The Protection of Information in
Computer Systems

Musings on how this paper might be presented
(Not a sample talk!)

Dr Robert N.M. Watson
10 October 2015

PICS (1)

e Classic work in computer security
— First major survey of local system security
— MIT coauthors working on Multics
— Com. ACM 1973; Proc. IEEE 1975
— At least 2,000+ citations

 Defines many ideas from 1970s local system security
— Integrity, confidentiality, availability; security vs. privacy
— Password protection and hashing; one-time passwords
— Psychology, human factors, and economics of security
— Software vulnerabilities; protecting the TCB
— Insider threat; electromagnetic leakage; physical security
— Least privilege, economy of mechanism, “default deny”, ...

PICS: What is Protection?

* Explains state-of-the-art, imposes structure
— Define key terms clearly for the first time

— Where there is ambiguity or disagreement, select
a definition — often with lasting effect

— Describe principles of protection
— Describe implementations
— Speculate about future directions

* Implicitly: help us understand the debates of
the time, and origins of many current ideas

1278

related to hazard from lasers and other light sources,” Amer. J.
Ophthalmol., vol. 66, p. 15, 1968.

(57] A. Vassitiadis, H ppers, R. R, Peabody, and
K. C. Honey, ‘Thiesholds o laser eye nagacds," Arch, Environ,
Health, vol. 20, p. 161,1970.

(58] P. W. Lappin, ouir damage Shiestolds for he hellum-neon
aser,” Arch. Environ. Health, vol. 20, p.

[59] W.T. Ham et al., “Retinal burn hecshioids for the ie-Ne lser In
the rhesus monkey,” Arch. Ophthalmol., to be published.

[60] T. P. Davis and W. J. Maiitner, “Helium-neon laser effects on the
eye,” U.S. Army Med. Res. Develop. Com., Washington, D.C.,
Annu, Rep. Contr. DADA 17-69-C-9013, 1969.

[61] 1. J. Vos, “Digital computations of temperature in retinal burn
problems,” Inst. Perception, Soesterberg, The Netherlands, RVO-

PICS (2): A Survey

PROCEEDINGS OF THE IEEE, VOL. 63, NO. 9, SEPTEMBER 1975

TNO, Rep. IZF 1965016, 1963.

(62] M. A. Mainster, T. J. White, J. H. Tips, and P. W. Wilson, “Reti-
nal-temperature increases produced by intense light sources,” J.
Opt. Soc. Amer., vol. 60, p. 264, 1970

[63] A. M. Clarke, W. T, Ham, W. J. Geeraets, R. C. Williams, and
H. A. Mueller, “Laser effects on the eye,” Arch. Environ. Health,

vol
[64] R.H. Stern and R.

Sogninses, “Laser beam on denal hrd ts
1964,

sues,” J. Dent. Res., ot 43,p.8
[65] R. H. Stern, “Denfistry and the mu," in Laser Applications in
New

Medicine and Biology, vol. 11, Dr. M.

L. Wolbarsht, Ed.

York: Plenum, 1974, pp. 361-388.

[66] T. E. Gordon, Ir., and

D. L. Smith, “Laser welding of prosthe-

ses—an initial report,” J. Prosth. Dent,, vol. 24, p. 472,

The Protection of Information in Computer Systems

JEROME H. SALTZER, SENIOR MEMBER, IEEE, AND MICHAEL D. SCHROEDER, MEMBER, IEEE

Invited Paper

Abstract—This tutorial paper explores. the mechanics of protecting
p d i ion from ized use or modificati

It on those truct hether hardware or
software—that are necessary to ort information protection. The
paper develops in three main scchons. Section I describes desired
functions, design principles, and examples of elementary protection and
authentication mechanisms. Any reader famili h computers
should find the first section to be reasonably dccessible. Section IT
requires some familiarity with descriptor-based computer architecture.
It examines in depth the principles of modern protection architectures
and the refation between capability systems and access control list
systems, and ends with a brief analysis of protected subsystems and
pmccud objects. Tho seader who s disnayed by efher tho pro
or the level of detail in the second section may wish to skip
lﬂ Scclmn 01, which reviews the state of the art and current research
projects and provides suggestions for further reading.

