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Abstract

Kintsch and van Dijk proposed a model
of human comprehension and summarisa-
tion which is based on the idea of pro-
cessing propositions on a sentence-by-
sentence basis, detecting argument over-
lap, and creating a summary on the basis
of the best connected propositions. We
present an implementation of that model,
which gets around the problem of identi-
fying concepts in text by applying coref-
erence resolution, named entity detection,
and semantic similarity detection, imple-
mented as a two-step competition. We
evaluate the resulting summariser against
two commonly used extractive summaris-
ers using ROUGE, with encouraging re-
sults.

1 Introduction

Kintsch and van Dijk (1978) (henceforth KvD)
present a model of human comprehension and
memory retention which is based on research in ar-
tificial intelligence, experimental psychology and
discourse linguistics. It models the processing of
incoming text or speech by human memory lim-
itations, and makes verifiable predictions about
which propositions in a text will be recalled by
subjects later. It has been very influential, particu-
larly in the 1980 and 1990s in educational (Palin-
scar and Brown, 1984; King, 1992) and cognitive
(Paivio, 1990) psychology, and is still today used
as a theoretical model of reading and comprehen-
sion (Baddeley, 2007; Zwaan, 2003; DeLong et
al., 2005; Smith, 2004). It has also been used for
improving education, particularly for the produc-
tion of better instructional text (Britton and Gul-
goz, 1991; Pressley, 2006), and for teaching hu-
mans how to read for deep comprehension (Coiro

and Dobler, 2007; Duke and Pearson, 2002; Koda,
2005; Driscoll, 2005) and to summarise (Hidi,
1986; Brown et al., 1983).

In the summarisation community, the model has
been commended for its elegant and explana-
tory “deep” treatment of the summarisation pro-
cess (Lehnert, 1981; Spärck Jones, 1993; Endres-
Niggemeyer, 1998), but has not lead to any prac-
tical prototypes, mainly due the impossibility of
implementing the knowledge- and inference-based
aspects the model relies on.

We present here an implementation of the model,
which attempts to circumvent some of these prob-
lems by the application of distributional seman-
tics, and by modelling the construction of the co-
herence tree as a double competition (firstly of
concept partners for word forms, secondly of at-
tachment sites for propositions).

In the KvD model, a text (e.g. Figure 1) is con-
verted into propositions (see Table 1) which have
one functor and one or more arguments. The func-
tor can be taken either from a fixed list of gram-
matical relations (e.g. IS A; AT; BETWEEN; OR)
or an open class-set of so-called concepts, (e.g.
BLOODY; TEACH). Arguments can be concepts
or proposition numbers. Proposition numbers ex-
press embedded semantic structures (e.g. #9 in
Table 1). Kintsch et al. (1979) assumed that this
tranformation is performed manually; they were
able to train humans to do so consistently.

A series of violent, bloody encounters between police
and Black Panther members punctuated the early sum-
mer days of 1969. Soon after, a group of black students
I teach at California State College, Los Angeles, who
were members of the Panther Party, began to complain
of continuous harassment by law enforcement officers.

Figure 1: First two sentences from the example
paragraph Bumperstickers by KvD (1978).

732



No. Proposition
Cycle 1

1 SERIES (ENCOUNTER)
2 VIOLENT (ENCOUNTER)
3 BLOODY (ENCOUNTER)
4 BETWEEN (ENCOUNTER, POLICE, BLACK PAN-

THER)
5 TIME: IN (ENCOUNTER, SUMMER)
6 EARLY (SUMMER)
7 TIME: IN (SUMMER, 1969)

Cycle 2
8 SOON (#9)
9 AFTER (#4, #16)

10 GROUP (STUDENT)
11 BLACK (STUDENT)
12 TEACH (SPEAKER, STUDENT)
13 LOCATION: AT (#12, CAL STATE COLLEGE)
14 LOCATION: AT (CAL STATE COLLEGE, LOS

ANGELES)
15 IS A (STUDENT, BLACK PANTHER)
16 BEGIN (#17)
17 COMPLAIN (STUDENT, #19)
18 CONTINUOUS (#19)
19 HARASS (POLICE, STUDENT)

Table 1: Propositions for Figure 1.

