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Linear algebra

States of a quantum system form a vector space and their
transformations are described by linear operators.

Vector spaces and linear operators are studied in linear algebra.

This lecture reviews definitions from linear algebra that we will need in
the rest of the course!

Unless stated otherwise, all vector spaces are over C.

Recall: Any z ∈ C is of the form z = a+ ib for some a, b ∈ R.



Matrices

An n×m matrix is an array of numbers aij arranged as follows:

A =


a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm


For any A, we write Aij to denote the entry in the i-th row and the j-th
column of A. In the matrix above we have Aij = aij .

We denote the set of all n×m complex matrices by Mn,m(C).

Basic matrix operations

Matrices can be added (if they are of the same shape) and multiplied by
a constant (scalar). Both operations are performed entry-wise.

If A,B ∈ Mn,m(C) and c ∈ C then

(A+B)ij = Aij +Bij (cA)ij = cAij

Example:(
a11 a12 a13
a21 a22 a23

)
+

(
b11 b12 b13
b21 b22 b23

)
=

(
a11 + b11 a12 + b12 a13 + b13
a21 + b21 a22 + b22 a23 + b23

)

c

(
a11 a12 a13
a21 a22 a23

)
=

(
ca11 ca12 ca13
ca21 ca22 ca23

)



Conjugate transpose

For A ∈ Mn,m(C) we define

• complex conjugate: A∗ and Ā

(A∗)ij = (Aij)
∗

(
a11 a12 a13
a21 a22 a23

)∗
=

(
a∗11 a∗12 a∗13
a∗21 a∗22 a∗23

)
• transpose: AT

(AT)ij = Aji

(
a11 a12 a13
a21 a22 a23

)T

=

a11 a21
a12 a22
a13 a23


• conjugate transpose (adjoint): A† = (A∗)T

(A†)ij = A∗ji

(
a11 a12 a13
a21 a22 a23

)†
=

a∗11 a∗21
a∗12 a∗22
a∗13 a∗23


Warning: mathematicians often use A∗ to denote A†.

Vectors and inner product

Vector is a matrix that has only one row or one column:

row vector column vector

(
a1 a2 . . . an

)

b1
b2
...
bn


Just like matrices, vectors of the same shape can be added and multiplied
by scalars. They form a vector space denoted Cn.

A row vector and a column vector can be multiplied together if they have
the same number of entries. The result is a number:

(
a1 a2 . . . an

)
·


b1
b2
...
bn

 = a1b1 + a2b2 + · · ·+ anbn =

n∑
i=1

aibi

This is a special case of matrix product. . .



Matrix multiplication

If A is n×m and B is m× l matrix then C = A ·B is the n× l matrix
with entries given by

Cik =
m∑
j=1

AijBjk

for all i = 1, . . . , n and k = 1, . . . , l. Note that Cik is just the product of
the i-th row of A and the k-th column of B:

Note: It is possible to
multiply A and B only
if the number of columns
of A agrees with the
number of rows of B:
[n×m] · [m× l] = [n× l]

A

m

n
i

B

l

m

k

C

Properties of matrix multiplication

• Associativity: (A ·B) · C = A · (B · C) = ABC

• Distributivity: A(B + C) = AB +AC and (A+B)C = AB +BC

• Scalar multiplication: λ(AB) = (λA)B = A(λB) = (AB)λ

• Complex conjugate: (AB)∗ = A∗B∗

• Transpose: (AB)T = BTAT (reversed order!)

• Conjugate transpose: (AB)† = B†A† (reversed order!)

Warning: Matrix multiplication is not commutative: AB 6= BA.
In fact, BA might not even make sense even if AB is well-defined
(e.g., when A is 3× 2 and B is 2× 1).



Dirac bra-ket notation

Column vector (ket) Row vector (bra)

|ψ〉 =


a1
a2
...
an

 〈ψ| =
(
a∗1 a∗2 . . . a∗n

)

Note: Ket and bra are conjugate transposes of each other:

|ψ〉† ≡ 〈ψ| 〈ψ|† ≡ |ψ〉

For |ψ〉, |ϕ〉 ∈ Cn and A ∈ Mn,n(C) the following are valid products:

• inner product: 〈ψ| · |ϕ〉 ≡ 〈ψ|ϕ〉 ∈ C
• outer product: |ψ〉 · 〈ϕ| ≡ |ψ〉〈ϕ| ∈Mn×n(C)

• matrix-vector product: A · |ψ〉 ≡ A|ψ〉 and 〈ψ| ·A ≡ 〈ψ|A

Quiz

Let |ψ〉, |ϕ〉 ∈ Cn and A ∈ Mn,n(C). Which of these make sense?