GLOSSARY

brief definitions for several terms as used in this paper

THE FOLLOWING glossary provides, for reference,
in the context of protecting information in computers

Access The ability to make use of information
stored in a computer system. Used fre-
quently as a verb, to the horror of
grammarians,

A list of principals that are authorized
to have access to some object.

To verify the identity of a person (or
other agent external to the protection
system) making a request.

Access control list

Authenticate

Manuscript received October 11, 1974; revised April 17, 1975. Copy-
right © 1975 by J. H. Saltzer.

The authors are with Project MAC and the Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Tech-
nology, Cambridge, Mass. 02139.

Authorize

Capability

Certify

Complete isolation

Confinement

Descriptor

Discretionary

Domain

Encipherment

Grant
Hierarchical control

To grant a principal access to certain
information.

In a computer system, an unforgeable
ticket, which when presented can be
taken as incontestable proof that the
presenter is authorized to have access
to the object named in the ticket.

To check the accuracy, correctness, and
completeness of a security or protection
mechanism.

A protection system that separates
principals into compartments between
which no flow of information or control
is possible.

Allowing a borrowed program to have
access to data, while ensuring that the
program cannot release the information.
A protected value which is (or leads to)
the physical address of some protected
object.
(In contrast with nondiscretionary.)
Controls on access to an object that
may be changed by the creator of the
object.

The set of objects that currently may be
directly accessed by a principal.

The (usually) reversible scrambling of
data according to a secret transforma-
tion key, so as to make it safe for trans-
mission or storage in a physically unpro-
tected environment.

To authorize (.7.).

Referring to ability to change authoriza-
tion, a scheme in which the record of

* Is PICS an “original
research contribution”

— Enumerates, organises, and
explains the work of others

— But structure imposed on
ideas is very exciting

— PICS is often cited for the
wrong reason —e.g.,
Principle of Least Privilege

e Useful to investigate
citations to/from PICS

Structure of the paper

|. Glossary (1 page)

Il. Basic Principles of
nformation
Protection (11 pages)
Ill. Descriptor-Based
Protection Systems
(14 pages)

V. References (2 pages)

You cannot explain it all
in 15-20 minutes!

Instead select suitable
subsets to focus on

What are high-level
motivations, principles?

Especially hard for a
survey article

PICS Glossary

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1279

List-oriented

Password

Permission

Prescript

Principal

Privacy

Propagation

Protected object

Protegted subsystem

Protection

Protection group

Revoke

Security

Self control

Ticket-oriented

each authorization is controlled by an-
other authorization, resulting in a hier-
archical tree of authorizations.

Used to describe a protection system in
which each protected object has a list of
authorized principals.

A secret character string used to au-
thenticate the claimed identity of an
individual.

A particular form of allowed access,
e.g., permission to READ as contrasted
with permission to WRITE,

A rule that must be followed before
access to an object is permitted, thereby
introducing an opportunity for human
judgment about the need for access, so
that abuse of the access is discouraged.
The entity in a computer system to
which authorizations are granted; thus
the unit of accountability in a com-
puter system.

The ability of an individual (or organiza-
tion) to decide whether, when, and to
whom personal (or organizational) in-
formation is released.

When a principal, having been autho-
rized access to some object, in turn
authorizes access to another principal.
A data structure whose existence is
known, but whose internal organiza-
tion is not accessible, except by invok-
int the protected subsystem (q..)
that manages it.

A collection of procedures and data
objects that is encapsulated in a domain
of its 6wn so that the internal structure
of a data object is accessible only to the
procedures of the protected subsystem
and the procedures may be called only
at designated domain entry points.

1) Security (q.v.). 2) Used more nar-
rowly to denote mechanisms and tech-
niques that control the access of execut-
ing programs to stored information.

A principal that may be used by several
different individuals.

To take away previously authorized
access from some principal.

With respect to information processing
systems, used to denote mechanisms
and techniques that control who may
use or modify the computer or the in-
formation stored in it.

Referring to ability to change authoriza-
tion, a scheme in which each authoriza-
tion contains within it the specification
of which principals may change it

Used to describe a protectior- system in
which each principal maintains a list of
unforgeable bit patterns, called tickets,
one for each object the principal is
authorized to have access.

User Used imprecisely to refer to the individ-
ual who is accountable for some identi-
fiable set of activities in a computer
system.

