
Quantum Computing
Lecture 4

The Model of Quantum Computation

Maris Ozols

Boolean circuits
Logical gates model elementary computational steps in digital electronic
circuits. E.g., XOR(x, y) = x⊕ y, NOT(x) = x⊕ 1, AND(x, y) = xy.

Any Boolean function f : {0, 1}n → {0, 1} can be expressed in terms of
these. E.g., equality f(x, y) := (x = y) can be expressed as follows:

x

y
NOT

NOT

AND

AND

OR f(x, y)

Universal sets of logical gates:

{AND,OR,NOT} {AND,NOT} {NAND}

Note: we take FANOUT or copying for granted!

Single-qubit gates
A 1-qubit gate is a 2× 2 unitary. It can be written as follows:

U =
∑

i,j∈{0,1}

Ui,j |i〉〈j| U

Example: The quantum analogue of logical NOT is the Pauli gate
X = |0〉〈1|+ |1〉〈0| =

(
0 1
1 0

)
:

X|0〉 = |1〉 X|1〉 = |0〉

Example: The Hadamard gate H = 1√
2

(
1 1
1 −1

)
changes basis between

the standard basis {|0〉, |1〉} and the Hadamard basis {|+〉, |−〉}:

H|0〉 = |+〉 H|+〉 = |0〉
H|1〉 = |−〉 H|−〉 = |1〉

The standard basis measurement of a qubit is given by {|0〉〈0|, |1〉〈1|}
and is not unitary. It has quantum input and classical output:

Multi-qubit quantum gates
A 2-qubit gate is a 4× 4 unitary. It can be written as follows:

U =
∑
i,j,k,l∈{0,1} Uij,kl|i, j〉〈k, l|

=
∑
i,j,k,l∈{0,1} Uij,kl|i〉〈k| ⊗ |j〉〈l|

U

Example: |00〉〈00|+ |01〉〈01|+ |10〉〈10|+ |11〉〈11| is the 2-qubit identity.

An n-qubit gate is a 2n × 2n unitary. It has n input and n output qubits.

If a 1-qubit gate is applied locally on one of two qubits, we can write this
as a 2-qubit unitary:

U ⊗ I U I ⊗ U U

If a 2-qubit gate is applied locally on qubits 1 and 3, we can write this as
a 3-qubit unitary: ∑

i,j,k,l∈{0,1}

Uij,kl|i〉〈k| ⊗ I ⊗ |j〉〈l|

Quantum circuits

An n-qubit quantum circuit is a sequence of n-qubit unitary operations,
followed by the measurement in the standard basis:

|0〉
|0〉

|0〉

U1 U2 U3 U4 U5...
...

Typically the initial state is |00 . . . 0〉 = |0〉⊗n and we measure all qubits
in the standard basis at the end.

Fact: While one can imagine more general circuits with intermediate
measurements, all measurements can always be deferred to the end and
converted into independent standard basis measurements for each qubit.

Locality and uniformity

Computation is local if it consists of elementary operations that act only
on a few bits or qubits at a time.

Example: Any Boolean formula can be expressed using logical gates with
at most two input bits (e.g., AND and NOT).

We would like quantum circuits to be local as well:

• it is hard to make more than two systems interact simultaneously

• we might have only a finite number of different types of interactions

• we cannot afford to store 2n × 2n matrices

To solve a computational problem, we need a family of circuits: one for
every input size. But how do we find these circuits in the first place?

A uniform family of circuits is one that can be produced by a
deterministic Turing machine in polynomial time. This rules out circuits
that might implement a look-up table for some difficult problem.