(a) |ψ〉+ 〈ϕ| (h) |ψ〉〈ϕ|A
(b) |ψ〉〈ϕ| (i) |ψ〉A〈ϕ|
(c) A〈ψ| (j) 〈ψ|A|ϕ〉
(d) |ψ〉A (k) 〈ψ|A|ϕ〉+ 〈ψ|ϕ〉
(e) 〈ψ|A (l) 〈ψ|ϕ〉〈ψ|
(f) 〈ψ|A+ 〈ϕ| (m) 〈ψ|ϕ〉A
(g) |ψ〉|ϕ〉 (n) |ψ〉〈ψ|ϕ〉 = 〈ψ|ϕ〉|ψ〉



Inner product

The complex number 〈u|v〉 is called the inner product of |u〉, |v〉 ∈ Cn.

If |u〉 =

a1...
an

 and |v〉 =

b1...
bn

 then their inner product is

〈u|v〉 =
(
a∗1 · · · a∗n

)b1...
bn

 =
n∑

i=1

a∗i bi

Simple observations:

• 〈u|v〉 =
(
〈v|u〉

)†
= 〈v|u〉

• 〈u|u〉 =
∑n

i=1|ai|
2 is a real number

• 〈u|u〉 ≥ 0 and 〈u|u〉 = 0 iff |u〉 = 0 (the all-zeroes vector)

Norm and orthogonality

The norm of a vector |u〉 is the non-negative real number

‖|u〉‖ =
√
〈u|u〉 =

√∑n
i=1|ai|

2 ≥ 0

A unit vector is a vector with norm 1, i.e.,
∑n

i=1|ai|
2

= 1.

Recall: qubit states α|0〉+ β|1〉 are unit vectors since |α|2 + |β|2 = 1.

Cauchy–Schwarz inequality: |〈u|v〉| ≤ ‖|u〉‖ ‖|v〉‖ for any |u〉, |v〉 ∈ Cn.

If |u〉 and |v〉 are unit vectors then |〈u|v〉| ∈ [0, 1], so |〈u|v〉| = cos θ for
some angle θ ∈ [0, π/2].

Vectors |u〉 and |v〉 are orthogonal if 〈u|v〉 = 0 (i.e., θ = π/2).



Basis

A basis of Cn is a minimal collection of vectors |v1〉, . . . , |vn〉 such that
every vector |v〉 ∈ Cn can be expressed as a linear combination of these:

|v〉 = α1|v1〉+ · · ·+ αn|vn〉

for some coefficients αi ∈ C. In particular, |v1〉, . . . , |vn〉 are linearly
independent, meaning that no |vi〉 can be expressed as a linear
combination of the rest.

The number n (the size of the basis) is uniquely determined by the vector
space and is called its dimension. The dimension of Cn is n.

Given a basis, every vector |v〉 can be uniquely represented as an n-tuple
of scalars α1, . . . , αn, called the coordinates of |v〉 in this basis.

An orthonormal basis is a basis made up of unit vectors that are pairwise
orthogonal:

〈vi|vj〉 = δij ≡

{
1 if i = j

0 if i 6= j

Standard basis for Cn

The following are all bases for C2 (the last two are orthonormal):(
3
2

)
,

(
4
−i

) (
1
0

)
,

(
0
1

)
1√
2

(
1
1

)
,

1√
2

(
1
−1

)
The standard or computational basis for Cn is

|1〉 ≡


1
0
...
0

 |2〉 ≡


0
1
...
0

 · · · |n〉 ≡


0
0
...
1


(Sometimes we will use |0〉, |1〉, . . . , |n− 1〉 instead, e.g., when n = 2.)