I. BAsIC PRINCIPLES OF INFORMATION PROTECTION
A. Considerations Surrounding the Study of Protection

1) General Observations: As computers become better
understood and more economical, every day brings new ap-
plications. Many of these new applications involve both stor-
ing i and si use by several i
The key concern in this paper is multiple use. For those ap-
plications in which all users should not have identical author-
ity, some scheme is needed to ensure that the computer sys-
tem implements the desired authority structure.

For example, in an airline seat reservation system, a reserva-
tion agent might have authority to make reservations and to
cancel reservations for people whose names he can supply. A
flight boarding agent might have the additional authority to
print out the list of all passengers who hold reservations on the
flights for which he is responsible. The airline might wish to
withhold from the reservation agent the authority to print out
a list of reservations, so as to be sure that a request for a pas-
senger list from a law enforcement agency is reviewed by the
correct level of management.

The airline example is one of protection of corporate infor-
mation for corporate self-protection (or public interest, de-
pending on one’s view). A different kind of example is an on-
line warehouse inventory management system that generates
reports about the current status of the inventory. These re-
ports not only represent corporate information that must be
protected from release outside the company, but also may
indicate the quality of the job being done by the warehouse
manager. In order to preserve his personal privacy, it may be
appropriate to restrict the access to such reports, even within
the company, to those who have a legitimate reason to be
judging the quality of the warehouse manager’s work.

Many other examples of systems requiring protection of
information are encountered every day: credit bureau data
banks; law enforcement information systems; time-sharing
service bureaus; on-ine medical information systems; and
government social service data processing systems. These
examples span a wide range of needs for organizational and
personal privacy. All have in common controlled sharing of
information among multiple users. All, therefore, require
some plan to ensure that the computer system helps imple-
ment the correct authority structure. Of course, in some
applications no special provisions in the computer system
are necessary. It may be, for instance, that an externally
administered code of ethics or a lack of knowledge about
computers adequately protects the stored information. Al-
though there are situations in which the computer need pro-
vide no aids to ensure protection of information, often it is
appropriate to have the computer enforce a desired authority
structure.

The words “privacy,” “security,” and “protection” are
frequently used in ion with information-storing sy:
tems. Not all authors use these terms in the same way. This
paper uses definitions commonly encountered in computer
science literature.

The term “privacy” denotes a socially defined ability of an
individual (or organization) to determine whether, when, and

e Terms cleanly formulated
for the first time
* Terms we recognise:

— Access control list
— Authenticate

 Terms we might not:

— Descriptor

— List-oriented

e Do all the terms mean the

same thing today?

PICS I. Basic Principles of
Information Protection

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1289
memory memory
virtual
processor Py
A
processor
— program off \ program
B) \ B |
| privileged descriptor
2 state bit =~ registers
shared | virtual 7 shared
ma \ processor P,/ math
of f - routine \ routine
privileged } descriptor \
state bit / registers \ 1
program \, |
% pual [
program
0] s
memory —
Fig. 3. Fig. 2 redrawn to show sharing of a math routine by two virtual
— processors simultancously.
S
"”’QA’“’“ read Jwrite | base bound <]
processor —
program permission bits
B Fig. 4. A descriptor containing READ and WRITE permission bits.
| —
2 shared Although the basic mechanism to permit information sharing
N math is now in place, a remarkable variety of implications that fol-
off N routine low from its introduction require further mechanisms. These
< ~ — implications include the following.
2";‘;‘19? A de“':""" 1) If virtual processor Py can overwrite the shared math
4 registers ’— — routine, then it could disrupt the work of virtual processor P, .
program 2) The shared math routine must be careful about making
| s modifications to itself and about where in memory it writes
— temporary results, since it is to be used by independent com-
®) putations, perhaps simultaneously. .

Fig. 2. Sharing of a math routine by use of two descriptor registers.
(a) Program 4 in control of processor. (b) Program B in control of
processor.

