfillment of
the condition in the satellite. The satellite presents a situation that is not realized.” Other mononu-
clear discourse relations described in (Mann and Thompson, 1988; Carlson et al., 2001) include:
BACKGROUND, CIRCUMSTANCE, ELABORATION and PURPOSE.

Paratactic (‘multi-nuclear’) relations, on the other hand, have no distinguished nucleus and the
relation can connect an arbitrary number of discourse units. The relation to the right in Figure 2 is
multi-nuclear. For example, LIST is defined as “[...] a multinuclear relation whose elements can be
listed, but which are not in a comparison [...]” (Carlson et al., 2001). The following discourse rela-
tions are also multi-nuclear (see Mann and Thompson (1988); Carlson et al. (2001)): CONTRAST,
DISJUNCTION, SEQUENCE, and TOPIC-COMMENT.

R

RELATIONNAME

Satellite Nucleus

RELATIONNAME

Nucleus Nucleus

Figure 2: The two relation types in RST. Left: mononuclear; Right: multi-nuclear

Figure 3 shows the tree representation of the preceding example (see Figure 1).

2

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

	

ENABLEMENT

Farm lend-
ing was en-
acted 	

MANNER-MEANS

to correct
this prob-
lem

by providing a
reliable flow of
lendable funds.

Figure 3: A simple discourse tree (wsj1131)

The tasks of discourse segmentation and relation labeling have been previously modeled using
rule-based and statistical methods. In rule-based systems, rules manipulating syntactic and lexical
information are defined manually. When applied to a text, these rules enable to detect the presence
of EDU boundaries or select the discourse relations holding between EDUS. However, given the
heterogeneity of all possible texts, a rule-based model requires the creation of a large number of
rules.

Supervised learning techniques offer an interesting alternative. With those techniques, labeled
instances are extracted from a large body of text. Classifiers are then trained to differentiate between
EDU boundary and non-boundary words, or assign discourse relation labels to EDU pairs. The
machine learning based approach for discourse parsing was greatly facilitated by the release of the
RST Discourse Treebank (RST-DT) (Carlson et al., 2001), a corpus of RST-annotated snippets from
the Wall Street Journal.

Previous supervised approaches were aimed at producing sentence level analysis (Soricut and
Marcu, 2003) or at describing partially-implemented systems (Reitter, 2003b). By contrast, our
work targets discourse structure at text level. Specifically, we created a fully-implemented, extensively-
evaluated system.

In this article, we will present HILDA (HIgh-Level Discourse Analyzer), a text level discourse
parser based on Support Vector Machine classification. In Section 2, we will report on available
approaches using rule-based and statistical discourse segmentation and parsing. In Section 3, we
will explain the two core tasks for an automated discourse parser (segmentation and relation label-
ing) and describe our working assumptions. Section 3.4 is dedicated to the set of lexical, syntactic
and structural features used in our model. In Section 4, we will provide (1) a detailed evaluation
of the discourse segmentation and relation labeling modules, (2) a full system evaluation, and (3) a
comparison to other discourse parsers. Finally, in Section 5, we will conclude the article and discuss
future work.

2. Related work

Since Marcu’s first attempt at developing a rule-based discourse parser (Marcu, 2000), several al-
gorithms for discourse parsing have been proposed, both statistical and rule-based. Each of them
extracts a different set of features from the input, and demonstrates different run-time complexity.
In this section we present the most notable ones, which also proved instrumental in identifying

3

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

useful features for our own algorithm. We start with discussing statistical approaches to discourse
segmenting and parsing.

SPADE (Soricut and Marcu, 2003) is a sentence level discourse parser. Two probabilistic models
are employed that use syntactic and lexical information to segment and to parse text. Issues of
algorithmic complexity that made their original algorithm impractical on large instances (Marcu,
2000) are overcome by a dynamic programming approach. Although SPADE does not support full
text discourse parsing, it demonstrates the correlation between syntactic and discourse information
and their capability to identifying structure and relations empirically, particularly when no signaling
cue-word is present (between 60% and 70% of the total (Taboada, 2006)). The authors’ exploration
of ‘dominance sets’ in lexicalized syntax trees has provided the basis for a set of lexico-syntactic
features in our own algorithm. A key difference to our approach is we are able to process full text
input, rather than individual sentences.

To the best of our knowledge, Reitter (2003b) presents the only method based exclusively on
feature-rich supervised learning to produce text level discourse parse trees. His algorithm relies on
training a set of Support Vector Machine classifiers to score and to label relations between spans.
Although the author’s suggestion of a bottom-up tree building algorithm using chart parsing style
techniques has not been implemented yet, the results for raw instance classification provides a good
intermediate benchmark for the evaluation of our own instance classifier.

More recently, Baldridge and Lascarides (2005) successfully implemented a probabilistic parser
that uses headed trees to label discourse relations. The authors employed the more specific frame-
work of Segmented Discourse Representation Theory (Asher and Lascarides, 2003) rather than RST,
which they applied to texts in dialogue form.

In Sagae (2009), a discourse parser based on shift-reduced parsing is presented. The parser
is trained on the RST-DT, employs transition algorithms for dependency and constituent trees, and
uses its own syntax and dependency tagger. It brings noticeable improvements in accuracy and speed
against Marcu’s original chart parsing approach (Marcu, 2000). The parser also includes a discourse
segmenter based on a binary classifier trained on lexico-syntactic features. The discourse segmenter
performs better than the one presented in Reitter (2003b) and is significantly faster. Importantly,
compared to Soricut and Marcu (2003), the proposed system is able to create discourse structures
for full texts, not only sentences. For discourse segmentation, the author reports an F-score of 86.7%
and an F-score of 44.5% for creating text level discourse trees.

Subba and Di Eugenio (2009) propose a discourse parser based on Inductive Logic Program-
ming, a first-order logic approach for learning discourse relations. In their system, besides tradi-
tional syntactic and discourse cue information, rules are learnt based on semantic information from
WordNet (Fellbaum, 1998), similarity measures, structural properties between text segments, as
well as compositional semantics. Then, a shift-reduce parsing model is employed to produce dis-
course structures. The authors employ a custom corpus of instructional texts, manually segmented
into discourse units, and annotated with a custom set of 26 discourse relations. For sentence-level
relation labeling, their system reaches an F-score of 63%, while the F-score for text level discourse
trees is 35.44%.

A statistical discourse segmenter based on artificial neural networks is presented in Subba and
Di Eugenio (2007). The system employs a multi-layer perceptron model and is trained on the
RST-DT using syntactic and lexical information, in particular discourse cues. Bagging (Breiman,
1996) is applied to reduce over-fitting. The performance of this segmenter is comparable to the one

4

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

employed in Soricut and Marcu (2003), with an F-score of 84.4% (86% when using perfect parse
trees).

Next we turn to rule-based approaches to segmentation and discourse parsing. Le Thanh et al.
(2004b) propose a multi-step algorithm to segment text and organize its spans into trees for each
successive level of text organization: sentence level, paragraph level, and text level. Within each
level, the authors explore a search space consisting of all valid trees fitting the ‘sequentiality prin-
ciple’ (i.e., two spans connected in the tree are adjacent in the original text, see Section 3.2). The
multi-level nature of their algorithm mitigates the combinatorial explosion effect. However, at the
text level, the algorithm has to score a large number of trees to extract the best candidate—despite
the use of beam search as a method to explore the solution space. Hence, this approach is imprac-
tical for large input text. Furthermore, the assumption of strong tree-consistency (the adjacency
hypothesis) at each organizational level is not supported in the RST corpus, where a majority of
documents contain organizational blocks that do not map to valid subtrees.

Tofiloski et al. (2009) argue that using rules has certain advantages over automatic learning
methods and present a rule-based discourse segmenter. Their proposed model does not depend on
a specific training corpus and supports high-precision segmentation by inserting fewer but ‘quality’
boundaries. However, segmentation is done in a manner different from the segmentation guidelines
used in the RST-DT corpus (Carlson et al., 2001). First, the authors only create EDUs that contain
verbs. They try to capture specific relations (e.g., CONDITION, PURPOSE) and avoid less informa-
tive relations, such as ELABORATION. Further, complement clauses are not placed in independent
units in order not to break NP constituency, and avoid SAME-UNIT relations. For instance, “He
said that” is not considered an independent EDU. In this article, we will not enter the discussion of
what constitutes the best segmentation guidelines, and simply take the RST-DT corpus as the basis
for segmentation by supervised methods.

3. Approach

3.1 The RST Discourse Treebank

As previously mentioned, RST-DT is a large corpus of documents annotated with EDU segmentation
and full text level rhetorical structure (Carlson et al., 2001). The corpus was released in 2002 and
contains 385 articles transcribed from the Wall Street Journal. These articles are a subset of the
Penn Treebank corpus of English (Marcus et al., 1993). The corpus allows us to both train and
evaluate the performance of our algorithm on a large number of documents of varied lengths.