The KvD algorithm is manually simulated in their
work, but is described in a mechanistic manner
that should in principle lend itself to implemen-
tation, once propositions are created. Propositions
form a tree where a proposition is attached to an-
other proposition with which they share at least
one argument; attachment higher in the tree is pre-
ferred. The tree is built incrementally; blocks of
propositions, each of which roughly correspond-
ing to one sentence, are processed in cycles. Af-
ter each cycle, a process of “forgetting” is sim-
ulated by copying only the most salient proposi-
tions to the short-term memory (STM). This se-
lection is performed by the so-called leading edge
strategy (LES), which prefers propositions that
are attached more recently and those attached at
higher positions. This algorithms mirrors van
Dijk’s (1977) model of textual coherence.

When choosing an attachment site for proposition,
arguments which are currently in STM are pre-
ferred. A resource-consuming search in long-term
memory (LTM) is only triggered if a proposition
cannot be attached in STM; in that case a bridging
proposition is reintroduced into the tree.

The KvD model can be used to explain human re-
call of stories, and can also to create a summary of
a text. The most natural way for a human to sum-
marise from scratch is to replace propositions with
so-called macropropositions, and the KvD model
prefers this style of summary creation. An exam-

ple for macroproposition is a statement that gen-
eralises over other propositions. This results in a
more abstract version of the text. However if for
any reason it is not possible to create macropropo-
sitions (for instance due to lack of deep knowledge
representation), a summary can also be created in
a simpler way based only on the propositions con-
tained in the text. In that case, the selection cri-
terion is the number of cycles a proposition has
remained in STM.

There are three main stumbling blocks in the way
of an implementation of the KvD model:

1. The automatic creation of propositions from
text, and of summary text from summary
propositions;

2. The automatic creation of concepts from
words (including coreference resolution);

3. The creation of macropropositions, which
would require sophisticated knowledge rep-
resentation and reasoning.

We present a fully automatic version of the KvD
model based on the following assumptions:

1. Current parser technology allows us to recon-
struct the compositional semantics of the text
well enough to make the KvD model opera-
tional, both in terms of creating propositions
from text, and in terms of creating reasonably
understandable output text from propositions
(even if not fully grammatical).

2. We model the lexical variation of how a con-
cept is expressed in a text probabilistically
by semantic similarity and coreference reso-
lution. This creates a competition between
plausible expressions for argument overlap.

3. Our core algorithm is modelled as two com-
petitions: (a) the competition between con-
cept matches as mentioned in the point
above; and (b) the competition between pos-
sible positions in a tree where a proposition
could attach.

4. We also observed that KvD’s method of
choosing the tree root in the first processing
cycle, and to never change it afterwards un-
less texts are truly incoherent (resorting to
multiple trees), is too limiting, in particu-
lar in combination with their LES. Texts can
have topic changes and still be perfectly co-
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herent, particularly if they are longer and less
linearly structured than the examples used
by KvD. We therefore experiment with more
flexible root choice strategies.

We have nothing to say on the third and biggest
obstacle, the creation of macropropositions. Nev-
ertheless, the experiments presented here test
whether our hypotheses 1 – 4 are strong enough
to provide our summariser with useful informa-
tion concerning the discourse structure of the texts.
We test this by comparing its performance to that
of two current state-of-the-art summarisers, which
instead rely on the sole use of lexical informa-
tion. A psychologically-motivated summariser
such as ours should be evaluated by compari-
son to abstractive, i.e., reformulated human sum-
maries, rather than by comparison to extractive
summaries. We do so using ROUGE, an evalu-
ation framework that supports such comparisons
(Lin and Hovy, 2003).

The structure of the paper is as follows. In the
next section, we will detail our implementation of
the KvD model, with particular emphasis on the
creation of propositions, probabilistic concepts,
proposition attachment, and root choice. In Sec-
tion 4, we will present experiments comparing our
summariser against two research extractive sum-
marisers, MEAD and LexRank. We also test how
our inventions including similarity-based concept
matching and root choice strategy contribute to
performance. We compare to related work in Sec-
tion 3, and draw our conclusions in Section 5.