Whether or not there are actually two processors is less im-
portant than the existence of the conceptually parallel access
paths implied by Fig. 3. Every virtual processor of the system
may be viewed as having its own real processor, capable of
access to the memory in parallel with that of every other
virtual processor. There may be an underlying processor
multiplexing facility that distributes a few real processors
among the many virtual processors, but such a multiplexing
facility is essentially unrelated to protection. Recall that a
virtual processor is not permitted to load its own protection
descriptor registers. Instead, it must call or trap to the super-
visor program § which call or trap causes the privileged state
bit to go ON and thereby permits the supervisor program to
control the extent of sharing among virtual processors. The
processor multiplexing facility must be prepared to switch the
entire state of the real processor from one virtual processor to
another, including the values of the protection descriptor
Tegisters.

3) The scheme needs to be expanded and generalized to
cover the possibility that more than one program or data base
is to be shared.

4) The supervisor needs to be informed about which princi-
pals are authorized to use the shared math routine (unless it
happens to be completely public with no restrictions).

Let us consider these four implications in order. If the
shared area of memory is a procedure, then to avoid the possi-
bility that virtual processor Py will maliciously overwrite it,
we can restrict the methods of access. Virtual processor Py
needs to retrieve instructions from the area of the shared pro-
cedure, and may need to read out the values of constants em-
bedded in the program, but it has no need to write into any
part of the shared procedure. We may accomplish this restric-
tion by extending the descriptor registers and the descriptors
themselves to include accessing permission, an idea introduced
for different reasons in the original Burroughs BS000 design
{32]. For example, we may add two bits, one controlling per-
mission to read and the other permission to write in the stor-
age area defined by each descriptor, as in Fig. 4. In virtual
processor Py of Fig. 3, descriptor 1 would have both per-
missions granted, while descriptor 2 would permit only reading

ater

st

El

A smorgasbord of amazing ideas!

* Considerations

— Privacy vs. security vs. protection

— Confidentiality, integrity, availability
* Levels of protection

— Unprotected, controlled sharing, ...
* Design principles

— E.g,. “economy of mechanism”,
“open design”, “least privilege”,
“psychological acceptability”, ...

* Technical underpinnings

— E.g., implementing isolation,
supervisor mode, passwords

PICS Il. Descriptor-Based
Protection Systems

SALTZER AND SCHROEDER: PROTECTION OF COMPUTER INFORMATION 1297

segmented memory

pointer
(registers
processor \,

—— catalog for

[] |
=H
H

d

ml

{
hared math |
m prosrem or ’ 'a"r:’ :‘T:
Smith !

!

private
data base
X

principal ,’
identifier
2/4_ —
rivate
catalog for ;
amitn? date base
| smith | Smith |
Fig. 10. A protection system using access controllers containing access control lists. In this system, every segment has a single corresponding

access controller with its own unique identifier for addressing purposes

inter registers always contain the unique identifiers of access con-

trollers. Program A is in control of the processor, and it has already acquired a pointer to the library catalog. Since the access control list in
the access controller for the library catalog contains Doe’s name, the processor can use the catalog to find the pointer for the shared math
routine. Since his name also appears in the access control list of the math routine, the processor will then be able to use the shared math

routine.

of any desired grouping for protection purposes. Thus, in
Fig. 10, 2 library catalog has been introduced.

It is also apparent that implementation, especially direct
hardware implementation, of the access control list system
could be quite an undertaking. We will later consider some
strategies to simplify implementation with minimum com-
promise of functions, but first it will be helpful to introduce
one more functional property~protection groups.

2) Protection Groups: Cases often arise where it would be
inconvenient to list by name every individual who is to have
access to a particular segment, either because the list would
be awkwardly long or because the list would change frequently.
To handle this situation, most access control list systems
implement factoring into protection groups, which are princi-
pals that may be used by more than one user. If the name of a
protection group appears in an access control list, all users who
are members of that protection group are to be permitted
access to that segment.

Methods of implementation of protection groups vary widely.
A simple way to add them to the model of Figs. 9 and 10 is to
extend the “principal holding” register of the processor so
that it can hold two (or more) principal identifiers at once,
one for a personal principal identifier and one for each protec-
tion group of which the user is a member. Fig. 10 shows this
extension in dashed lines. In addition, we upgrade the access
control list checker so that it searches for a match between
any of the principal identifiers and any entries of the access
control list.>* Finally, who is allowed to use those principals

**If there is more than one match, and the multiple access control list
entries specify different access permissions, some resolution strategy is
needed. For example, the mvcLusivi-or of the individually specified
access permissions might be granted.

that represent protection group identifiers must also be con-
trolled systematically.