Although the original RST set is composed of 24 discourse relations (Mann and Thompson,
1988), this list has evolved to fit the type of application and expressive power required by each
researcher. In the RST-DT, relation annotation is done using a set of 78 rhetorical relations, which
enables a high level of expressivity. These relations are divided in two categories: 53 mononuclear
relations and 25 multi-nuclear relations.

3.2 Working assumptions

An essential characteristic of RST is that “a left-to-right reading of the terminal frontier of a dis-
course tree associated with a text corresponds to the span of text analyzed, in the same linear order.”
(Marcu, 2000). This ‘sequentiality principle’ guarantees that only consecutive spans of a text can
be put into relation, which dramatically reduces the size of the solution space (see Section 3.3).

5

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

When building discourse parsers, researchers have opted to use small relation sets, which makes
the problem of assigning relations easier. For instance, Marcu (2000) used 15 relations, while
Le Thanh et al. (2004b) used 14 relations. Although the rich 78-relations set of the RST-DT enables
a high level of expressivity, which is useful in the case of linguistic studies, it has unnecessary preci-
sion for most text analysis applications. Furthermore, from a machine learning perspective, working
with a smaller set of relations improves the computational properties of the problem. A problem
with fewer classes guarantees a better separability between the different classes, as it abstracts from
the ambiguities inherent to fine-grained relations. We adopt a similar strategy and work with the 18
relations defined in Carlson et al. (2001), and previously used by Soricut and Marcu (2003).

In this reduced set, the original RST-DT relations are partitioned into 16 categories, which corre-
spond to (merged) relations (called “classes” in Carlson et al. (2001)), depending on their rhetorical
similarity.1 For instance, the semantically similar PROBLEM-SOLUTION, QUESTION-ANSWER,
STATEMENT-RESPONSE, TOPIC-COMMENT and COMMENT-TOPIC relations, are merged to TOPIC-
COMMENT. Two extra relations are used for helping the structuring of the text, TEXTUAL-ORGANIZATION

and SAME-UNIT.
In RST, multi-nuclear relations can take an arbitrary number of arguments. For instance, the

LIST relation can connect any number of spans, leading to n-ary tree representations. In order
to maintain compatibility with our SVM classification approach, we have to convert n-ary trees
to binary trees. This conversion can be done trivially, by consecutively nesting the arguments of
multi-nuclear relations, in the fashion shown in Figure 4.

List

[1] [2] [3] [4]

1

List

[1] List

[2] List

[3] [4]

1

Figure 4: Binarization of multi-nuclear relations

It is interesting to note that the reverse transformation is possible most of the time. However,
a loss of reversibility occurs when two similar multi-nuclear relations are nested consecutively (for
instance, two LISTs). However, these cases occur rarely in practice—only 15 times in the 380
documents of our corpus.

3.3 Outline of discourse segmentation and discourse relation labeling

Figure 5 shows the basic workflow of the HILDA parser (details of the workflow are provided in
Appendix A).

1. For a complete list of the relations used, see Appendix B.

6

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

• A text is first segmented into EDUs.

• Then the relation labeling step evaluates which relations are likely to hold between consec-
utive EDUs. The two EDUs which are most probably connected by a rhetorical relation are
merged into a rhetorical structure tree of two EDUs.

• Next, we go back to the labeling step to re-evaluate which relations are the most likely to hold
between spans (rhetorical structure trees of any size, including atomical EDUs).

• This procedure is repeated until all spans are merged.

The outlined method enables us to find a good approximation of ‘perfect’ discourse trees (i.e.,
the ones created by human annotators) in linear time complexity with respect to the length of the
input text.

Input text bDiscourse
segmentation Relation labeling Tree construction Discourse tree

Figure 5: Basic parser workflow

The tasks of discourse segmentation and relation labeling are modeled as supervised classifica-
tion tasks. We chose to use Support Vector Machines (SVM) (Vapnik, 1995). SVMs are a set of
maximum-margin classifiers, i.e., they minimize the classification error and maximize the geomet-
ric margin. They have been used extensively in domains ranging from bio-informatics to natural
language processing, and are considered as a state-of-the-art classifier for many practical tasks.

In discourse segmentation, the problem is to assign each word of the input text an observation
category c ∈ {0, 1}, where 0 indicates that a word is not a boundary, and 1 indicates that it is a
boundary. For example, in the snippet from Figure 1, the words said, quarter and yesterday are
assigned 1, whereas all other words belong to category 0. Hence, we train a binary classifier Seg :
W → {0, 1}, whereW is the set of all words occurring in the input text, denoted by InputText.
After the segmentation step, we obtain a list of EDUs, E = 〈e1, e2, . . .〉. The concatenation of these
EDUs, from left to right, gives back InputText.

For relation labeling and tree construction, we apply the following method. Given two consecu-
tive spans (EDUs or subtrees), we determine (1) the likelihood of a direct structural relation, (2) the
probabilities for the label of the relation with nuclearity of the spans. A full rhetorical structure tree
is produced by applying this mechanism repeatedly in a straightforward bottom-up fashion.

Definition 1 (discourse relation set) A discourse relation setR is defined as a set
R = {R1, R2, . . . Ri, . . . , Rn}, such that ∀i, Ri = 〈RRi, Lefti, Righti〉, whereby:

• RRi ∈ {ATTRIBUTION, CAUSE, ELABORATION, LIST, . . . } (see Appendix B for a full list
of relations considered in HILDA);

• Lefti, Righti ∈ {Nucleus, Satellite};

7

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

• all Ri triplets are valid, i.e., given a rhetorical relation RRi, the left and right nuclearities
Lefti and Righti are allowed nuclearity options. Our working rhetorical relation set and
allowed nuclearity options are defined in Appendix B. We employ 18 rhetorical relations
which, when nuclearized, give a total of 41 possible Ri triplets (the cardinal number ofR).

Definition 2 (valid RS-tree) A RS-tree T is valid if it satisfies the following properties:

1. All leaf nodes of T are EDUs;2

2. All non-leaf nodes of T are tagged with a discourse relation Ri ∈ R.

T = {T1, T2, . . . Ti, . . .} denotes the set of all valid RS-trees. In our algorithm, RS-trees are
implemented using binary tree structures.
To obtain a good classification accuracy, we train two separate classifiers:

• A binary classifier for structure labeling, i.e., existence of a rhetorical relation between two
valid RS-trees: Struct : T × T → {0, 1}.

• A multi-class classifier for rhetorical relation and nuclearity labeling: Label : T × T → R.
Label returns predicted relation label and nuclearities.

The detailed algorithm for tree construction is provided in Figure 6. We first create a list con-
taining all EDUs of the input text, in left-to-right reading order. The binary classifier Struct is then
applied to all pairs of consecutive elements from this list, in order to determine the probability of a
structural relation between consecutive EDUs. Next we select the pair with the highest probability
and apply Label to it, in order to determine the relation’s label and nuclearity. We can now remove
the two selected EDUs from the list, and replace them by a newly created RS-tree labeled by the
estimated relation label and nuclearity, whose left and right children are the selected EDUs. We
update the probabilities of structural relations holding between the newly created tree and adjacent
elements in the list, using Struct. Subsequently, we repeat the process until the list contains only
one element, which is our final discourse tree, built bottom-to-top. In doing so, we have adopted a
‘greedy’ approach, i.e., at each iteration the two spans most likely connected by a relation have been
merged. Hence, our algorithm, which makes locally-optimal choices, performs in time complexity
of O(n).

3.4 Features

3.4.1 DISCOURSE SEGMENTATION

The first step of the parser is to segment the text into units. For this task, we use a combination of
syntactic and lexical features: words, POS tags, and lexical heads. In particular, we use the lexico-
syntactic features of Soricut and Marcu (2003), which were found good indicators for the presence
of EDU boundaries.

Figure 9 shows the parse tree of the sentence “Farm lending was enacted to correct this problem
by providing a reliable flow of lendable funds.” (see also Figure 1). Here, lexical heads are generated
using projection rules from Magerman (1995) and indicated between brackets. For a word w, we
look at its highest ancestor in the parse tree with a lexical head equal to w, and with a right-sibling.