2 Our implementation of KvD

Figure 2 shows the structure of our summariser.
The Proposition Creation module transforms sur-
face text to propositions with the aid of a grammat-
ical parser. Recall that in the original KvD model
(shown as “Human (KvD)”), propositions are gen-
erated manually. Apart from such, our implemen-
tation follows the KvD algorithm as closely as
possible. The core of this algorithm is the Mem-
ory Retention Cycle in the centre of the figure.

A cycle begins with the detection of coherence be-
tween the new propositions and the current STM
content. This results in a hierarchy of all so-far
processed propositions called the Coherence Tree.
Propositions are attached to the tree by a variety of
strategies, as explained in Subsection 2.2.

Input: Full text	


Parser	


Proposition 
Builder	


Dependencies	
 Human (KvD)	


Propositions	


Coherence 
Detector	


Coherence 
Tree	


Selector	
IPs in STM	


Summary propositions	


Extractor	
 Human (KvD)	


Output: Summary text	


Each sentence	


Most frequent ones	


Pr
op

os
iti

on
 C

re
at

io
n	


M
em

or
y 

Re
te

nt
io

n 
Cy

cl
e	


Pr
op

os
iti

on
 to

 te
xt
	


LTM	


Figure 2: Framework of the summariser.

At the end of each cycle, important propositions
(IPs) are selected by the Selector, stored in STM,
and thus retained for the next cycle, where they are
available for new incoming propositions to attach
to. The selector is a full implementation of KvD’s
LES, which also updates the recency of proposi-
tions reinstantiated from the LTM.1 Less impor-
tant propositions leave the cycle and go into the
LTM, which is conceptually a secondary reposi-
tory of propositions to provide the “missing links”
when no coherence between the STM and the in-
coming propositions can be established.

After the text is consumed, a propositional repre-
sentation of the summary is created by recalling
the propositions that were retained in STM most
frequently. The summary text is then either cre-
ated manually (in the KvD model), or in our im-
plementation, as a prototype, automatically by ex-
tracting words from the parser’s dependencies.

2.1 Proposition builder

We aim to create propositions of comparable se-
mantic weight to each other. This is a consequence
of our decision to recast KvD as a competition
model (as will become clear in subsection 2.2),
because by defining propositions as blocks of ar-
guments they should contain a similar number of

1KvD implied this in the last cycle of the Bumperstick-
ers paragraph, by placing the two reinstantiated propositions
below #37, though they are older than #37.
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meaningful arguments to ensure similar potential
for overlap.

To achieve suitable granularity of propositions,
we aggregate information spread out over several
grammatical dependencies, and exclude semanti-
cally empty words from participating in argument
overlap. We use Stanford Parser (Klein and Man-
ning, 2003), and aggregate subjects and comple-
ments of a predicate into a single proposition. Ac-
tive and passive voices are unified; clauses are
treated as embedded propositions; controlling sub-
jects of open clausal complements are recovered.

Some predicates are not verbs, but nominalised
verbs or coordination. For instance, KvD model
the phrase “ encounters between police and Black
Panther Party members ” as BETWEEN (EN-
COUNTER, POLICE, BLACK PANTHER). Produc-
ing such a proposition instead of two separate
ones BETWEEN (ENCOUNTER, POLICE) and BE-
TWEEN (ENCOUNTER, BLACK PANTHER) is ad-
vantageous, because this single proposition pro-
vides a strong connection between POLICE and
BLACK PANTHER which cannot be derived from
other dependencies.

However we lack a subcategorisation lexicon that
provides information about how many arguments
a preposition like “between” takes. Therefore we
scan conjoined prepositional phrases, aggregate
the objects, and attach them to the governors of the
prepositional phrases. In this example, the result-
ing preposition is ENCOUNTER (POLICE, MEM-
BER). The word “between” is excluded because it
is semantically empty and may interfere with over-
lap detection.

We take care to detect and exclude semantically
empty material. For instance, the empty semantic
heads in noun phrases such as “a series of” and “a
group of” are detected using a list of of 21 words
we collected, and treated by redirecting the depen-
dencies involving the empty heads to the corre-
sponding content heads. In this treatment, the rela-
tion between an empty head and its content head is
not entirely erased, but encoded as a general mod-
ifier relation.

