
Multicore Semantics and Programming

Peter Sewell Tim Harris

University of Cambridge Oracle

October – November, 2015

– p. 1

These Lectures
Part 1: Multicore Semantics: the concurrency of
multiprocessors and programming languages

What concurrency behaviour can you rely on? How can we
specify it precisely in semantic models? Linking to usage,
microarchitecture, experiment, and semantics. x86, IBM
POWER, ARM, Java, C/C++11

Part 2: Multicore Programming: Concurrent algorithms (Tim
Harris, Oracle)

Concurrent programming: simple algorithms, correctness
criteria, advanced synchronisation patterns, transactional
memory.

– p. 2

Multicore Semantics

Introduction

Sequential Consistency

x86 and the x86-TSO abstract machine

x86 spinlock example

Architectures

Tests and Testing

...

– p. 3

Implementing Simple Mutual Exclusion, Naively

Initial state: x=0 and y=0
Thread 0 Thread 1

x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }

– p. 4

Implementing Simple Mutual Exclusion, Naively

Initial state: x=0 and y=0
Thread 0 Thread 1

x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }

repeated use?

thread symmetry (same code on each thread)?

performance?

fairness?

deadlock, global lock ordering, compositionality?

– p. 4

Let’s Try...

./runSB.sh

– p. 5

Fundamental Question

What is the behaviour of memory?

...at the programmer abstraction

...when observed by concurrent code

– p. 6

The abstraction of a memory goes back some time...

– p. 7

The calculating part of the engine may be divided into two portions

1st The Mill in which all operations are performed

2nd The Store in which all the numbers are originally placed and to

which the numbers computed by the engine are returned.

[Dec 1837, On the Mathematical Powers of the Calculating Engine,

Charles Babbage]

– p. 8

The Golden Age, (1837–) 1945–1962

Memory

Processor

– p. 9

1962: First(?) Multiprocessor
BURROUGHS D825, 1962

‘‘Outstanding features include truly modular hardware
with parallel processing throughout’’

FUTURE PLANS
The complement of compiling languages is to be ex-
panded.’’

– p. 10

... with Shared-Memory Concurrency

Shared Memory

Thread1 Threadn

W R RW

– p. 11

Multiprocessors, 1962–now
Niche multiprocessors since 1962

IBM System 370/158MP in 1972

Mass-market since 2005 (Intel Core 2 Duo).

– p. 12

Multiprocessors, 2015

Intel Xeon E7-8895 v3
36 hardware threads

Commonly 4 or 8 hardware threads.

IBM Power 8 server
(up to 1536 hardware threads)

Oracle Sparc, Intel Itanium

– p. 13

Why now?
Exponential increases in transistor counts continuing — but
not per-core performance

energy efficiency (computation per Watt)

limits of instruction-level parallelism

Concurrency finally mainstream — but how to understand,
design, and program concurrent systems? Still very hard.

– p. 14

Concurrency everywhere

At many scales:

intra-core

multicore processors← our focus

...and programming languages← our focus

GPU

datacenter-scale

internet-scale

explicit message-passing vs shared memory abstractions

– p. 15

Sequential Consistency

– p. 16

Our first model: Sequential Consistency

Shared Memory

Thread1 Threadn

W R RW

Multiple threads acting on a sequentially consistent (SC)
shared memory:

the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, respecting the order
specified by the program [Lamport, 1979]

– p. 17

Defining an SC Semantics: SC memory
Define the state of an SC memory M to be a function from addresses x to
integers n, with M0 mapping all to 0. Let t range over thread ids.

Describe the interactions between memory and threads with labels:
label, l ::= label

| t:W x=n write

| t:R x=n read

| t:τ internal action (tau)

Define the behaviour of memory as a labelled transition system (LTS): the
least set of (M, l, M ′) triples satisfying these rules.

M
l
−→ M ′ memory M does l to become M ′

M(x) =n

M
t:R x=n
−−−−−→ M

M READ

M
t:W x=n
−−−−−→ M ⊕ (x 7→ n)

M WRITE

– p. 18

SC, said differently

In any trace ~l ∈ traces(M0) of M0, i.e. any list of read and write
events:

l1, l2, . . . lk

such that there are some M1, . . . , Mk with

M0

l1−→ M1

l2−→ M2 . . . Mk ,

each read reads from the value of the most recent preceding
write to the same address, or from the initial state if there is no
such write.