Any vector can be expanded in the standard basis:a1...
an

 =

n∑
i=1

ai|i〉



Outer product and projectors

With every pair of vectors |u〉 ∈ Cn, |v〉 ∈ Cm we can associate a matrix
|u〉〈v| ∈ Mn,m(C) known as the outer product of |u〉 and |v〉.
For any |w〉 ∈ Cm, it satisfies the property(

|u〉〈v|
)
|w〉 = 〈v|w〉|u〉

If |u〉 is a unit vector then |u〉〈u| is the projector on the one-dimensional
subspace generated by |u〉. This can be easily seen if |u〉 and |v〉 are real
and we set cos θ = 〈u|v〉. Then |u〉〈u|v〉 = 〈u|v〉|u〉.

|u〉

|v〉

〈u|v〉|u〉

θ

Expanding a matrix in the standard basis

|1〉〈2| =


1
0
...
0

(0 1 · · · 0
)

=


0 1 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0


Similarly, |i〉〈j| has 1 at coordinates (i, j) and zeroes everywhere else.

Any n×m matrix can be expressed as a linear combination of outer
products: 

a11 a12 . . . a1m
a21 a22 . . . a2m

...
...

. . .
...

an1 an2 . . . anm

 =
n∑

i=1

m∑
j=1

aij |i〉〈j|

We can recover the (i, j) entry of A as follows:

〈i|A|j〉 = aij



Eigenvalues and eigenvectors

An eigenvector of A ∈ Mn,n(C) is a non-zero vector |v〉 ∈ Cn such that

A|v〉 = λ|v〉

for some complex number λ (the eigenvalue corresponding to |v〉).

The eigenvalues of A are the roots of the characteristic polynomial:

det(A− λI) = 0

where det denotes the determinant and I is the n× n identity matrix:

I =

n∑
i=1

|i〉〈i|

Each n× n matrix has at least one eigenvalue.

Diagonal representation

Matrix A ∈ Mn,n(C) is diagonalisable if

A =
n∑

i=1

λi|vi〉〈vi|

where |v1〉, . . . , |vn〉 is an orthonormal set of eigenvectors of A with
corresponding eigenvalues λ1, . . . , λn.

This is called spectral decomposition of A.

Equivalently, A can be written as a diagonal matrixλ1 . . .

λn


in the basis |v1〉, . . . , |vn〉 of its eigenvectors.



Normal and Hermitian matrices

Matrix A ∈ Mn,n(C) is normal if

AA† = A†A

Theorem: A matrix is diagonalisable if and only if it is normal.

A is Hermitian if A = A†.

A normal matrix is Hermitian if and only if it has real eigenvalues.

Unitary matrices

Matrix A ∈ Mn,n(C) is unitary if

AA† = A†A = I

where I is the n× n identity matrix.

Unitary operators are normal and therefore diagonalisable.

Unitary operators preserve inner products: if U is unitary and |u′〉 = U |u〉
and |v′〉 = U |v〉 then

〈u′|v′〉 = (U |u〉)†(U |v〉) = 〈u|U†U |v〉 = 〈u|v〉

All eigenvalues of a unitary operator have absolute value 1.



Tensor product

Let A and B be matrices of arbitrary shape. Their tensor product is the
following block matrix:

A⊗B =


A11B A12B · · · A1mB
A21B A22B · · · A2mB

...
...

. . .
...

An1B An2B · · · AnmB


where the block at coordinates (i, j) is equal to AijB.

If A is n×m and B is n′ ×m′ then A⊗B is nn′ ×mm′.

Tensor product applies to vectors too, e.g., |ψ〉 ⊗ |ϕ〉 and 〈ψ| ⊗ 〈ϕ|.

Note: |ψ〉|ϕ〉 is a shorthand for |ψ〉 ⊗ |ϕ〉.

Summary

• Matrix multiplication: AB = C where
∑

j AijBjk = Cik,
A, B, C have dimensions [n×m] · [m× l] = [n× l]

• Conjugate transpose: A† = ĀT, (AB)† = B†A†

• Dirac notation: |ψ〉† ≡ 〈ψ| and 〈ψ|† ≡ |ψ〉
• Inner product: 〈ψ|ϕ〉, it is 0 for orthogonal vectors

• Norm: ‖|ψ〉‖ =
√
〈ψ|ψ〉, it is 1 for unit vectors

• Orthonormal basis: 〈vi|vj〉 = δij

• Outer product: |ψ〉〈ϕ|, projector: |ψ〉〈ψ| where ‖|ψ〉‖ = 1

• Eigenvalues and eingevectors: A|v〉 = λ|v〉
• Spectral decomposition: A =

∑
i λi|vi〉〈vi| iff A is normal

• Normal: AA† = A†A
• Hermitian: A† = A
• Unitary: AA† = A†A = I

• Tensor product: A⊗B is a block matrix with (i, j)-th block AijB