2.2 Probabilistic concept matching

The notion of argument overlap in KvD’s model
is sophisticated in that it “knows” which surface

expressions (pronouns, synonyms, etc) in text re-
fer to the same concept. Concept mapping is the
task of forming equivalence classes of surface ex-
pressions; each concept then corresponds to one
such equivalence class. The KvD model, because
it simulates concept mapping and proposition at-
tachment in parallel, conceals some of the choices
that a fully automatic model has to make.

Given current technology, concept mapping can
only be performed probabilistically. We use the
Stanford coreference resolution, named-entity de-
tection (to extend coreference detection to non-
same-head references, e.g. mapping “the tech
giant” to “Apple Inc.”2); and to find synonymy
or at least semantic relatedness, we use a well-
known measure of semantic similarity, namely
Lin’s Dependency-Based Thesaurus (Lin, 1998).
We are not committed to this particular measure,
but it empirically performed best out of the 11 we
tried; especially it outperformed WordNet path-
based measures. Note however that only the 200
most similar words for each word are provided by
this tool. The similarity measure is normalised by
relative ranking to provide the probability that an
expression refers to the same concept as another
expression. We use WordNet (Miller, 1995) for
derivationally related forms (to solve e.g. nomi-
nalisation). This establishes the first competition,
the one between concept matches.

police

Black Pan-
ther members

law enforce-
ment officers

members of the
Panther Party

1 1

1 1

Figure 3: KvD’s concept matching.

police

Black Pan-
ther members

law enforce-
ment officers

members of the
Panther Party

0.99 0.67

0
0.33

1 1

0.01
0

Figure 4: Probabilistic concept matching.

Modelling concepts probabilistically has its impli-
cation for the next task: finding the best attach-
ment site for a proposition. Let us explain this with
an example. Notice that in the example text in Fig-
ure 1, “police” (from #4, in the first sentence) and

2A WordNet synset is defined for each named-entity type;
here “giant” is connected to its hypernym “organization” via
“enterprise”.
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“law enforcement officer” (from #19, in the sec-
ond sentence) refer to the same concept POLICE.
Figure 3 illustrates how this is handled in KvD’s
model, where intelligent concept matching estab-
lishes with 100% certainty that the two strings re-
fer to the same concept. Certainty about the ar-
gument overlap then enables them to later attach
#19 to #4. In their model it is important whether
a matching proposition is found in STM or LTM:
If the only proposition that mentions “police” (#4)
is no longer in STM when the proposition contain-
ing “law enforcement officer” (#19) is processed,
and for any reason the other arguments in #19 (i.e.
STUDENT) cannot find overlaps either, KvD find
no concept match in STM and know therefore,
again with full certainty, that an LTM search must
be triggered3, which in this case leads to the suc-
cessful recall of #19 for #4 to attach to.

Figure 4 illustrates the corresponding situation in
our model, where #4 with “police” is in LTM, the
probability of a concept match between “law en-
forcement officer” and “police” is 66.7%, whereas
that of a match with “members”, which is in STM,
is 33.3%. The probabilistic concept matching can-
not provide enough certainty to single out #4 be-
cause of full argument overlap. The probabilities
of concept match have to act as a much weaker
filter in our model, and all previous propositions
have to be considered as potential landing sites
for #19. In particular, we do not know whether
a concept match within STM is “good enough”,
or whether a LTM search is needed. There is, in
this case, a competition between a weak match in
STM (the direct vicinity) and a strong match in
LTM (further away), which will hopefully result
in a successful match between “police” and “law
enforcement officer”. In other words, we always
have to search for matches in both repositories.

After obtaining the graph of interrelated expres-
sions, the competition between landing sites for
each proposition takes place, whereby higher po-
sitions are preferred. This double competition is a
core aspect of our model.

2.3 Choice of root

The KvD model almost always maintains the root
determined in the first cycle (either by overlap

3KvD only mentioned retrieving embedded propositions
as LTM search rarely happens, but the goal is the same as
here: to establish overlap.

with title concepts or by coverage of the main
clause of the first sentence). The model intro-
duces multiple roots if a text is totally incoher-
ent, namely when propositions cannot be attached
anywhere and therefore a forest of disjoint trees
has to be developed. This strategy does not gen-
eralise well to longer texts with topic changes,
for example newspaper texts with anecdotal leads.
Although these texts are perfectly coherent, KvD
cannot treat them appropriately.4

Our more flexible rooting strategy is run once
in each cycle, assessing whether any of the cur-
rent root’s children in the working memory would
make a better root. In case of a root change, the
edge between the old and the new root is reversed,
and the old root becomes a child of the new root.
Then we perform the same strategy on the new tree
until no root change is needed.