– p. 19

SC, said differently
Making that precise, define an alternative SC memory state L

to be a list of labels, most recent at the head. Define lookup by:

lookup x nil = 0 initial state value
lookup x (t:W x ′=n)::L = n if x = x ′

lookup x l::L = lookup x L otherwise

L
l
−→ L′ list memory L does l to become L′

lookup x L = n

L
t:R x=n
−−−−→ (t:R x=n)::L

LREAD

L
t:W x=n
−−−−−→ (t:W x=n)::L

LWRITE

Theorem 1 (?) M0 and nil have the same traces
– p. 20

Extensional behaviour vs intensional structure

Extensionally, these models have the same behaviour

Intensionally, they have rather different structure – and neither
is structured anything like a real hardware implementation.

In defining a model, we’re principally concerned with the
extensional behaviour: we want to precisely describe the set
of allowed behaviours, as clearly as possible. But (see later)
sometimes the intensional structure matters too, and we may
also care about computability, performance, provability,...

– p. 21

SC, glued onto a tiny PL semantics

In those memory models:

the events within the trace of each thread were implicitly
presumed to be ordered consistently with the program
order (a control-flow unfolding) of that thread, and

the values of writes were implicity presumed to be
consistent with the thread-local computation specified by
the program.

To make these things precise, we can combine the memory
model with a threadwise semantics for a tiny concurrent
language....

– p. 22

A Tiny Language: Design Choices
A concurrent imperative language.

Distinguish syntactically between (thread-local)
“registers” and “memory”.

Include explicit parallel threads, with thread ids.

Define an operational semantics that exposes the
potential memory events (reads and writes of a value at a
memory address) of a thread or process as labelled
transitions; this lets us glue it on to an SC or TSO
memory.

Keep the register behaviour internal. Use an explicit
register state rather than substitution to highlight the
relationship to the memory semantics.

Otherwise, as simple as possible: just enough
computational power to write litmus tests (no loops, no
thread creation,

– p. 23

A Tiny Language: Example

Thread 0: x = 1; r0 = y

Thread 1: y = 1; r1 = x

and, with the initial register state R0 for each thread, and an
initial SC memory state:

〈t0 : 〈x = 1; r0 = y, R0〉|t1 : 〈y = 1; r1 = x , R0〉, {x 7→ 0, y 7→ 0}〉

– p. 24

A Tiny Language: Syntax
register , r register name
location, x , y, m address
integer , n integer
thread id, t thread id
event id, a event id
k index variable

Let R range over register states, functions from register
names r to integers n. Write R0 for the initial register state in
which all registers hold 0.

expression, e ::= register expression
| n integer literal
| r register value
| e + e′ plus

– p. 25

A Tiny Language: Syntax
statement, s ::= statement
| r = e compute register value
| r = x read from memory
| x = e write to memory
| if (e == n) s1 else s2 conditional
| s1; s2 sequential composition
| skip empty statement

thread, T ::= thread
| t : 〈s, R〉 id, statement, reg state

process, P ::= process
| T thread
| P|P ′ parallel composition

– p. 26

That was just the syntax — now we’ll be precise about the
permitted behaviours of programs

– p. 27

Defining the Semantics: expressions

〈e, R〉 −→ n in register state R, e evalutes to n

〈n, R〉 −→ n
E INT

R(r) = n

〈r , R〉 −→ n
E REG

〈e, R〉 −→ n

〈e′, R〉 −→ n′

n′′ = n + n′

〈e + e′, R〉 −→ n′′
E PLUS

These expressions read the register state, but do not mutate
registers or memory (as you can see just from the form of the
judgement).

– p. 28

Defining the Semantics: threads (1/2)

T
l
−→ T ′ thread T does l to reach T ′

t : 〈r = x , R〉
t:R x=n
−−−−→ t : 〈skip, R ⊕ (r 7→ n)〉

T READ

〈e, R〉 −→ n

t : 〈x = e, R〉
t:W x=n
−−−−−→ t : 〈skip, R〉

T WRITE

〈e, R〉 −→ n

t : 〈r = e, R〉
t:τ
−→ t : 〈skip, R ⊕ (r 7→ n)〉

T COMPUTE

Register writes mutate the thread’s register state R; memory
reads and writes are exposed as labelled transitions, with read
values unconstrained.

