
Quantum Computing
Lecture 7

Quantum Factoring

Maris Ozols

Quantum factoring

A polynomial time quantum algorithm for factoring numbers was
published by Peter Shor in 1994.

Polynomial time means that the number of gates is bounded by a
polynomial in logN , where logN is the number of bits required to
represent the number N being factored.

The best known classical algorithm takes sub-exponential time
(it is exponential in (logN)1/3).

Fast factoring would undermine widely used public-key cryptographic
systems such as RSA.

Example

RSA-768
It has 232 decimal digits and was factored over the span of 2 years:

12301866845301177551304949583849627207728535695953
34792197322452151726400507263657518745202199786469
38995647494277406384592519255732630345373154826850
79170261221429134616704292143116022212404792747377
94080665351419597459856902143413

=
33478071698956898786044169848212690817704794983713
76856891243138898288379387800228761471165253174308
7737814467999489

×
36746043666799590428244633799627952632279158164343
08764267603228381573966651127923337341714339681027
0092798736308917

The total CPU time spent on a parallel computer amounted to
approximately 2000 years on a single-core 2.2 GHz computer.

Order finding

Suppose we are given a,N ∈ N such that a < N and

gcd(a,N) = 1

Consider the infinite sequence

a0, a1, a2, a3, . . . (mod N)

Since each ak ∈ {0, . . . , N − 1}, the sequence starts to repeat at some
point. In particular, ar ≡ 1 (mod N) for some integer r ≥ 1 since
gcd(a,N) = 1 (see Euler’s theorem or the extended Euclidean
algorithm). The order of a is the smallest such r (it is also the period of
the above sequence).

Strategy: Reduce factoring to order (period) finding. We want to show
that if we can find the period r of a then we can factor N .

Using order finding to factor

Assume N = pq, where p and q are odd primes (the general case can be
handled with a little more effort).

Also, assume we have a subroutine for finding order modulo N .

Reduction:

1. Pick a random a ∈ {2, . . . , N − 1} and compute g = gcd(a,N).

2. If g 6= 1, it is a non-trivial factor of N , so we output g and N/g and
we are done. Otherwise, gcd(a,N) = 1 and we continue.

3. Use the order finding subroutine to find the order r of a modulo N .

4. If r is even, let x = ar/2 (otherwise, abort and return to 1).

5. If x+ 1 6≡ 0 (mod N), output gcd(N, x+ 1) and gcd(N, x− 1)
(otherwise, abort and return to 1).

Analysis of halting

Does this procedure halt? We could keep aborting in steps 4 or 5. . .

Fact: If N is a product of two odd primes and we choose a random
a ∈ {2, . . . , N − 1} such that gcd(a,N) = 1, then with probability > 1

2

(i) the order r of a is even and

(ii) ar/2 + 1 6≡ 0 (mod N)

In other words, in each run we abort with probability < 1/2. The
probability that we still haven’t succeeded in k rounds is thus < 2−k.

Assume we made it to step 5 and output gcd(N, x+ 1) and
gcd(N, x− 1). Why are they factors of N?

Recovering factors from a and r

Let N = pq, where p and q are odd primes, and assume we have guessed
a such that (i) r is even and (ii) ar/2 + 1 6≡ 0 (mod N).

Let x = ar/2. Since ar ≡ 1 (mod N), we have x2 − 1 ≡ 0 (mod N) so

(x− 1)(x+ 1) ≡ 0 (mod N) (∗)

But note that

x− 1 6≡ 0 (mod N) (by minimality of r)

x+ 1 6≡ 0 (mod N) (by assumption)

The condition (∗) is equivalent to:

(x− 1)(x+ 1) = kpq for some integer k

Since neither x− 1 nor x+ 1 is a multiple of N , computing
gcd(N, x− 1) and gcd(N, x+ 1) will find p and q.

Finding the order / period

A fast order-finding algorithm allows us to factor numbers quickly.
It remains to figure out how to quickly find the order.

Equivalently, we can look for the period of the sequence

a0, a1, a2, a3, . . . (mod N)

Fourier transform is a great tool for finding periodic patterns in data.

Classically, we could use the fast Fourier transform, but this would require
time N logN , which is exponential in logN , the number of bits of N .