We denote the current root as i, and a new root
candidate (a child of i) j. J is the set of descen-
dants of j (inclusive of j), and I the set of all nodes
V excluding J , i.e. I = V \ J . Then nodes in J
will be promoted after the root change, while those
in I will go one level deeper. Since edge weights,
i.e. attachment strengths, are asymmetric, we de-
note the weight for j being a child of i as wi,j , and
wj,i for the reversed attachment. Each node v also
carries a weight xv = mv · adv , where mv is a
memory status factor (e.g. mv = 1 if v is in STM,
0.5 if otherwise), 0 < a ≤ 1 is an attenuation fac-
tor, and dv is depth of v in the tree. To decide, we
evaluate

s = wj,i

∑
v∈J

xv − wi,j

∑
v∈I

xv (1)

If s > 0, the root change is permitted.5 This evalu-
ation makes root change easier if the edge in ques-
tion favours i being a child of j, or there are more
important nodes that can benefit from the change,
and vice versa.

An example of such a root change taken from the
Bumperstickers is given in Figure 5 (refer to Ta-
ble 1 for proposition contents). As the central
topic of the text changes from the encounters to

4In our scenario the situation can barely ever arise where
absolutely no proposition attachment is possible, as the prob-
abilistic concept mapping is usually able suggest some con-
cept match, albeit with small probability.

5In case when multiple candidates are permitted, the one
with the highest s is chosen.
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that the identity of Panther Party members are ac-
tually the author’s students, the summariser recog-
nises this change after reading one more sentence,
by flipping the edge connecting #3 and #14.

3 2 

4 

14 16 

17 

18 

3 2 

4 

14 

16 

17 

18 

Figure 5: Tree before and after a root change.

3 Related Work

One of the dilemmas in summarisation research is
how “deep”, i.e. semantics-oriented, a summariser
should be. Shallow analysis of lexical similarity
between sentences and/or the keywords contained
in sentences has lead to summarisers that are ro-
bust and perform very well for most texts (Radev
et al., 2004; Dorr and Zajic, 2003; Carbonell and
Goldstein, 1998). The methods applied include a
random-surfer model (Mihalcea and Tarau, 2004;
Radev, 2004), a model of attraction and repul-
sion of similar summary sentences (Carbonell and
Goldstein, 1998). There are statistical models of
sentence shortening (Knight and Marcu, 2002).
While much work in summarisation has concen-
trated on multi-document summarisation, where
the main challenge is the detection of redundant
information, the summariser presented here is a
single-document summariser.

However, researchers have been attracted by
deeper, more symbolic and thus more explana-
tory summarisation models that use semantic rep-
resentations of some form (Radev and McKe-
own, 1998) and often rely on explicit discourse
modelling (Lehnert, 1981; Kintsch and van Dijk,
1978; Cohen, 1984). The problem with template-
based summarisers is that they tend to be domain-
dependent; the problem with discourse structure-
based summarisers is in general that they require
knowledge modelling and reasoning far beyond
the capability of today’s state of the art in arti-
ficial intelligence. Rhetorical Structure Theory
(Mann and Thompson, 1987) provides a domain-
independent framework that takes local discourse
structure into account, which has lead to a suc-
cessful prototype summariser (Marcu, 2000). This

summarisation strategy does not however look at
the lexical content of the propositions or clause-
like units it connects, only at the way how the con-
nection is performed.

The summariser presented here is a hybrid: its
core algorithm is symbolic, but its limited powers
of generalisation come from a semantic similarity
metric that is defined via distributionally derived
probabilities. Because its core processing is sym-
bolic and based on a simple semantic representa-
tion, it is possible to derive an explanation based
on the coherence tree and the propositions selected
from it. There are some similarities to the idea of
summarisation via lexical chains (Barzilay and El-
hadad, 1997), as both methods trace concepts (as
representatives of topics) across a document. The
KvD model arguably uses more informative mean-
ing units, as it is based on the combination of con-
cepts within propositions, rather than on concept
repetition alone.