We might imagine that for each protection group there is a
protection group list, that is, a list of the personal principal
identifiers of all users authorized to use the protection group’s
principal identifier. (This list is an example of an access con-
trol list that is protecting an object—a principal identifier—
other than a segment.) When a user logs in, he can specify the
set of principal identifiers he proposes to use. His right to use
his personal principal identifier is authenticated, for example,
by a password. His right to use the remaining principal identi-
fiers can then be authenticated by looking up the now-
authenticated personal identifier on each named protection
group list. If everything checks, a virtual processor can safely
be created and started with the specified list of principal
identifiers.>®

3) Implementation Considerations: The model of a_com-
plete protection system as developed in Fig. 10 is one of many
possible architectures, most of which have essentially identical
functional properties; our choices among alternatives have
been guided more by pedagogical considerations than by
practical implementation issues. There are at least three key
areas in which a direct implementation of Fig. 10 might en-
counter practical problems.

1) As proposed, every reference to an object in memory
requires several steps: reference to a pointer register; indirect

*1n some systems (notably CAL TSS (17]), principal identifiers are

treated as a special case of a capability, known as an access key, that

about, stored anywhere, and passed on to friends. Al

h appears to produce the same effect as protection

groups, accountability for the use of a principal identifier no longer

resides in an individual, since any holder of a key can make further
copies for his friends.

 Make it all practical via

worked examples

— E.g., security of operating-
system process models
(“virtual processors”

— Rather more opaque for
contemporary readers

e Starts with “descriptor and

virtual memory systems”
and “tagged capabilities”

e Builds up to access control —
e.g., segments (files) in a
persistent storage system

PICS Ill. The State of the Art

1304

We now have a controlled domain entry facility. A user
wishing to provide a protected subsystem can do so by setting
the access control lists of all objects that are to be internal
parts of the system to contain one of his own principal iden
fiers. He also adds to the access control list of the initial
procedure of his subsystem ENTER permission for any other
principals who are allowed to use his protected subsystem.

In a capability system, a similar addition produces protected
subsystems. The permission field of a capability is extended to
include ENTER permission, and when a capability is used as the
target of a GO TO or a CALL instruction, control is passed to
the procedure in the segment pointed to by the capability.
Simultaneous with passing control to the procedure, the
processor switches on the READ permission bit of the capa-
bility, thereby making available to the virtual processor a new
domain—all those objects that can be reached starting from
capabilities found in the procedure.

Two mechanisms introduced earlier can now be seen to be
special cases of the general domain entry. In the initial di
cussion of the capability system, we noted that the authentica-
tion system starts a new user by allowing a virtual processor to
enter that user's domain at a controlled starting point. We
could use the domain entry mechanism to accomplish this
tesult as follows. A system program is “listening” to all cur-
rently unused terminals or system ports. When a user walks up
to a terminal and attempts to use it, the system program cre-
ates a new virtual processor and has that processor ENTER the
domain named by the prospective user. The entry point
would be to a program, perhaps supplied by the user himself,
which authenticates his identity before doing any other com-
putation. Because a protected subsystem has been used, the
program that monitors the unused terminals does not have
access to the data in the protected subsystem (in contrast with
the system of Fig. 7), a situation in better accord with the
principle of least privilege. Instead, it has an enter capability
for every domain that is intended to be entered from a termi-
nal, but that capability leads only to a program that demands
authentication.

We have sketched only the bare essentials of the mechanism
required to provide domain switching. The full mechanics of a
practical system that implements protected objects and sub-
systems are beyond the scope of this tutorial, but it is useful
to sketch quickly the considerations those mechanisms must
handle.