2. Note that a single EDU also constitutes a valid RS-tree.

8

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

Require: E = 〈e1, e2 . . . 〉, list of all the text’s EDU

Ensure: FinalTree is a valid RS-tree for InputText
L← E
for all (li, li+1) in L do

Scores[i]← Struct(li, li+1)
a

end for
while |L| > 1 do

i← argmax(Scores)
NewLabel← Label(li, li+1)
NewSubTree← CreateTree(li, li+1, NewLabel)b

Scores[i− 1]← Struct(li−1, NewSubTree)
Scores[i+ 2]← Struct(NewSubTree, li+2)
delete(Scores[i])
delete(Scores[i+ 1])
L← [l0, . . . , li−1, NewSubTree, li+2, . . .]

end while
FinalTree← l0
return FinalTree

a. li denotes the i-th element of list L.
b. CreateTree is a function that takes two RS-trees T and T ′, a relation R ∈ R, and returns the RS-tree whose

left child is T , whose right child is T ′, and which is tagged with relation R.

Figure 6: Bottom-up tree construction

This highest-ancestor node is called Nw. Then, we call its parent Np, and its right-sibling Nr. For
instance, when applying this process to the word “enacted”, we obtain Nw = VBN(enacted), Np =
VP(enacted), Nr = S(correct).

We can now define the contextual features of the word at position i in the text. It is the set
composed of the word wi, its POS, as well as the POS and lexical heads of Nwi, Npi, and Nri. Next,
the features for position i in the text are created by concatenating the contextual features at positions
i − 2, i − 1, and i. Those positions were determined empirically to give the maximum contextual
coverage.

3.4.2 RELATION LABELING

For relation labeling, several shallow lexical and syntactic features are taken into account, including
features of textual organization, lexical features, ‘dominance sets’ (Soricut and Marcu, 2003), and
structural features.

The first type of features we incorporate is related to textual organization. A number of previous
efforts (Marcu, 1996; Soricut and Marcu, 2003) have shown that there is a strong correlation be-
tween different organizational levels of textual units and subtrees of the RS-tree, both at the sentence
level and at the paragraph level. Hence, the following features provide valuable high-level cues for
the task of scoring span relation priority (classifier Struct). As hypothesized by Reitter (2003b),
there is a correlation between span length and type of rhetorical relations. For instance, the satellite
of a CONTRAST relation tends to be shorter than its nucleus.

9

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

The organizational features taken into account in our system are presented in Table 1. In this
table, all subtree-specific features, which are symmetrically extracted from both left and right candi-
date spans, are suffixed by “S[pan]”. The other features, calculated as a function of the two subtrees
considered as a pair, are indicated by “F[ull]”.

Table 1: Features encoding textual organization

Feature name Scope

Belong to same sentence F
Belong to same paragraph F
Number of paragraph boundaries S
Number of sentence boundaries S
Length in tokens S
Length in EDUs S
Distance to beginning of sentence in tokens S
Size of span over sentence in EDUs S
Size of span over sentence in tokens S
Size of both spans over sentence in tokens F
Distance to beginning of sentence in EDUs S
Distance to beginning of text in tokens S
Distance to end of sentence in tokens S

Discourse cues, such as because, however, etc are another type of feature that frequently in-
dicate the presence of discourse relations. Instead of working with a pre-defined dictionary of
discourse cues, we chose to build an empirical n-gram dictionary from the training corpus, ranked
by frequency, in order to keep it to a reasonable size. This method has the advantage of capturing
non-lexical signals, such as punctuation and paragraph boundaries. We encode the prefix and suffix
of each span as ordered 3-grams, which were found to give the best signal-to-noise ratio (see Man-
ning and Schütze, 1999). Encoding the beginning and end of a span is motivated by the hypothesis
that the most meaningful rhetorical signals are found at the edges of the span (Schilder, 2002). For
instance, for the span in Figure 3 consisting of units 1B and 1C connected by a MANNER-MEANS

relation, the beginning and end-of-span 3-grams we encode in our features (to, correct, this) and
(of, lendable, funds), respectively. In total, our 3-gram dictionary is of size 12,000, and encoding
prefix and suffix raise the encoding size to 22 × |3-gram dictionary| = 48, 000.

This approach was validated by comparing it to results obtained from using a fixed dictionary of
300 cue-phrases instead (Oberlander and Moore, 1999). Performance was found to be lower when
using only the cue-phrase dictionary, and marginally lower when using both together. To improve
discourse cue detection and to make it less dependent on lexical information, we complement it
with shallow syntactic information, by encoding POS tags for the prefix and suffix of each span.
The Penn Treebank contains NPOS = 384 tags, hence it requires 2 × 3 × NPOS = 2304 additional
dimensions.

To reflect the way relations attach in RS-trees, we use the notion of dominance sets as defined
in Soricut and Marcu (2003). A dominance set is formed by consecutive EDUs of a sentence that are
connected in the lexicalized syntax tree by a head node (the dominating node) and an attachment
node (the dominated node). For instance, the sentence of Figure 1 contains three EDUs, which

10

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

are connected by two rhetorical relations, ENABLEMENT and MANNER-MEANS. This leads to
two possible tree constructions (see Figure 8), in which EDU 1B is connected either to 1A or to
1C. In the left-hand construction, 1A and 1B are connected first, then the subtree they span is
connected to 1C. In the right-hand construction, 1B and 1C are connected first, then the subtree
they span is connected to 1A. It is possible to infer the correct logical nesting order by studying
the associated syntax tree, and observing the sub-trees spanned by each EDU. In Figure 9, looking
at the frontiers between dominating nodes (diamond-shaped) and dominated nodes (oval-shaped)
indicates the correct dominance order, 1A > 1B > 1C. Thus, 1B should be attached to 1C,
and the correct tree in Figure 8 is the right-hand one. Soricut and Marcu (2003) also note that
only taking the POS tags of the dominance nodes into account is too general. Then, in order to
augment information about the lexico-syntactic context, lexical heads of those nodes are also taken
into account.

For approximating Soricut and Marcu’s definition of dominance sets, we incorporate the lexico-
syntactic and structural features presented in Table 2 into our model. It is worth noting that most of
these features apply only when both spans belong to the same sentence. Otherwise, the parse trees
of spans are disjunct, and the notion of dominance does not apply. In this case, the features receive
default values during feature extraction.

Table 2: Features encoding dominance sets

Feature name Scope

Distance to root of the syntax tree S
Distance to common ancestor in the syntax tree S
Delta of distances to common ancestor F
Dominating node’s lexical head in span S
Common ancestor’s POS tag F
Common ancestor’s lexical head F
Dominating node’s POS tag F
Dominating node’s lexical head F
Dominated node’s POS tag F
Dominated node’s lexical head F
Dominated node’s sibling’s POS tag F
Dominated node’s sibling’s lexical head F
Relative position of lexical head in sentence S

The strong compositionality criterion was found by Marcu through empirical analysis of large
RST trees: “[. . .] whenever two large text spans are connected through a rhetorical relation, that
rhetorical relation holds also between the most important parts (i.e. the nuclei) of the constituent
spans.” (see Marcu (1996, 2)). This criterion, he argues, provides a good indicator of validity in the
case of text level trees where relations can connect large spans of text beyond the sentence level.
The idea of strong compositionality is implemented by replicating the set of lexical and syntactic
features of Table 2, which are extracted from the ‘most important’ EDU, called main constituent,
of each span. The main constituent of the left span is found by recursively selecting the right-most
nucleus, starting from the top relation. For the right span, the left-most nucleus is selected instead.
We chose the leftmost and rightmost nuclei, respectively, so that the EDUs considered are as close

11

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

as possible to each other. Marcu (1996) recommends selecting the union of all nuclei in each span.
However, the restriction we impose is necessary to accommodate the fixed length nature of our
feature vectors.

Finally, to guide decisions regarding high-level relation classification on large spans, we encode
the rhetorical structure of a span into the feature vector. We (informally) observed some level of
correlation between relations at different levels of the tree throughout the corpus. This is trivially
the case for n-ary relations such LIST which have been binarized in our representation; the presence
of several LIST relations in right-most nodes of a subtree greatly increases the chance that the parent
relation might be a LIST itself. We encode this structure as a breadth-first, flat list representation
of the binary tree, whereby each element of the list is split over one of the 41 potential class labels.
As the feature vectors have a fixed length, we set an arbitrary limitation on the depth encoded. This
increases the encoding size by 2×|R|×2d = 41×2d+1, where d is the maximal depth considered.
Experiments have shown optimal performances for 2 ≤ d ≤ 3 (we selected d = 3) with sharp
decreases for values of d > 4. This result can be explained by the excessively noisy data brought
about by an exponentially growing set of features.