– p. 29

Defining the Semantics: threads (2/2)

T
l
−→ T ′ thread T does l to reach T ′

〈e, R〉 −→ n′

n = n′

t : 〈if (e == n) s1 else s2, R〉
t:τ
−→ t : 〈s1, R〉

T COND1

〈e, R〉 −→ n′

n 6= n′

t : 〈if (e == n) s1 else s2, R〉
t:τ
−→ t : 〈s2, R〉

T COND2

t : 〈skip; s2, R〉
t:τ
−→ t : 〈s2, R〉

T SEQ SKIP

t : 〈s1, R〉
l
−→ t : 〈s′

1
, R′〉

t : 〈s1; s2, R〉
l
−→ t : 〈s′

1; s2, R′〉
T SEQ CONTEXT

– p. 30

Example thread transitions

t0 : 〈r1 = r0 + 1, R0〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r1 7→ 1)〉

– p. 31

Example thread transitions

t0 : 〈r1 = r0 + 1, R0〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r1 7→ 1)〉

t0 : 〈r0 = 3; r1 = r0, R0〉
t0:τ
−−→ t0 : 〈skip; r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r0 7→ 3, r1 7→ 3)〉

– p. 31

Example thread transitions

t0 : 〈r1 = r0 + 1, R0〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r1 7→ 1)〉

t0 : 〈r0 = 3; r1 = r0, R0〉
t0:τ
−−→ t0 : 〈skip; r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r0 7→ 3, r1 7→ 3)〉

The transitions are those derivable by trees of instantiations of the rules, e.g.

〈3, R0〉 −→ 3
E INT

t0 : 〈r0 = 3, R0〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r0 7→ 3)〉

T COMPUTE

t0 : 〈r0 = 3; r1 = r0, R0〉
t0:τ
−−→ t0 : 〈skip; r1 = r0, R0 ⊕ (r0 7→ 3)〉

T SEQ CONTEXT

where that instance of T SEQ CONTEXT has instantiation:

t 7→ t0 R 7→ R0 l 7→ t0:τ

s1 7→ r0 = 3 s′

1
7→ skip

s2 7→ r1 = r0 R′ 7→ R0 ⊕ (r0 7→ 3)
– p. 31

Example thread transitions

t0 : 〈r1 = r0 + 1, R0〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r1 7→ 1)〉

t0 : 〈r0 = 3; r1 = r0, R0〉
t0:τ
−−→ t0 : 〈skip; r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r0 7→ 3, r1 7→ 3)〉

t0 : 〈x = 3, R0〉
t0:W x=3
−−−−−→ t0 : 〈skip, R0〉

– p. 31

Example thread transitions

t0 : 〈r1 = r0 + 1, R0〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r1 7→ 1)〉

t0 : 〈r0 = 3; r1 = r0, R0〉
t0:τ
−−→ t0 : 〈skip; r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r0 7→ 3, r1 7→ 3)〉

t0 : 〈x = 3, R0〉
t0:W x=3
−−−−−→ t0 : 〈skip, R0〉

t0 : 〈skip, R0 ⊕ (r0 7→ 7)〉

t0 : 〈r0 = x , R0〉

t0:R x=7 00bbbbbbbbbbbbbbbbbb

t0:R x=23
..\\\\\\\\\\\\\\\\\\

t0 : 〈skip, R0 ⊕ (r0 7→ 23)〉

– p. 31

Example thread transitions

t0 : 〈r1 = r0 + 1, R0〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r1 7→ 1)〉

t0 : 〈r0 = 3; r1 = r0, R0〉
t0:τ
−−→ t0 : 〈skip; r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈r1 = r0, R0 ⊕ (r0 7→ 3)〉
t0:τ
−−→ t0 : 〈skip, R0 ⊕ (r0 7→ 3, r1 7→ 3)〉

t0 : 〈x = 3, R0〉
t0:W x=3
−−−−−→ t0 : 〈skip, R0〉

t0 : 〈skip, R0 ⊕ (r0 7→ 7)〉

t0 : 〈r0 = x , R0〉

t0:R x=7 00bbbbbbbbbbbbbbbbbb

t0:R x=23
..\\\\\\\\\\\\\\\\\\

t0 : 〈skip, R0 ⊕ (r0 7→ 23)〉

t0 : 〈x = 3; r0 = x , R0〉
t0:W x=3
−−−−−→ t0 : 〈skip; r0 = x , R0〉

t0:τ
−−→ t0 : 〈r0 = x , R0〉

t0:R x=7
−−−−−→ t0 : 〈skip, R0 ⊕ (r0 7→ 7)〉 – p. 31

Defining the Semantics: lifting to processes
Remember the process syntax:

process, P ::= process

| T thread

| P|P ′ parallel composition

P
l
−→ P ′ process P does l to become P ′

T
l
−→ T ′

T
l
−→ T ′

P THREAD

P1

l
−→ P ′

1

P1|P2

l
−→ P ′

1
|P2

P PAR CONTEXT LEFT

P2

l
−→ P ′

2

P1|P2

l
−→ P1|P ′

2

P PAR CONTEXT RIGHT

Free interleaving of the transitions of each thread. – p. 32

Defining an SC Semantics: whole-system states
An SC system state S = 〈P , M 〉 is a pair of a process and an
SC memory.