A different, related stream of research looked
at the automatic detection of coherence in text.
Graesser et al (2004) present a coherence checker
based on over 200 coherence metrics, including
argument overlap as in KvD. Barzilay and Lap-
ata (2008) use a profiling of texts akin to Centering
theory to rank texts according to their coherence.
It would be interesting to combine their notion of
entity-based coherence with KvD’s notion of ar-
gument overlap.

4 Experiments

We now perform two experiments. The first tests
the contribution of our concept matcher and root
change strategy on a small document set we have
collected, and compares against two research sum-
marisers. In the second experiment, we test the
performance of our summariser on a much larger
and standard dataset.

We will use the intrinsic evaluation strategy of
comparison to a gold standard. Human judge-
ments would be the most credible, but as a cheap
alternative, we use ROUGE-L (Lin, 2004), which
has been shown to correlate well to human judge-
ments. For each sentence, ROUGE-L treats it as a
sequence of words, and finds the longest common
subsequences (LCSs) with any sentence in a gold
standard summary. The score is defined as the F-
measure of the precision and recall of the LCSs.
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The next question is how the gold standard sum-
maries used in ROUGE are defined. Because our
summariser is deep and has a fine granularity, it
should be compared against human-written sum-
maries on a variety of texts.

For the first experiment, we have collected from
volunteers 8 human abstractive summaries for
each of the 4 short scientific articles or stories
we found in Kintsch and Vipond (1979) (average
length: 120 words), and 4 for each of 2 longer po-
litical news texts (average length: 523 words). The
volunteers were instructed to condense the text to
1/3 of its length for the short texts, and to 100
words for the longer ones. They were also in-
structed not to paraphrase, but to use the words in
the text as much as possible. This was because no
summariser in this experiment has a paraphrasing
ability. Nevertheless, not all subjects followed this
instruction strictly.

For the second experiment, we use the DUC 2002
dataset (Over and Liggett, 2002). There are 827
texts from news media, of a variety of topics and
lengths, among which our script is able to extract
titles and contents of 822 documents. We use the
provided single document abstractive summaries,
which are of 100 words in length each, as gold
standard summaries. A few of the documents are
selected in multiple clusters and therefore have
multiple summaries; all of them are used in evalu-
ation.

We compare our summariser against a baseline
constructed with the first n words from the origi-
nal text, where n is the summary length as defined
above, and two summarisers: MEAD (Radev et
al., 2004) is a research summariser which uses a
centroid-based paradigm and is known to perform
generally well over a range of texts. LexRank
(Radev, 2004) uses lexically derived similarities in
its similarity graph of sentences, sharing the same
idea of sentence similarity with MEAD. Note that
both summarisers are extractive.

We illustrate what our summaries look like in Ta-
ble 2, where we asked the summariser to give us
summaries as close to 20 and 50 word summaries
as possible, with Table 3 showing the underlying
propositions. In contrast, MEAD can only extract
sentences as-is (thus not as flexible in length), and
does not have meaning blocks like our proposi-
tions.

Encounters between police and Black Panther members.
Students to complain of harassment. Automobiles Panther
Party signs glued to bumpers.
Bloody encounters between police and Black Panther
members punctuated the summer days of 1969. Students
to complain of continuous harassment by law enforcement
officers. They receiving many traffic citations. Automo-
biles with Panther Party signs glued to their bumpers. I to
determine whether we were hearing the voice of paranoia
or reality.

Table 2: Summaries produced by our summariser.

3 encounters (between: police; between: Black Pan-
ther members)

16 to complain (students; of: harassment)
34 with: Panther Party signs (automobiles)
35 glued (#34; to: bumpers)

Table 3: Summary propositions for the first sum-
mary above.

We create summaries for all three summarisers
following this procedure: We provide sentence-
split texts and their headlines (not needed by
LexRank), and run the summarisers in such a way
as to produce a summary of the same length as
stipulated for the standard summaries. Our sum-
mariser controls word count precisely; we require
MEAD to produce summaries close to the length
(allowing variations), and for LexRank we allow
it to go beyond the limit by less than one sentence
and then discard the exceeding part in the sentence
with the lowest salience.