Discrete Fourier transform

The discrete Fourier transform (DFT) of a sequence of M complex
numbers

x0, x1, . . . , xM−1

is another sequence of M complex numbers

y0, y1, . . . , yM−1

such that

yj =
1√
M

M−1∑
k=0

ωjkxk

where ω = e2πi/M is the M -th root of 1.

DFT as a unitary matrix
The discrete Fourier transform is a linear operation on CM :

y0
y1
...

yM−1

 = D


x0
x1
...

xM−1


where Djk = ωjk/

√
M . More explicitly:

D =
1√
M



1 1 1 1 · · · 1
1 ω ω2 ω3 · · · ωM−1

1 ω2 ω4 ω6 · · · ω2(M−1)

1 ω3 ω6 ω9 · · · ω3(M−1)

...
...

...
...

. . .
...

1 ωM−1 ω2(M−1) ω3(M−1) · · · ω(M−1)(M−1)


Clearly, DT = D, so D† = DT = D̄. One can check that D is unitary by

noting that ω̄ = e2πi/M = e−2πi/M = ω−1.

Quantum Fourier transform

Computing the discrete Fourier transform classically takes time
polynomial in M .

Peter Shor showed how to implement D using O
(
(logM)2

)
one- and

two-qubit gates. This is polynomial in logM = the number of qubits!

The M ×M unitary matrix D is therefore also known as the quantum
Fourier transform (QFT).

Note: QFT does not give a fast way to compute the DFT on a quantum
computer, in the sense of obtaining the numbers y0, y1, . . . , yM−1. Just
like we can’t extract all decimal digits of the numbers xi by measuring a
single copy of |x〉 =

∑
i xi|i〉, we can’t extract yi from |y〉 = D|x〉 even

though we can easily apply D on a quantum computer.

Fourier transform on binary strings

Suppose M = 2n and let |x〉 ∈ CM be a computational basis state where
x ∈ {0, . . . , 2n − 1}.

We can uniquely write x = b12n−1 + b22n−2 + · · ·+ bn for some
bj ∈ {0, 1} (i.e., b1b2 . . . bn is the binary representation of x).

One can check that

D|b1b2 . . . bn〉 =
1√
2n

(
|0〉+βn|1〉

)
⊗
(
|0〉+βn−1|1〉

)
⊗· · ·⊗

(
|0〉+β1|1〉

)
where

βj = exp(2πi0.bjbj+1 . . . bn)

and 0.bjbj+1 . . . bn ∈ [0, 1] is the binary representation of

bj
2

+
bj+1

4
+ · · ·+ bn

2n−j+1

Quantum Fourier transform circuit

We can use this form to implement the quantum Fourier transform using
Hadamard gates H and conditional phase-shift gates Rk:

|b1〉
|b2〉
|b3〉
|b4〉 H R2 R3 R4

H R2 R3

H R2

H

H =
1√
2

(
1 1
1 −1

)
Rk =

(
1 0

0 e2πi/2
k

)

Conditional phase shifts

Two-qubit conditional phase shift gates are actually symmetric between
the two bits, despite the asymmetry in the drawn circuit.

It seems that for large n, an n-bit quantum Fourier transform circuit
would require conditional phase shifts of arbitrary precision.

It can be shown that this can be avoided with some (but not significant)
loss in the probability of success for the factoring algorithm.

Period finding

Recall: Given a,N ∈ N such that a < N and gcd(a,N) = 1, we would
like to find the order of a modulo N , i.e., the smallest integer r ≥ 1 such
that ar ≡ 1 (mod N).

Consider the function fa : N→ {0, . . . , N − 1} given by

fa(x) = ax mod N

Note that fa is periodic, with period at most N . Also note that
fa(0) = fa(r) is equivalent to ar ≡ 1 (mod N), so the period of fa is
equal to the order of a. How can we find the period of fa?

More generally, suppose we can evaluate some arbitrary function
f : N→ {0, . . . , N − 1} which is promised to be periodic, i.e., for some
integer r ≥ 1 and all x,

f(x+ r) = f(x)

How can we find the least value of such r, i.e., the period of f?