S
l
−→ S ′ system S does l to become S ′

P
l
−→ P ′

M
l
−→ M ′

〈P , M 〉
l
−→ 〈P ′, M ′〉

S ACCESS

P
t:τ
−→ P ′

〈P , M 〉
t:τ
−→ 〈P ′, M 〉

S INTERNAL

The rules force synchronisation between the process and the memory,
constraining the values of the process’s read transitions to those the memory
permits, and the memory’s write transitions to those the process does
(threads can also freely do internal transitions). – p. 33

Example system transitions: SC Interleaving
All threads can read and write the shared memory.

Threads execute asynchronously – the semantics allows any
interleaving of the thread transitions. Here there are two:

〈t1 : 〈x = 1, R0〉|t2 : 〈x = 2, R0〉, {x 7→ 0}〉
t1:W x=1

uujjjjjjjjjjjjjjj

t2:W x=2

))TTTTTTTTTTTTTTT

〈t1 : 〈skip, R0〉|t2 : 〈x = 2, R0〉, {x 7→ 1}〉

t2:W x=2

��

〈t1 : 〈x = 1, R0〉|t2 : 〈skip, R0〉, {x 7→ 2}〉

t1:W x=1

��

〈t1 : 〈skip, R0〉|t2 : 〈skip, R0〉, {x 7→ 2}〉 〈t1 : 〈skip, R0〉|t2 : 〈skip, R0〉, {x 7→ 1}〉

But each interleaving has a linear order of reads and writes to
the memory. C.f. Lamport’s

“the result of any execution is the same as if the
operations of all the processors were executed in
some sequential order, respecting the order
specified by the program” – p. 34

Back to the naive mutual exclusion example

Initial state: x=0 and y=0
Thread 0 Thread 1

x=1 y=1
if (y==0) { ...critical section... } if (x==0) {...critical section... }

– p. 35

Back to the naive mutual exclusion example

Initial state: x=0 and y=0
Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

– p. 35

Back to the naive mutual exclusion example

Initial state: x=0 and y=0
Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

In other words: is there a trace

〈t0 : 〈x = 1; r0 = y, R0〉|t1 : 〈y = 1; r1 = x , R0〉, {x 7→ 0, y 7→ 0}〉
l1−→ . . .

ln
−→

〈t0 : 〈skip, R′

0
〉|t1 : 〈skip, R′

1
〉, M ′〉

such that R′

0
(r0) = 0 and R′

1
(r1) = 0 ?

– p. 35

Back to the naive mutual exclusion example

Initial state: x=0 and y=0
Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

In other words: is there a trace

〈t0 : 〈x = 1; r0 = y, R0〉|t1 : 〈y = 1; r1 = x , R0〉, {x 7→ 0, y 7→ 0}〉
l1−→ . . .

ln
−→

〈t0 : 〈skip, R′

0
〉|t1 : 〈skip, R′

1
〉, M ′〉

such that R′

0
(r0) = 0 and R′

1
(r1) = 0 ?

In this semantics: no

– p. 35

Back to the naive mutual exclusion example

Initial state: x=0 and y=0
Thread 0 Thread 1

x = 1 ; y = 1 ;

r0 = y r1 = x

Allowed? Thread 0’s r0 = 0 ∧ Thread 1’s r1 = 0

In other words: is there a trace

〈t0 : 〈x = 1; r0 = y, R0〉|t1 : 〈y = 1; r1 = x , R0〉, {x 7→ 0, y 7→ 0}〉
l1−→ . . .

ln
−→

〈t0 : 〈skip, R′

0
〉|t1 : 〈skip, R′

1
〉, M ′〉

such that R′

0
(r0) = 0 and R′

1
(r1) = 0 ?

In this semantics: no

But on x86 hardware, we saw it!
– p. 35

Options

1. the hardware is busted (either this instance or in general)

2. the program is bad

3. the model is wrong

– p. 36

Options

1. the hardware is busted (either this instance or in general)

2. the program is bad

3. the model is wrong

SC is not a good model of x86 (or of Power, ARM, Sparc,
Itanium...)