4. Experiments

4.1 Discourse segmentation

We first measure the performance of the Seg classifier. After feature extraction from the 341 training
documents and 38 test documents of the RST-DT, we obtain 177,633 training vectors and 21,667
test vectors for this task. Because a sentence typically contains few EDU boundaries, our dataset
is skewed, with approximately 89% negative training examples and 11% positive examples. Our
segmenter is evaluated with respect to two types of competing systems. First, we measure the
segmentation result when using parse trees from the Penn Treebank (Marcus et al., 1993) as our
gold standard. Second, as a practical evaluation, we compare the performance when using parse
trees generated respectively by the Stanford parser3 (Klein and Manning, 2003) and by the Charniak
parser4 (Charniak, 2000).

Evaluation is done on the test subset of the RST-DT. In our experiments, we use the same
measure as Soricut and Marcu (2003) and Tofiloski et al. (2009), i.e., we only measure the score on
boundaries inside sentences. This avoids artificially boosting the performance by including obvious
end-of-sentence or end-of-paragraph boundaries. The radial basis function (RBF) (Vapnik, 1995)
kernel is selected, and parameter estimation is done using grid search with 5-fold cross validation
(Staelin, 2003). In practice, we did not observe any problem related to the class imbalance in the
training set with these parameters. The performance of our and other available segmenters is shown
in Table 3.

NNDS refers to the Neural-Networks Discourse Segmenter (Subba and Di Eugenio, 2007),
SPADE-Seg is the segmentation module of SPADE, described in Soricut and Marcu (2003), and
SAG refers to the segmenter included in the discourse parser of Sagae (2009). Table 3 (top row)
shows that HILDA-Seg significantly outperforms other discourse segmenters. With gold standard
trees, SPADE-Seg and NNDS yield F-scores of 84.7% and 86%, respectively, versus 95% for
HILDA-Seg. The measure of the human annotators’ agreement for the segmentation task has been

3. http://nlp.stanford.edu/software/lex-parser.shtml
4. ftp://ftp.cs.brown.edu/pub/nlparser/

12

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

Table 3: Performance comparison with other segmenters

System Trees Precision Recall F-score

SPADE-Seg Penn 84.1 85.4 84.7
NNDS Penn 85.5 86.6 86.0
HILDA-Seg Penn 95.5 94.5 95.0

SPADE-Seg Charniak 83.5 82.7 83.1
NNDS Charniak 83.9 84.8 84.4
HILDA-Seg Charniak 94.7 93.4 94.0

SAG SAG 87.4 86.0 86.7

HILDA-Seg Stanford 94.5 93.1 93.8

Human agreement – 98.5 98.2 98.3

calculated in Soricut and Marcu (2003), with a F-score of 98.3%. Using perfect parse trees, HILDA-
Seg reaches 96.6% of the annotators’ level. When the Stanford parse trees are selected, 95.4% of
this level is reached. The current state-of-the-art discourse segmenter, SAG, in which a custom syn-
tax parser is employed, has an F-score of 86.7% for this task. When using Stanford parse trees, our
segmenter thus provides a 8.2% performance increase compared to SAG (9.6% when using perfect
trees).

In Table 3, we decided not to include the results of the rule-based segmenters of Le Thanh et al.
(2004a) and Tofiloski et al. (2009), for several reasons. First, Le Thanh et al. (2004a) report their
results using a ‘softer’ metric, in which end-of-sentence boundaries are taken into account. The
authors used Penn Treebank parse trees, and after evaluation on 8 texts of the RST-DT, obtain a
precision value of 81.4% and a recall value of 79.2%. Finally, the results of Tofiloski et al. (2009)
cannot be compared directly to ours, as different segmentation guidelines were used. The authors
report a precision value of 89% and a recall value of 86% when using Charniak parse trees, and a
precision value of 82% and a recall value of 86% when using Stanford trees. Moreover, these scores
were measured on three texts of the RST-DT only, which makes comparison even more difficult.

To investigate which features contributed to the performance of the discourse segmenter, we
run several experiments that measure the segmentation performance when training with different
combinations of features, taken at different relative positions. For each experiment, we use parse
trees from the Stanford parser. The results are indicated in Table 4. Position (0) and (−1, 0) indicate
that, when extracting features for the word at position i in the text, we only used contextual features
from position i, and the concatenation of contextual features from positions i−1 and i, respectively.

We observe that, for position (0), using as features the current word w and its part of speech
POS(w) only, we obtain a precision of 82.7%, but a comparatively lower recall of 70.8%. However,
when using as features the three nodes Nw, Np, Nr of the parse tree only (see 3.4.1), the preci-
sion is slightly lower (82%) but the recall higher than the previous case, at 78.4%. When using
the combination of all these features, we obtain a precision of 81.9% and a recall of 79.4%. With
this set of relevant features defined, we now increase the coverage by also including features ex-
tracted from the previous word in our feature set. With these features, now taken from positions

13

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

(−1, 0), we notice a sharp F-score increase of 14.5%. In particular, precision reaches 93.3% and
recall 91.5%. Finally, we add the contextual features for the word at position i − 2 to the feature
set. The F-score increase in this case is much smaller (1.5%). We now attain a precision of 94.5%
and a recall of 93.1%. From this point forward, adding features from anterior words did not im-
prove performance, although it significantly increased training time. Finally, we did not notice any
significant performance increase when including contextual features for words located ahead of the
current position.

Table 4: Segmentation performance with different sets of features

Positions Features P R F

(0) w 80.7 69.4 74.6
(0) w, POS(w) 82.7 70.8 76.3
(0) Nw, Np, Nr 82.0 78.4 80.2
(0) w, POS(w), Nw, Np, Nr 81.9 79.4 80.7
(−1, 0) w, POS(w), Nw, Np, Nr 93.3 91.5 92.4
(−2,−1, 0) w, POS(w), Nw, Np, Nr 94.5 93.1 93.8

4.2 Relation labeling

Although our final goal is to achieve good performance on the entire tree-building task, a useful
intermediate evaluation of our system can be conducted by measuring the raw performance of our
SVM classifiers. The binary classifier Struct is trained on 52,683 instances (split approximately
between 1/3 positive and 2/3 negative examples), extracted from 341 documents, and tested on
8,558 instances extracted from 38 documents. The feature space has a dimension of 136,987.

The other classifier, Label, is trained on 17,742 instances (labeled across 41 classes) and tested
on 2,887 instances, the same feature vector dimension as Struct. The optimal training parameters
for each kernel function are obtained through automated grid search with 5-fold cross-validation
(Staelin, 2003). Table 5 shows the training time and accuracy for these experiments, using various
software and selected different kernels, for both Struct and Label, as well as a comparison to the
results of Reitter (2003a). For Struct we used the regression mode of the SVM software to obtain
probabilistic output. Note that in Table 5, the results for Struct and Label are independent, as they
indicate performance for cross-validation.

14

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

Table 5: SVM Classifiers performances – LL:
Liblineara, SVML: SVM Lightb, SVMM:
SVM Multiclassc, LS: libsvmd

Classifier Struct Label Reitter

Kernel Linear Polyn. RBF Linear RBF RBF
Software LL SVML SVML SVMM LS SVML

Training time 21.4s 5m53s 12m 15m 23m 216m
Accuracy 82.2 85.0 82.9 65.8 66.8 61.0

a http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
b http://svmlight.joachims.org/
c http://svmlight.joachims.org/svm multiclass.html
d http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

Despite their simplicity, the noticeably good performances of linear kernel methods in the results
presented in Table 5, as compared to the more complex polynomial and RBF kernels, indicate that
our data separates fairly well linearly. This is a commonly observed effect of high-dimensional
input such as ours (over 100,000 features) (Chen et al., 2007).

Reitter (2003a) provides a baseline for absolute comparison on the multi-label classification
task for a similar classifier that assumes perfect segmentation of the input, as ours does. Reitter’s
accuracy results of 61% for a smaller set of training instances (7976 instances from 240 documents
compared to 17,742 instances in our case) with considerably less classes (16 rhetorical relation
labels with no nuclearity, as opposed to our 41 nuclearized relation classes) seems to indicate that
this sub-component of our system with an accuracy of 66.8% performs well.

In HILDA, we select a linear kernel for Struct and an optimally parameterized RBF kernel for
Lab, considering performance and runtime complexity. We use modified versions of the liblinear
(optimized for large-instances) and libsvm packages. All further evaluation results reported in this
article were conducted using these kernels.

To give a more precise idea of the classifiers’ performance, we look into the results for each
class, when trained on RST-DT’s standard training set and evaluated on the standard test set. Table
6 indicates the results for Struct, while Table 7 indicates the results for Label. In Table 6, we notice
in particular that the performance for the class ‘+1’, corresponding to the presence of a structural
relation between to RS-trees is lower (F-score of 73.3%) than for the absence of a relation (F-score
of 86.7%).