Quantum algorithm

A quantum algorithm is an infinite family C1, C2, . . . of quantum
circuits, where Cn acts on n qubits and consists of a finite sequence of
1-qubit and 2-qubit gates: Cn = (U1, U2, . . . , UL(n)) where L(n) denotes
the number of gates in the circuit. The map n→ Cn must be efficiently
computable (e.g., in polynomial time on a deterministic Turing machine).

|0〉
|0〉
|0〉
|0〉
|0〉

Quantum SWAP gate
How can we exchange two qubits? We would like a two-qubit unitary
gate such that for any |ψ〉, |ϕ〉 ∈ C2:

SWAP(|ψ〉 ⊗ |ϕ〉) = |ϕ〉 ⊗ |ψ〉 SWAP
|ψ〉

|ϕ〉

|ϕ〉

|ψ〉

In particular, this should work for the standard basis:

|00〉 7→ |00〉
|01〉 7→ |10〉
|10〉 7→ |01〉
|11〉 7→ |11〉

SWAP

a
b
c
d

 =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

a
b
c
d

 =

a
c
b
d

The same matrix works for any states! If |ψ〉 =

(x
y

)
and |ϕ〉 =

(
z
t

)
then

|ψ〉 ⊗ |ϕ〉 =

x
(
z
t

)
y

(
z
t

)
 =

xz
xt
yz
yt

 |ϕ〉 ⊗ |ψ〉 =

z
(
x
y

)
t

(
x
y

)
 =

xz
yz
xt
yt

Quantum AND gate?

Let’s try to find a unitary that computes the logical AND of two bits.
Given x, y ∈ {0, 1}, it should output AND(x, y) on the first qubit:

AND
|x〉

|y〉

|AND(x, y)〉

|?〉

What should it output on the second qubit? Some arbitrary states:

|00〉 7→ |0〉|ψ1〉
|01〉 7→ |0〉|ψ2〉
|10〉 7→ |0〉|ψ3〉
|11〉 7→ |1〉|ψ4〉

A unitary gate must preserve orthogonality: since |00〉, |01〉, |10〉 are
orthogonal, so must be the three output states |ψ1〉, |ψ2〉, |ψ3〉, but it is
not possible to have three mutually orthogonal states in C2!

Computing a Boolean function reversibly

If f : {0, 1}n → {0, 1} is a Boolean function, the map |x〉 7→ |f(x)〉 is
not reversible in general and hence not unitary.

One way of making the map reversible is by keeping the input:

|x〉 7→ |x, f(x)〉

However, this is not unitary as the output dimension is larger than the
input dimension. We can make the two dimensions match as follows:

|x, 0〉 7→ |x, f(x)〉

However, this map is not fully defined. What is the image of |x, 1〉?
What is the pre-image of |x, y〉 if y 6= f(x)? A unitary version of f is

Uf : |x, y〉 7→ |x, y ⊕ f(x)〉

for all x ∈ {0, 1}n and y ∈ {0, 1}. Note that U2
f = I so Uf is self-inverse.

Controlled gates

The CNOT (controlled NOT) is a 2-qubit gate that flips the second
qubit only when the first qubit is in state |1〉 (below x, y ∈ {0, 1}):

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |11〉
|11〉 7→ |10〉

CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 |x〉

|y〉

|x〉

|y ⊕ x〉

It is a quantum analogue of f(x) = x where x ∈ {0, 1}. Note that
CNOT|x, 0〉 = |x, x〉, so it copies x “in the standard basis”.

Problem: Do we also have CNOT|ψ〉|0〉 = |ψ〉|ψ〉 for any |ψ〉 ∈ C2?

If U is a single-qubit unitary, then the controlled U gate is

|00〉 7→ |00〉
|01〉 7→ |01〉
|10〉 7→ |1〉 ⊗ U |0〉
|11〉 7→ |1〉 ⊗ U |1〉

1 0
0 1

0 0
0 0

0 0
0 0

U

U

|x〉

|y〉

|x〉

Ux|y〉

Another way of writing it down is as follows: |0〉〈0| ⊗ I + |1〉〈1| ⊗ U .

Toffoli gate

The Toffoli gate is a 3-qubit gate that flips the last qubit only when the
first two qubits are 1:

|x1〉

|x2〉

|y〉

|x1〉

|x2〉

|y ⊕ x1x2〉

It is a reversible implementation of AND(x1, x2) = x1x2. In fact,

y ⊕ x1x2 =

AND(x1, x2) if y = 0

XOR(y, x1) if x2 = 1

NOT(y) if x1 = x2 = 1

x1 if y = 0 and x2 = 1

Toffoli is universal for reversible classical computation as it can implement
any Boolean function reversibly given enough copies of |0〉 and |1〉.