– p. 36

Options

1. the hardware is busted (either this instance or in general)

2. the program is bad

3. the model is wrong

SC is not a good model of x86 (or of Power, ARM, Sparc,
Itanium...)

Even though most work on verification, and many
programmers, assume SC...

– p. 36

Message Passing Example

In SC, message passing should work as expected:

Thread 1 Thread 2

data = 1

ready = 1 if (ready == 1)

print data

In SC, the program should only print nothing or 1, and on
bare-metal x86 it does (not ARM/Power). What about Java/C?

– p. 37

Message Passing Example

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In SC, the program should only print nothing or 1, and on
bare-metal x86 it does (not ARM/Power). What about Java/C?

It should be regardless of other reads.

– p. 37

Message Passing Example

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print data

In SC, the program should only print nothing or 1, and on
bare-metal x86 it does (not ARM/Power). What about Java/C?

But common subexpression elimination (e.g. in HotSpot) can
rewrite

print data =⇒ print r1

– p. 37

Message Passing Example

Thread 1 Thread 2

data = 1 int r1 = data

ready = 1 if (ready == 1)

print r1

In SC, the program should only print nothing or 1, and on
bare-metal x86 it does (not ARM/Power). What about Java/C?

But common subexpression elimination (e.g. in HotSpot) can
rewrite

print data =⇒ print r1

So the compiled program can print 0
– p. 37

Similar Options

1. the hardware is busted

2. the compiler is busted

3. the program is bad

4. the model is wrong

– p. 38

Similar Options

1. the hardware is busted

2. the compiler is busted

3. the program is bad

4. the model is wrong

SC is also not a good model of C, C++, Java,...

– p. 38

Similar Options

1. the hardware is busted

2. the compiler is busted

3. the program is bad

4. the model is wrong

SC is also not a good model of C, C++, Java,...

Even though most work on verification, and many
programmers, assume SC...

– p. 38

What’s going on? Relaxed Memory

Multiprocessors and compilers incorporate many performance
optimisations

(hierarchies of cache, load and store buffers, speculative execution,
cache protocols, common subexpression elimination, etc., etc.)

These are:

unobservable by single-threaded code

sometimes observable by concurrent code

Upshot: they provide only various relaxed (or weakly
consistent) memory models, not sequentially consistent
memory.

– p. 39

New problem?

No: IBM System 370/158MP in 1972, already non-SC

– p. 40

But still a research question!

The mainstream architectures and languages are key
interfaces

...but it’s been very unclear exactly how they behave.

More fundamentally: it’s been (and in significant ways still is)
unclear how we can specify that precisely.

As soon as we can do that, we can build above it:
explanation, testing, emulation, static/dynamic analysis,
model-checking, proof-based verification,....

– p. 41

	These Lectures
	Multicore Semantics
	Implementing Simple Mutual Exclusion, Naively
	Implementing Simple Mutual Exclusion, Naively

	Let's Try...
	Fundamental Question
	The Golden Age, (1837--) 1945--1962
	1962: First(?)
Multiprocessor
	... with Shared-Memory Concurrency
	Multiprocessors, 1962--now
	Multiprocessors, 2015
	Why now?
	Concurrency everywhere
	Our first model: Sequential Consistency
	Defining an SC Semantics: SC memory
	SC, said differently
	SC, said differently
	Extensional behaviour vs intensional structure
	SC, glued onto a tiny PL semantics
	A Tiny Language: Design Choices
	A Tiny Language: Example
	A Tiny Language: Syntax
	A Tiny Language: Syntax
	Defining the Semantics: expressions
	Defining the Semantics: threads (1/2)
	Defining the Semantics: threads (2/2)
	Example thread transitions
	Example thread transitions
	Example thread transitions
	Example thread transitions
	Example thread transitions
	Example thread transitions

	Defining the Semantics: lifting to processes
	Defining an SC Semantics: whole-system states
	Example system transitions: SC Interleaving
	Back to the naive mutual exclusion example
	Back to the naive mutual exclusion example
	Back to the naive mutual exclusion example
	Back to the naive mutual exclusion example
	Back to the naive mutual exclusion example

	Options
	Options
	Options

	Message Passing Example
	Message Passing Example
	Message Passing Example
	Message Passing Example

	Similar Options
	Similar Options
	Similar Options

	What's going on? Relaxed Memory
	New problem?
	But still a research question!