Because RST-DT’s test set is relatively small (38 documents), and as certain discourse relations
occur rarely in natural language texts, several of Label’s classes are not present in the test set and
thus not presented in Table 7. We observe that performance varies widely across classes. For
instance, ATTRIBUTION is very well detected, with F-scores close to 95%, whereas CAUSE[N][S]
has a very low F-score of 3.9%. Here, the average F-score is 47.7%.

As we employed a linear kernel in Struct, it is possible to identify which features were useful,
by looking at the weight assigned by the classifier to each feature in the SVM model file. Table 8
contains the 25 features with the highest weights in absolute value. These features are thus useful
for detecting the presence of a discourse relation between two RS trees. In particular, we observe

15

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

Table 6: Class-specific performance for Struct, evaluated on RST-DT’s test set

SVM Class Precision Recall F-score

+1 74.0 72.7 73.3
−1 86.3 87.1 86.7

Table 7: Class-specific performance for Label, evaluated on RST-DT’s test set

SVM Class Precision Recall F-score

ATTRIBUTION[N][S] 93.6 96.2 94.9
ATTRIBUTION[S][N] 95.7 93.7 94.7
BACKGROUND[N][S] 47.8 41.5 44.4
BACKGROUND[S][N] 38.7 20.7 27.0
CAUSE[N][S] 33.3 2.1 3.9
COMPARISON[N][S] 50.0 5.9 10.5
CONDITION[N][S] 100.0 47.8 64.7
CONDITION[S][N] 85.7 72.0 78.3
CONTRAST[N][N] 31.1 21.9 25.7
CONTRAST[N][S] 50.0 20.8 29.4
CONTRAST[S][N] 51.1 39.7 44.7
ELABORATION[N][S] 58.1 94.5 72.0
ENABLEMENT[N][S] 61.9 59.1 60.5
ENABLEMENT[S][N] 50.0 50.0 50.0
EXPLANATION[N][S] 66.7 16.8 26.9
JOINT[N][N] 62.2 55.2 58.5
MANNER-MEANS[N][S] 53.8 29.2 37.8
SAME-UNIT[N][N] 78.8 96.9 86.9
SUMMARY[N][S] 100.0 31.2 47.6
TEMPORAL[N][N] 83.3 11.9 20.8
TEMPORAL[N][S] 85.7 24.0 37.5
TEXTUAL-ORGANIZATION[N][N] 33.3 22.2 26.7
TOPIC-CHANGE[N][N] 83.3 38.5 52.6

that the most heavily-weighted feature is the binary feature indicating if the two input spans belong
to the same sentence. Among these features, we notice several measures of distance, such as the
distance of the left span to the sentence beginning, the relative size of the left and right span’s EDUs
over the sentence length, or the number of paragraphs in the right span. We also find several features
related to dominance sets, such as features encoding the dominated and dominating node’s POS tags
and lexical heads.

16

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

Table 8: Top 25 SVM weights of the linear kernel for Struct.

Feature Weight

Both spans belong to the same sentence 4.118836
Size of span over sentence in EDUs 3.582545
Distance of the left span to beginning of sentence in EDUs -3.437157
Common ancestor’s POS tag is ‘PRN’ -2.911269
Dominating node’s lexical head is ‘which’ -2.668148
POS tag of the right span’s last token is ‘.’ 2.636921
Size of left span over sentence in tokens -2.341654
Size of both spans over sentence in tokens -2.222655
Left and right span belong to the same sentence -2.217709
POS tag of the left span’s last token is ‘.’ 2.170483
Number of paragraphs in the right span 2.123776
Relative position of lexical head in sentence 2.084602
POS tag of the left span’s last token is ‘”’ 2.051767
Dominated node’s sibling’s POS tag is ‘VBG’ -1.875610
POS tag of the right span’s first token is ‘TO’ -1.869705
Distance of the right span from the sentence beginning -1.839178
POS tag of the right span’s last token is ‘,’ -1.814842
Top lexical head of the left span is ‘which’ 1.777975
Top lexical head of the sentence belongs to the right span -1.774898
Top lexical head of the left span is ‘of’ -1.706626
Dominating node’s lexical head is ‘set’ -1.670822
Dominated node’s lexical head is ‘ideas’ -1.669270
Dominating node’s POS tag is ‘NN’ -1.650378
Dominated node’s sibling’s POS tag is ‘VBN’ 1.628170
Dominating node’s POS tag is ‘VBN’ -1.617607

4.3 Full system performance

A measure of the performance of our full system is realized by comparing the structure and labeling
of the RS-tree produced by our algorithm to that obtained through manual annotation (our gold
standard). Here, we use the PARSEVAL metrics (Black et al., 1991) that defines the performance
metrics (precision, recall, F-score) of a parsing system. For comparability, the tree constituents used
in the method are enumerated using Marcu’s formalism (see Marcu, 2000, 143–144), which assigns
relation labels to the child nodes of the relation instead of the parent node, thus making it easier
to represent n-ary relations. In practice, this formalism yields lower scores than our own, likely
because of the greater emphasis placed on tree structure accuracy over relation labeling.

HILDA is evaluated based on three experiments.

1. Perfectly segmented input taken from the RST-DT (indicated as ‘Manual’ in the following
tables). In this case, we use parse trees from the Penn Treebank in all steps of the parsing.

17

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

2. The system is run using the output of SPADE’s segmenter (SPADE-Seg), in which case Char-
niak’s parser is used for generating parse trees.

3. The system is run with our own segmenter (HILDA-Seg), presented in Section 4.1. In this
case, we use parse trees from the Stanford parser.

The first measure gives us a good estimate of our system’s optimal performance (given optimal
input), while the others provide a concrete performance evaluation under practical conditions. Our
measurements are taken based on the standard test subset of 41 files provided by the RST-DT corpus.
For each experiment, parse trees are evaluated on four successive, increasingly complex criteria.
First, on the blank tree structure (‘S’), then on the tree structure with nuclearity indication (‘N’), then
the tree structure with rhetorical relation indication but no nuclearity indication (‘R’), and finally
on the fully-labeled tree structure with both nuclearity and rhetorical relation labels (‘F’). For each
criteria, precision is calculated by taking the ratio of the number of identical tree constituents found
in both the generated RS-tree and the gold-standard tree, against the total number of constituents
in the generated discourse tree. Recall is calculated by taking the ratio of the number of identical
tree constituents found in both the generated RS-tree and the gold-standard tree, against the total
number of constituents in the gold-standard discourse tree. The results are summarized in Figure 9.
Note that when using perfect segmentation, precision and recall are identical since both trees have
same number of constituents.

Table 9: Full parser evaluation, using the standard test subset
Seg. Manual SPADE-Seg HILDA-Seg

S N R F S N R F S N R F
Precision 83.0 68.4 55.3 54.8 69.5 56.1 44.9 44.4 73.0 59.7 48.2 47.7
Recall 83.0 68.4 55.3 54.8 69.2 55.8 44.7 44.2 71.7 58.6 47.4 46.9
F-Score 83.0 68.4 55.3 54.8 69.3 56.0 44.8 44.3 72.3 59.1 47.8 47.3

As expected, we observe the highest performance when using manual segmentation, with an
F-score of 83% for structure annotation, and 54.8% for the fully-annotated tree. Using SPADE

yields lower results, with an F-score of 69.3% for structure annotation, and 44.3% for the full
discourse tree. On the other hand, when using the discourse segmenter presented in Section 4.1,
structure annotation produces F-scores of 72.3% for structure annotation, and 47.3% for the full
tree. These differences indicate that, although these segmenters score high on the segmentation task
(above 80%), errors occurring at the beginning of the pipeline are amplified and weight heavily on
the performance of the output. Furthermore, the parse trees of SPADE-Seg and HILDA-Seg are
generated automatically, which also explains the lower results.

In order to compare our results to the gold standard (defined as manual agreement between
human annotators) more accurately, we also evaluated performances using another test set (see
Table 10) of 52 files annotated by two labelers of the RST-DT. In each case, the remaining 340-350
files are used for training.

The F-score for human agreement is 65.3%. When using manual segmentation, we obtain an
F-score of 55.1% on this test set, which is 84% of human performance level. When using our own
segmenter, we obtain an F-score of 48.8%, which is 74.7% of human performance level.

18

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

Table 10: Evaluation on a doubly-annotated subset and comparison to human agreement
System performance Human agreement

Seg. Manual HILDA-Seg –

S N R F S N R F S N R F
Precision 84.1 70.6 55.6 55.1 74.0 61.7 49.4 48.9 88.0 77.5 66.0 65.2
Recall 84.1 70.6 55.6 55.1 73.7 61.5 49.1 48.7 88.1 77.6 66.1 65.3
F-Score 84.1 70.6 55.6 55.1 73.8 61.6 49.2 48.8 88.1 77.5 66.0 65.3

4.4 Comparison to other systems

In this section, we attempt to compare our system to other text level discourse parsers, namely
Marcu’s decision-tree based parser (Marcu, 2000), the multi-level rule-based system built by Le Thanh
et al. (2004b), and the shift-reduce parser of Sagae (2009).