The results of Experiment 1 are summarised in Ta-
ble 4. As is well-known from similar experiments,
it is hard beating the first n baseline due to the fact
that journalistic style (in the long texts) already
puts a summary of each text first. It is slightly
surprising that this effect also holds for the short
texts (literary style). It is of note that our KvD
summariser beats both MEAD and LexRank on
this dataset, which is shelved away during devel-
opment, with statistical significance on the long
texts: the 95%-confidence interval of ours is 0.403
– 0.432, and that of MEAD is 0.370 – 0.411.

Long Texts Short Texts
Ours 0.418 0.333
Ours – without similarity 0.396 0.271
Ours – without word info 0.319 0.185
Ours – without root change 0.388 0.348
MEAD 0.391 0.343
LexRank 0.378 0.326
First n words 0.460 0.368

Table 4: ROUGE-L F-measures for Experiment 1.
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Precision Recall F-measure
Our summariser 0.361 0.332 0.344
MEAD 0.366 0.355 0.358
First n words 0.403 0.395 0.399

Table 5: ROUGE-L scores for Experiment 2.

We test whether concept matching is beneficial
by switching off similarity derived from distribu-
tional semantics, or switching off all “word infor-
mation” which includes distributional semantics,
lemmatisation, and coreference detection, i.e. to
consider matching only for the same word. Per-
formance deteriorates when concept matching is
switched off, substantially if all word information
is off. This confirms our hypothesis that one of
the cornerstones of KvD, concept matching, can
be at least partially simulated using today’s distri-
butional semantics methods. As for root change,
turning it off seems to hurt performance on the
longer texts, but not so on the shorter ones, which
matches our speculation that root change is useful
for longer texts, which have some focus shifts.

The result of Experiment 2 is shown in Table 5.
This experiment on a large dataset demonstrates
that our summariser performs in the ballpark of
typical results of extractive summarisers, although
it is still statistically a little worse than the state-of-
the-art MEAD (whose F-measure 95%-confidence
interval is 0.349 – 0.367). Our summariser is
good at precision because many summaries pro-
duced have not used up the 100-word limit, mak-
ing the average summary length smaller than that
of MEAD’s. This indicates that our summariser
might be good at very short summaries, or we
could improve the memory selection to allow for
a more diversified important proposition set. Con-
sidering this, and the fact that we have many pa-
rameters not tuned for the task, and we have not
utilised the structural / positional features (whose
importance is shown in the first-n baseline), the
result is still encouraging.

5 Conclusions

We present here a first prototype of the feasibility
of basing a summarisation algorithm on Kintsch
and van Dijk’s (1978) model. Our implemen-
tation successfully creates flexible-length sum-
maries, highly compressed if desired, and provides
some explanation for why certain meaning units
appear in the summary. We have avoided some of

the hardest aspects of KvD’s model, which have to
do with the generation of macropropositions and
with keeping closer track of larger discourse struc-
tures, but we show that some core aspects of the
model can be approximated with today’s parsing
and lexical semantics technology. Although the
output summaries are not yet in all cases grammat-
ical, we show that our system performs compara-
bly with extractive state-of-the-art summarisers.

During the implementation, we had to solve sev-
eral practical problems that the KvD did not give
enough procedural detail about, or skipped over
in their manual simulation. For instance, we have
turned the distinction between LTM and STM to
two parallel salience levels from KvD’s two dis-
joint stages, formalised the tree building process
and improved KvD’s root choice strategy.

The KvD model does not keep track of unique
events, but would profit from doing so, for in-
stance in texts where more than one event of the
same type is referred to. It has no explicit model
of time, but would profit from one. It does not
even use information about which entities in a text
form the same concept or individual, for selecting
all information about that concept into the sum-
mary. There are also many interesting ways how
the memory cycle could be modified by giving
more weight to particular events, concepts and in-
dividuals.

On the implementational side, much remains to
be tried. Anything that improves the proposition
builder should bear direct fruit in the quality of
the summaries. The limitations of our proposi-
tion builder come from the limitations of parsing
technology as well as the fact that semantics is not
entirely determined by syntax. For instance, we
noticed some problems caused by incorrect prepo-
sitional phrase attachment. A better coreference
system would also improve this summariser im-
mensely, reducing much uncertainty in the con-
cept matching. The deep nature of the summariser
also enables natural language generation to im-
prove the readability of our textual summary.
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