1) The principle of “separation of privilege” is basic to the
idea that the internal structure of some data objects is acces-
sible to virtual processor A, but only when the virtual pro-
cessor is executing in program B. If, for example, the protec-
tion system requires possession of two capabilities before it
allows access to the internal contents of some objects, then
the program responsible for maintenance of the objects can
hold one of the capabilities while the user of the program can
hold the other. Morris [72] has described an elegant semantics
for separation of privilege in which the first capability is
known as a seal. In terms of the earlier discussion of types,
the type field of a protected object contains a seal that is
unique to the protected subsystem; access to the internal
structure of an object can be achieved only by presenting the
original seal capability as well as the capability for the object
itself. This idea apparently was suggested by H. Sturgis. The

PROCEEDINGS OF THE IEEE, SEPTEMBER 1975

2) The switching of protection domains by a virtual pro-
cessor should be carefully coordinated with the mechanisms
that provide for dynamic activation records and static (own)
sariable storage, since both the activation records and the
static storage of one protection domain must be distinct from
that of another. (Using a multiple virtual processor imple-
mentation provides a neat automatic solution to these
problems.)

3) The passing of arguments between domains must be
carefully controlled to ensure that the called domain will be
able to access its arguments without violating its own protec-
tion intentions. Calls by value represent no special problem,
but other forms of argument reference that require access to
the original argument are harder. One argument that must be
especially controlled is the one that indicates how to retumn to
the calling domain. Schroeder [70] explored argument pass-
ing in depth from the access control list point of view, while
Jones [71] explored the same topic in the capability
framework.

The reader interested in learning about the mechanics of
protected objects and subsystems in detail is referred to the
literature mentioned above and in the Suggestions for Further
Reading. This area is in a state of rapid development, and
several ideas have been tried out experimentally, but there is
not yet much agreement on which mechanisms are funda-
mental. For this reason, the subject is best explored by case
study.

1I. THE STATE OF THE ART

4 of Protection

Until quite recently, the protection of computer-stored in-
formation has been given relatively low priority by both the
major computer manufacturers and a majority of their custom-
ers. Although research time-sharing systems using base and
bound registers appeared as early as 1960 and Burroughs mar-
keted a descriptor-based system in 1961, those early features
were directed more toward preventing accidents than toward
providing absolute interuser protection. Thus in the design of
the IBM System/360, which appeared in 1964 [73], the only
protection mechanisms were a privileged state and a protection
key scheme that prevented writing in those blocks of memory
allocated to other users. Although the 360 appears to be the
first system in which hardware protection was also applied to
the 1/0 channels, the early IBM software used these mecha-
nisms only to the minimum extent necessary to allow accident-
fre¢ multiprogramming. Not until 1970 did “fetch protect”
(the ability to prevent one user from reading primary memory
allocated to another user) become a standard feature of the
IBM architecture [74]. Recently, descriptor-based architec-
tures, which can be a basis for the more sophisticated protec-
tion mechanisms described in Section II, have become common
in commercially marketed systems and in most manufacturers’
plans for forthcoming product lines. Examples of commercially
available descriptor-based systems are the IBM System/370
models that support virtual memory, the Univac (formerly
RCA) System 7, the Honeywell 6180, the Control Data Corpo-
ration Star-100, the Burroughs B5700/6700, the Hitachi
8800, the Digital Equipment Corporation PDP-11/45, and the
Plessey System 250. On the other hand, exploitation of such

HYDRA and CAL systems illusirate two different impl
tations of this principle.

features for lled sharing of i is still the excep-
tion rather than the rule. Users with a need for security find

e Brief section

— On-going research and
industrial projects

— Bemoans the lack of
publication of many
exciting ideas by industry

e Future research directions

— E.g., in certification,
verification, human factors,
TCB minimisation

— Information flow control,
relationship to crypto

What doesn’t the paper talk about?

e “Out of scope” — but mentioned
— Attacker models based on physical access, EM leakage
— Cryptography, cryptographic protocols

* Things since the 1970s
— Ubiquitous computer networking —anonymous users
— Network vulnerabilities
— Current focus on “vulnerability mitigation”
— Progress on formal verification

— Programming-language security

1.

3.

4.

0 N o w

Possible talk structure

Historical context: who, what, why?

Key definitions — and resolving ambiguities
— E.g., protection vs. security vs. privacy

ldeas that foreshadow later things; e.g.,

— Tamper/EM-related attack models

— Biometrics and authentication

— Economics and psychology

Exploration of “levels” of system designs
— Unprotected systems

— User-programmed sharing
ACLs vs. capabilities in descriptor systems
Papers cited — who/what/where?
Work that cites PICs — who/what/where?
What was missed / ideas invalidated?

1 minute
3

17 minutes