For comparison with Marcu and LeThanh’s systems, we face several difficulties: Marcu (2000)
reports his results on unspecified documents and we do not have access to the parser software.
Therefore we could not evaluate his parser on our test set. Then, in the case of LeThanh’s system,
we do have access to the documents on which the system was evaluated, but we do not have access
to the parser software either. Another issue comes from the number of discourse relations employed:
In Marcu’s case, 15 relations were employed, while LeThanh used 14, and we used 18.

For these two systems, we have no choice but to reproduce the results provided by each author,
in separate tables for fairness. We define a measure, Falgo/Fhuman, computed for each system, as an
informal indicator of how each parser is estimated to perform compared to the human agreement.
As each author found a different value for human agreement F-score, we scale the score of each
system by the human agreement F-score found by its respective author. For instance, Le Thanh
et al. (2004b) report a surprisingly low 72.7% F-score for structure, when Marcu (2000) notes 81%,
and we found 87%. This suggests that, despite our best efforts, evaluation metrics used by each
author might differ. Again, this measure is an informal indicator of performance. Table 11 indicates
the results given by Marcu (2000), Table 12 the results given by Le Thanh et al. (2004b), and Table
13 the results for our system. Note that in Table 13, in order to make our experimental setting as
close as possible to LeThanh’s, we used LeThanh’s set of 21 documents as testing subset, and the
rest of the corpus for training.

Using our calculated human-agreement F-scores, we estimate that our system reaches 86.4%
of the human performance level for structure labeling, while for nuclearity and relation labeling,
we obtain 79.8% and 78.3%, respectively, of the human F-score. Marcu (2000) calculated reach-
ing 25.7% of the human performance level for relation labeling, while Le Thanh et al. (2004b)
calculated reaching 39.9% of this level.

Direct comparison to our system is only possible in the case of Sagae (2009), as Sagae employed
the same 18 standard RST-DT relations, and evaluation was done on the RST-DT’s test subset. A
performance comparison of both systems is presented in Table 14. The scores are for full discourse
tree creation. We observe that the performance of the two parsers is relatively similar. In particular,
recall is 46.2% in SAG, while we obtained 46.9% in HILDA. Precision for HILDA is however 11%
higher than SAG, at 47.7%, against 42.9% for Sagae’s system.

19

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

Table 11: Performance for the parser of Marcu (2000), using 15 discourse relations, evaluated on
unspecified documents

Structure Nuclearity Relations

Precision 65.8 54.0 34.3
Recall 34.0 21.6 13.0
F-score 44.8 30.9 18.8

Falgo/Fhuman 56.0 42.9 25.7

Table 12: Performance for the parser of Le Thanh et al. (2004b), using 14 discourse relations, eval-
uated on 21 documents from the RST-DT

Structure Nuclearity Relations

Precision 54.5 47.8 40.5
Recall 52.9 46.4 39.3
F-score 53.7 47.1 39.9

Falgo/Fhuman 73.9 71.8 70.1

4.5 Time performance

To complete the discussion of the parser’s actual performance, we measure the time taken to parse
standard texts from the test section of the RST-DT. The computer used in the tests has a 2.53 GHz
processor and 4 GB of RAM. On average, loading the Stanford syntax parser and SVM models
altogether takes four seconds. This is done only once. We use modified command-line versions
of libsvm and liblinear to accept data from stdin, so that loading of models is performed only
once. After this, we can perform fast classification decisions, taking a few tenths of a second each.
Table 15 shows the performance of the parser on various texts. tseg is the time taken to segment the
text, and tbuild the time taken to build the tree.

As expected, we empirically observe that tseg and tbuild follow a O(n) time complexity. How-
ever, in the system, the only process not under our control is the syntax parser. It is important to
ensure that the time taken to generate parse trees is reasonable. On average, on our test computer,
the Stanford parser takes 10 seconds to parse 300 words. Of the three processes (syntax parsing,
discourse segmentation, tree building), syntax parsing is always the slowest task, and thus the bottle-
neck of the system. Still, this level of performance makes the parser usable as part of an interactive
system.

20

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

Table 13: Performance for HILDA, using 18 discourse relations, evaluated on 21 documents from
the RST-DT (LeThanh’s)

Structure Nuclearity Relations

Precision 76.0 61.4 51.2
Recall 75.6 61.2 50.6
F-score 75.8 61.3 50.9

Falgo/Fhuman 86.4 79.8 78.3

Table 14: Performance comparison between the proposed parser (HILDA) and the parser of Sagae
(2009) (SAG), for full discourse tree creation, using 18 discourse relations, evaluated on
the RST-DT’s test set

SAG HILDA

Precision 42.9 47.7
Recall 46.2 46.9
F-Score 44.5 47.3

4.6 Limitations

In this section, we present some limitations of the parser and discuss possible improvements and
directions for future work.

When evaluating the proposed discourse segmenter on the RST-DT’s test set, we observe that
all segmentation errors are due to over-segmentation, i.e. words which are not EDU boundaries are
mistaken for boundaries. Table 16 shows the ten most frequent words on which segmentation errors
occur, as well as how prevalent these errors are among all segmentation errors. Several of these
mistakes are linked to punctuation, particularly to quotes and dash marks. Also, several mistakes
seem related to the segmenter creating excessively small clause-like units. Typical improper seg-

21

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

Table 15: Time taken to parse various texts (in seconds)

Text Sentences Words tseg (s) tbuild (s)

wsj0616 36 838 5.02 11.30
wsj1113 5 102 0.40 0.51
wsj1129 2 45 0.26 0.40
wsj2336 10 262 1.71 3.72
wsj2385 50 516 3.05 7.17

mentation decisions (marked ↑) related to these words are seen in the following sentences, where
the true segmentation decisions (when present) are marked ⇑:

‘‘ [...] the Banco exterior group has a lot ↑ to offer a
potential suitor.’’

‘‘ [...] when the market does recover, ↑ the damage is
done [...]’’

‘‘ [...] cut costs, increase capital ↑ and build new areas
of business [...]’’

‘‘ [...] and perhaps even destroy ↑ -- ⇑ a $2.38
settlement fund [...]’’

‘‘ In August, ↑ Mr. Lewis pleaded guilty to three felony
counts.’’

‘‘ When it misses one month ↑ it tends to miss the next
month.’’

Table 16: Words on which erroneous segmentation decisions are most frequent, and their proportion
among all segmentation errors on the RST-DT’s test set

Word POS Prevalence among errors (%)

to TO 7.7
the DT 6.6
and CC 4.6
“ “ 3.4
– : 2.3
Mr. NNP 2.3
it PRP 2.1
for IN 2.0
if IN 1.8
said VBD 1.6

22

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

Although a quantitative evaluation of the discourse trees produced by our parser is made possible
by the usage of metrics traditionally employed for evaluating the performance of syntax parsers, we
found that a qualitative evaluation of the generated discourse trees was difficult. In particular, we
hypothesize that finding patterns of errors commonly present in the generated discourse trees is
made difficult by the greedy approach adopted. Because of the proposed algorithm and the way
the classifiers are cascaded, classification errors occurring anywhere when building the discourse
tree will affect both sibling nodes and higher level relations of the tree, making the real cause of
errors difficult to identify. Indeed, the presented greedy algorithm is time-efficient, but provides
only locally optimal solutions. Using generic global probabilistic optimization meta-algorithms
such as simulated annealing (Kirkpatrick et al., 1983), we hope to address the problem of local
optimality while maintaining reasonable time complexity. Secondly, we plan to investigate the use
of sequential labeling methods (Lafferty et al., 2001) for finding optimal sequences of discourse
relations.

Another related shortcoming of the current algorithm, as presented in Figure 6, occurs when two
pairs of EDUs have an equal probability of being connected by a discourse relation. In the present
system, the default behavior in case of conflict is to select the first pair of units in text order. How-
ever, ideally, all candidates should be considered, with their respective trees built independently,
somehow scored, and the best candidate being finally returned. We hope to address this point by
employing the aforementioned optimization methods.