Evaluating f in superposition

Let f : {0, 1}n → {0, 1}n and Uf be an oracle that reversibly implements
f (note that here x, y ∈ {0, 1}n are n-bit strings and so is f(x)):

Uf
|x〉
|y〉

|x〉
|y ⊕ f(x)〉

Let us denote the uniform superposition by

|Ψ〉 = H⊗n|0n〉 = |+〉⊗n =
1√
2n

2n−1∑
x=0

|x〉

We can evaluate all values of f in superposition as follows:

Uf |Ψ〉|0n〉 =
1√
2n

2n−1∑
x=0

|x〉|f(x)〉

Note: This does not mean that we can simultaneously extract all values
of f(x) from this state. By measuring in the standard basis, we can get
each pair (x, f(x)) only with exponentially small probability.

The 1st measurement

Measure the second register (i.e., the last n qubits) of Uf |Ψ〉|0n〉 and
denote the outcome by f0 ∈ {0, 1}n. The state after the measurement is:(

1√
m

m−1∑
k=0

|x0 + kr〉

)
|f0〉

where

• x0 ∈ {0, . . . , N − 1} is the least value such that f(x0) = f0

• r ∈ {1, . . . , N − 1} is the period of the function f

• m = b2n/rc is the number of x such that f(x) = f0

Note: The state in the first register has a periodic structure. We want to
extract the period using QFT.

QFT application

We now apply the n-qubit quantum Fourier transform

D =
1√
2n

2n−1∑
x,y=0

ωxy|y〉〈x|

to the first register (i.e., the first n qubits of the left-over state):

D

(
1√
m

m−1∑
k=0

|x0 + kr〉

)
=

1√
2n

2n−1∑
y=0

1√
m

m−1∑
k=0

ω(x0+kr)y|y〉

=
2n−1∑
y=0

ωx0y
1√
2n

1√
m

(
m−1∑
k=0

ωkry

)
|y〉

where ω = e2πi/2
n

is the 2n-th root of 1.

The 2nd measurement
We measure the resulting state in the standard basis:

2n−1∑
y=0

ωx0y
1√
2n

1√
m

(
m−1∑
k=0

ωkry

)
|y〉

The probability of observing outcome y ∈ {0, 1}n ∼= {0, . . . , N − 1} is:

p(y) =
1

2nm

∣∣∣∣∣
m−1∑
k=0

ωkry

∣∣∣∣∣
2

This probability distribution peaks at those y for which ry/2n is close to
an integer. Indeed, assuming ry/2n is exactly an integer (so rm = 2n),

ωkry = exp(2πikry/2n) = exp(2πik) = 1

and p(y) = |m|2
2nm = m

2n = 1
r . In this case, the number of multiples of r/2n

that are integers is r, so we always obtain y that is a multiple of r/2n.

Fact: Given an integer multiple of r/2n, one can recover r using
continued fraction expansion.

Exponentiation

To complete the factoring algorithm, we need to check that we can also
implement the unitary transform Uf for the particular function

fa(x) = ax mod N

with a number of quantum gates that is polynomial in logN .

This is achieved through repeated squaring.

Some points to note

The two measurement steps can be combined at the end, with the
Fourier transform applied before the measurement of |f(x)〉.

The probability of successfully finding the period in any run of the
algorithm is only ≈ 0.4.

However, this means a small number of repetitions will suffice to find the
period with high probability.

Putting a lower bound on the conditional phase shift we are allowed to
perform affects the probability of success, but not the rest of the
algorithm.

Summary

• Factoring: classically: O(exp(3
√

logN)), quantumly: O((logN)2),
where logN is the input size and N is the number to be factored

• Order: smallest r ≥ 1 such that ar ≡ 1 (mod N)

• Period: smallest r ≥ 1 such that f(x+ r) = f(x) for all x;
it is equal to the order of a if f(x) = ax mod N

• Reduction: ability to find orders can be used to factor;

• Idea: x2 = ar ≡ 1 (mod N) so (x− 1)(x+ 1) = kpq ≡ 0 (mod N)

• DFT: Djk = ωjk/
√
M where ω = exp(2πi/M); D is unitary

• QFT: its circuit implementation uses the fact that
D|b1b2 . . . bn〉 = 1√

2n

(
|0〉+βn|1〉

)
⊗
(
|0〉+βn−1|1〉

)
⊗· · ·⊗

(
|0〉+β1|1〉

)
where βj = exp(2πi0.bjbj+1 . . . bn)

• Shor’s algorithm: (D ⊗ I)Ufa |+〉⊗n|0〉⊗n, measuring the 1st
register gives a number that is close to an integer multiple of r/2n;
one can find the order r of a modulo N from here; the factors of N
are obtained form r and a using the classical reduction