Getting rid of junk. . .

There is still one problem: we consume the 0’s and 1’s in the process and
produce some junk data that contain values from intermediate steps:

|x, 0n1m, 0〉 7−→ |x, junk(x), f(x)〉

The “uncomputing” trick:

|x, 0n1m, 0, 0〉 Uf7−→ |x, junk(x), f(x), 0〉
CNOT7−→ |x, junk(x), f(x), f(x)〉
U†

f7−→ |x, 0n1m, 0, f(x)〉

where CNOT copies the classical bit f(x) to the last register and U†f
corresponds to running the Toffoli circuit Uf backwards.

Summary: Given enough copies of |0〉 and |1〉, Toffoli gates can
reversibly compute any Boolean function while still returning back the
original copies of |0〉 and |1〉 (except for one bit that contains f(x)).

Universal sets of quantum gates

Fact: While Toffoli gate cannot be implemented by reversible classical
2-bit gates, it can be implemented by 2-qubit unitary gates.

Fact: Any 2n × 2n unitary operation on n qubits can be implemented by
a sequence of 2-qubit operations.

Fact: Any unitary operation can be implemented exactly by a
combination of CNOTs and single qubit operations.

Fact: Any unitary operation can be approximated to any required degree
of accuracy using only gates from the set {CNOT, H, T} where

T =

(
eiπ/8 0
0 e−iπ/8

)
This can serve as our finite set of gates for quantum computation.

Deutsch’s problem (XOR)

Let f : {0, 1} → {0, 1} be one of the 4 possible Boolean functions:

f00 f01 f10 f11
f(0) 0 0 1 1
f(1) 0 1 0 1

f00 and f11 are constant
f01 and f10 are balanced

Problem: How many calls to f are required to determine whether f is
constant or balanced (or equivalently, for computing f(0)⊕ f(1))?

Classically this requires two calls to the function f .

One call suffices quantumly if we are given the quantum black box:

Uf
|x〉

|y〉

|x〉

|y ⊕ f(x)〉

Deutsch’s algorithm

Phase kick-back: If x ∈ {0, 1} then Xx|−〉 = (−1)x|−〉. Similarly, if
Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉 then Uf |x〉|−〉 = (−1)f(x)|x〉|−〉.

Uf
H

H

H

H

|0〉

|1〉

|ψ1〉 |ψ2〉 |ψ3〉 |ψ4〉

Step-by-step analysis:

|ψ1〉 = |0〉|1〉
|ψ2〉 = |+〉|−〉 = 1√

2

∑
x∈{0,1} |x〉|−〉

|ψ3〉 = 1√
2

∑
x∈{0,1}(−1)f(x)|x〉|−〉

= (−1)f(0) 1√
2

(
|0〉+ (−1)f(0)⊕f(1)|1〉

)︸ ︷︷ ︸
|+〉 or |−〉 depending on f(0)⊕ f(1)

|−〉

|ψ4〉 = (−1)f(0)|f(0)⊕ f(1)〉|1〉

Summary

• Pauli X: like logical NOT: X|0〉 = |1〉 and X|1〉 = |0〉
• Hadamard: H = 1√

2

(
1 1
1 −1

)
flips between {|0〉, |1〉} and {|+〉, |−〉}

• Quantum circuit: a sequence of unitary gates followed by the
standard basis measurement

• Locality: all gates should act on at most 2 qubits

• Uniformity: there should be an efficient way of producing the circuit

• Quantum SWAP: SWAP|ψ〉|ϕ〉 = |ϕ〉|ψ〉
• Quantum Boolean function: Uf |x〉|y〉 = |x〉|y ⊕ f(x)〉
• Controlled NOT: CNOT = |0〉〈0| ⊗ I + |1〉〈1| ⊗X
• Toffoli gate: controlled CNOT, universal for reversible computation

• Junk: can be erased reversibly by uncomputing

• Universal quantum gate set: {CNOT, H, T}
• Phase kick-back: Xx|−〉 = (−1)x|−〉
• Deutsch’s algorithm: Uf |+〉|−〉 = (−1)f(0)|(−1)f(0)⊕f(1)〉|−〉,

two queries classically, only one quantumly