In Section 4.2, we noticed important discrepancies in F-scores (see Table 7) for the different
classes of Label. We hypothesize that this issue is mainly related to the nature of discourse rela-
tions. Indeed, a notoriously challenging task for discourse parsers is to detect ‘implicit relations’,
i.e. relations not signaled by discourse cues, such as ‘thus’, ‘however’, ‘but’, etc. Certain relations,
such as ATTRIBUTION, are invariably realized with a discourse cue, indicated by the verb ‘say’, such
as ‘X said that Y’. This relation is easy to detect, and we empirically observe high performance on
ATTRIBUTION’s classes (see Table 7). On the other hand, an implicit CONTRAST relation holds
between the two following discourse units:

[Mr. Roman comes across as a low-key executive;]2A [Mr. Phillips has a flashier personality.]2B

In this example, the contrast is captured by the antonymy between the adjectives low-key and
flashy. As there is no cue, it is harder to detect, and we observe in practice a lower performance for
CONTRAST relations. Taboada (2006) estimates that 60% to 70% of naturally-occurring discourse
relations are implicit. In general, while explicit discourse relations are well detected (Pitler et al.,
2008), implicit relations are challenging to detect. For instance, we fed the proposed parser ten
short sentences containing an implicit CONTRAST relation. All relations were wrongly classified,
either as ELABORATION in six cases or as JOINT in four cases. Similar errors were seen when
trying to classify implicit COMPARISON and TEMPORAL relations. This indicates that our set of
features is not fully-adapted for implicit relations. Recent evidence (Webber, 2009) even suggests
that the features present when an explicit discourse relation is realized differ significantly from
those present in the case of an implicit relation. A possible solution is to train a separate discourse
relation classifier for implicit discourse relations. A different set of features will be required. For
this task, several researchers (Marcu and Echihabi, 2002; Pitler et al., 2009; Lin et al., 2009) have
noted relatively good performance of word pair features taken between the relation’s two argument

23

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

spans. For instance, using the same example, we would encode lemmatized word pairs such as (Mr.,
Mr.), (Mr., Phillips), . . . , (low-key, flashy), . . . , (executive, personality), etc. However, word pair
features alone are not sufficient to obtain high performance rates. We plan to investigate implicit
discourse relation classification by employing features based on measures of semantic similarity
between EDUs, using for instance WordNet (Fellbaum, 1998).

Finally, we plan to apply feature selection in order to effectively reduce the size of the feature
set. This method has the promise of shorter training and testing times. Another interesting aspect of
feature selection is the potential reduction of noise, which may lead to an improvement in accuracy.

5. Conclusions

We presented HILDA, an automated discourse parser that analyzes text in the framework of the
Rhetorical Structure Theory. The system is composed of two modules, (1) a discourse segmenter,
and (2) a relation classifier and tree builder. Both tasks are based on Support Vector Machine clas-
sification. The discourse segmenter performs at around 96% of the human level, while the relation
classification and tree-building module reaches 84% of human level. Our system combines both
modules for creating a fully automatic text level parser, reaching 78.3% of the human performance
level.

Importantly, the tree-building process performs in linear time, which allows us to use the system
in the context of a (near) real-time or interactive system, such as dialogue generation or question-
answering. For instance, the proposed parser can be integrated in a dialogue generation system such
as Text-to-Dialogue (Prendinger et al., 2007; Hernault et al., 2008). In this system, RST structures
are used as the backbone for generating dialogues between two agents representing a layperson and
an expert. Question-answer pairs between the two agents are created by applying relation-specific
mapping rules manipulating the leaves of the RST tree. If the RST tree utilized contains errors,
such as improperly-segmented EDUs or erroneous discourse relations, the generated dialogue will
be semantically incorrect. Hence, a sound discourse parser is important.

More recently, the CODA corpus (Stoyanchev and Piwek, 2010) was released. This corpus
contains 700 expository dialogues labeled with dialogue acts, paired with human-authored, equiv-
alent monologues annotated with RST discourse relations. Using this corpus, one can learn how
to generate an expository dialogue from an RST-annotated monologue. An ambitious next step
is to automatize the generation process, i.e. creating a meaningful expository dialogue given any
plain, non-annotated monologue. This is a promising perspective for creating systems that are able
to present information automatically, such as tutoring applications. A prerequisite is the accurate
detection of the discourse relations in the input monologues, and hence, the role of the discourse
parser is once again central.

With these applications in mind, we plan to make the proposed parser more efficient, by ad-
dressing the issues presented in Section 4.6. In particular, we intend to improve the tree-building
method, in order to create globally optimal discourse structures. Finally, we plan to train a separate
classifier for detecting implicit discourse relations as well.

24

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

Appendix A. System workflow

Test Document

Syntax Parsing
(Stanford parser)

Syntax Trees

Lexicalization

Lexicalized Syntax
Trees

Segmentation
Feature Extraction

SVM Classification

Tokenized EDUs

SVM Classification

Relation Labeling
Feature Extraction

Scored RS Subtrees

Rhetorical Structure
Tree

Bottom-up Tree
Construction

RST Discourse
Treebank Penn Treebank

EDUs

Lexicalization

Lexicalized Syntax
Trees

Syntax Trees

Alignment

Segmentation
Feature Extraction

SVM Training

Tokenization

Tokenized EDUs

Relation Labeling
Feature Extraction

SVM Training

Segmentation ModelRelation Labeling
Model

Alignment

25

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

Appendix B. Relation list

Relation Nuclearity options

ATTRIBUTION Nucleus Satellite
Satellite Nucleus

BACKGROUND Nucleus Satellite
Satellite Nucleus

CAUSE Nucleus Nucleus
Nucleus Satellite
Satellite Nucleus

COMPARISON Nucleus Nucleus
Nucleus Satellite
Satellite Nucleus

CONDITION Nucleus Nucleus
Nucleus Satellite
Satellite Nucleus

CONTRAST Nucleus Nucleus
Nucleus Satellite
Satellite Nucleus

ELABORATION Nucleus Satellite
Satellite Nucleus

ENABLEMENT Nucleus Satellite
Satellite Nucleus

EVALUATION Nucleus Nucleus
Nucleus Satellite
Satellite Nucleus

EXPLANATION Nucleus Nucleus
Nucleus Satellite
Satellite Nucleus

JOINT Nucleus Nucleus

MANNER-MEANS Nucleus Satellite
Satellite Nucleus

SUMMARY Nucleus Satellite
Satellite Nucleus

TEMPORAL Nucleus Nucleus
Nucleus Satellite
Satellite Nucleus

TOPIC-CHANGE Nucleus Nucleus
Nucleus Satellite

TOPIC-COMMENT Nucleus Nucleus
Nucleus Satellite
Satellite Nucleus

SAME-UNIT Nucleus Nucleus

TEXTUAL-ORGANIZATION Nucleus Nucleus

26

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

References

Nicholas Asher and Alex Lascarides. Logics of conversation. Cambridge University Press, 2003.

Jason Baldridge and Alex Lascarides. Probabilistic head-driven parsing for discourse structure. In
Proceedings of the Ninth Conference on Computational Natural Language Learning (CoNLL-
2005), pages 96–103, Ann Arbor, Michigan, June 2005. Association for Computational Linguis-
tics.

Ezra Black, Steven P. Abney, D. Flickenger, Claudia Gdaniec, Ralph Grishman, P. Harrison, Donald
Hindle, Robert Ingria, Frederick Jelinek, Judith L. Klavans, Mark Liberman, Mitchell P. Marcus,
Salim Roukos, Beatrice Santorini, and Tomek Strzalkowski. A procedure for quantitatively com-
paring the syntactic coverage of english grammars. In Proceedings of Workshop on Speech and
Natural Language, pages 306–311. Association for Computational Linguistics Morristown, NJ,
USA, 1991.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Lynn Carlson, Daniel Marcu, and Mary Ellen Okurowski. Building a discourse-tagged corpus in
the framework of Rhetorical Structure Theory. Proceedings of Second SIGdial Workshop on
Discourse and Dialogue-Volume 16, pages 1–10, 2001.

Joyce Y. Chai and Rong Jin. Discourse structure for context question answering. In Sanda Harabagiu
and Finley Lacatusu, editors, HLT-NAACL 2004: Workshop on Pragmatics of Question Answer-
ing, pages 23–30, Boston, Massachusetts, USA, May 2 - May 7 2004. Association for Computa-
tional Linguistics.

Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the 1st North Ameri-
can chapter of the Association for Computational Linguistics conference, pages 132–139, San
Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

Degang Chen, Qiang He, and Xizhao Wang. On linear separability of data sets in feature space.
Neurocomputing, 70(13-15):2441–2448, 2007.

David duVerle and Helmut Prendinger. A novel discourse parser based on support vector machine
classification. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages
665–673, Suntec, Singapore, August 2009. Association for Computational Linguistics.

Christiane Fellbaum, editor. WordNet: An electronic lexical database. MIT Press, 1998.

Hugo Hernault, Paul Piwek, Helmut Prendinger, and Mitsuru Ishizuka. Generating dialogues for
virtual agents using nested textual coherence relations. In IVA ’08: Proceedings of the 8th in-
ternational conference on Intelligent Virtual Agents, pages 139–145, Berlin, Heidelberg, 2008.
Springer-Verlag.

Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. Optimization by Simulated Annealing.
Science, 220(4598):671–680, 1983.

27

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

Dan Klein and Christopher D. Manning. Fast exact inference with a factored model for natural
language parsing. In Advances in Neural Information Processing Systems, volume 15, pages
3–10. MIT Press, 2003.

John D. Lafferty, Andrew McCallum, and Fernando C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In ICML’01: Proceedings of the
Eighteenth International Conference on Machine Learning, pages 282–289, San Francisco, CA,
USA, 2001. Morgan Kaufmann Publishers Inc.

Huong Le Thanh, Geetha Abeysinghe, and Christian Huyck. Automated discourse segmentation by
syntactic information and cue phrases. In Proceedings of AIA’04, Innsbruck, Austria, February
16–18 2004a.

Huong Le Thanh, Geetha Abeysinghe, and Christian Huyck. Generating discourse structures for
written texts. In Proceedings of the 20th International Conference on Computational Linguistics,
pages 329–335, Geneva, Switzerland, Aug 23–Aug 27 2004b. COLING.

Ziheng Lin, Min-Yen Kan, and Hwee Tou Ng. Recognizing implicit discourse relations in the Penn
Discourse Treebank. In Proceedings of the 2009 Conference on Empirical Methods in Natural
Language Processing, pages 343–351, Singapore, August 2009. Association for Computational
Linguistics.

David M. Magerman. Statistical decision-tree models for parsing. Proceedings of the 33rd annual
meeting on Association for Computational Linguistics, pages 276–283, 1995.

William C. Mann and Sandra A. Thompson. Rhetorical structure theory: Toward a functional theory
of text organization. Text, 8(3):243–281, 1988.

Christopher D. Manning and Hinrich Schütze. Foundations of Statistical Natural Language pro-
cessing. MIT Press, 1999.

Daniel Marcu. Building up rhetorical structure trees. Proceedings of the National Conference on
Artificial Intelligence, pages 1069–1074, 1996.

Daniel Marcu. The Theory and Practice of Discourse Parsing and Summarization. MIT Press,
2000.

Daniel Marcu and Abdessamad Echihabi. An unsupervised approach to recognizing discourse rela-
tions. In Proceedings of 40th Annual Meeting of the Association for Computational Linguistics,
pages 368–375, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Lin-
guistics. doi: 10.3115/1073083.1073145.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beatrice Santorini. Building a large annotated
corpus of English: the Penn treebank. Computational Linguistics, 19(2):313–330, 1993.

Johanna D. Moore and Peter Wiemer-Hastings. Discourse in computational linguistics and artificial
intelligence. In A. Graesser, M. Gernsbacher, and S. Goldman, editors, Handbook of Discourse
Processes, pages 439–486. Erlbaum, Mahwah, NJ, 2003.

28

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

Jon Oberlander and Johanna D. Moore. Cue phrases in discourse: Further evidence for the
core:contributor distinction. In Workshop on Levels of Representation in Discourse, pages 87–93,
Edinburgh, UK, 1999.

Emily Pitler, Mridhula Raghupathy, Hena Mehta, Ani Nenkova, Alan Lee, and Aravind Joshi. Easily
identifiable discourse relations. In Coling 2008: Companion volume: Posters, pages 87–90,
Manchester, UK, August 2008. Coling 2008 Organizing Committee.

Emily Pitler, Annie Louis, and Ani Nenkova. Automatic sense prediction for implicit discourse
relations in text. In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural Language Processing of the AFNLP, pages
683–691, Suntec, Singapore, August 2009. Association for Computational Linguistics.

Helmut Prendinger, Paul Piwek, and Mitsuru Ishizuka. A novel method for automatically generating
multi-modal dialogue from text. International Journal of Semantic Computing, 1(3):319–334,
2007.

David Reitter. Rhetorical Analysis with Rich-Feature Support Vector Models. Unpublished Mas-
ter’s thesis, University of Potsdam, Potsdam, Germany, 2003a.

David Reitter. Simple signals for complex rhetorics: On rhetorical analysis with rich-feature support
vector models. LDV Forum, 18(1/2):38–52, 2003b.

Kenji Sagae. Analysis of discourse structure with syntactic dependencies and data-driven shift-
reduce parsing. In Proceedings of the 11th International Conference on Parsing Technologies
(IWPT’09), pages 81–84, Paris, France, October 2009. Association for Computational Linguis-
tics.

Frank Schilder. Robust discourse parsing via discourse markers, topicality and position. Natural
Language Engineering, 8(2-3):235–255, 2002.

Radu Soricut and Daniel Marcu. Sentence level discourse parsing using syntactic and lexical infor-
mation. Proceedings of the 2003 Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, 1:149–156, 2003.

Carl Staelin. Parameter selection for Support Vector Machines. Hewlett-Packard Company, Tech.
Rep. HPL-2002-354R1, 2003.

Svetlana Stoyanchev and Paul Piwek. Constructing the coda corpus: A parallel corpus of mono-
logues and expository dialogues. In Proceedings of the Seventh conference on International
Language Resources and Evaluation (LREC’10), Valletta, Malta, May 2010. European Language
Resources Association.

Rajen Subba and Barbara Di Eugenio. Automatic discourse segmentation using neural networks.
In Proceedings of 11th Workshop on the Semantics and Pragmatics of Dialogue, pages 189–190,
Trento, Italy, 2007.

Rajen Subba and Barbara Di Eugenio. An effective discourse parser that uses rich linguistic in-
formation. In Proceedings of Human Language Technologies: The 2009 Annual Conference of

29

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

the North American Chapter of the Association for Computational Linguistics, pages 566–574,
Boulder, Colorado, June 2009. Association for Computational Linguistics.

Maite Taboada. Discourse markers as signals (or not) of rhetorical relations. Journal of Pragmatics,
38(4):567–592, 2006.

Milan Tofiloski, Julian Brooke, and Maite Taboada. A syntactic and lexical-based discourse seg-
menter. In ACL ’09, pages 77–80, Suntec, Singapore, August 2009. Association for Computa-
tional Linguistics.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag New York, Inc.,
New York, NY, USA, 1995.

Bonnie Webber. Genre distinctions for discourse in the penn treebank. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages 674–682, Suntec, Singapore, August 2009.
Association for Computational Linguistics.

30

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

S

NP

NN Fa
rm

NN

le
nd
in
g

VP

VB
D

w
as

VP

VB
N

en
ac
te
d

S VP

TO to

VP

VB

co
rre
ct

NP

DT th
is

NN

pr
ob
le
m

PP

IN by

S VP

VB
G

pr
ov
id
in
g

NP

NP

DT a

JJ

re
lia
bl
e

NN flo
w

PP

IN of

NP

JJ

le
nd
ab
le

NN
S

fu
nd
s

. .

(e
na
ct
ed
)

(e
na
ct
ed
) (c

or
re
ct
)

(w
as
)

(w
as
)

(p
ro
bl
em

)

(c
or
re
ct
)

(b
y)

Fi
gu

re
7:

Pa
rt

ia
lly

-l
ex

ic
al

iz
ed

sy
nt

ax
tr

ee
(l

ex
ic

al
he

ad
s

ar
e

in
di

ca
te

d
be

tw
ee

n
pa

re
nt

he
se

s)

31

HERNAULT, PRENDINGER, DUVERLE, AND ISHIZUKA

	

MANNER-MEANS

	

ENABLEMENT

1A 1B

1C
	

ENABLEMENT

1A
	

MANNER-MEANS

1B 1C

Figure 8: Two possible attachments in the RS-tree of the text in Figure 1.

32

HILDA: A DISCOURSE PARSER USING SUPPORT VECTOR MACHINE CLASSIFICATION

S

NP

NN Fa
rm

NN

le
nd
in
g

VP

VB
D

w
as

VP

VB
N

en
ac
te
d

S VP

TO to

VP

VB

co
rre
ct

NP

DT th
is

NN

pr
ob
le
m

PP

IN by

S VP

VB
G

pr
ov
id
in
g

NP

NP

DT a

JJ

re
lia
bl
e

NN flo
w

PP

IN of

NP

JJ

le
nd
ab
le

NN
S

fu
nd
s

. .
(e
na
ct
ed
)

(c
or
re
ct
)

(w
as
)

(w
as
)

(c
or
re
ct
)

(b
y)

1A
1B

1C

Fi
gu

re
9:

Pa
rt

ia
lly

-l
ex

ic
al

iz
ed

sy
nt

ax
tr

ee
,s

ho
w

in
g

do
m

in
an

ce
se

ts

33

