Quantum Computing Lecture 1

Bits and Qubits

Maris Ozols

What is Quantum Computing?

Aim: use quantum mechanical phenomena that have no counterpart in classical physics for computational purposes.

(Classical = not quantum)

Two central research directions:

- Experimental
 - building devices with a specified quantum behaviour
- Theoretical
 - **quantum algorithms:** designing algorithms that use quantum mechanical phenomena for computation
 - **quantum information:** designing protocols for transmitting and processing quantum information

Mediating experiments and theory is a *mathematical model* of quantum computation.

Why look at Quantum Computing?

- The physical world is quantum
 - information is physical
 - classical computation provides only a crude level of abstraction

Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy.

– Richard Feynman (1982)

- Devices are getting smaller
 - Moore's law
 - on very small scale, the classical laws of physics break down
- Exploit quantum phenomena
 - using quantum phenomena may allow to perform computational and cryptographic tasks that are otherwise not efficient or even possible
 - understand the world and discover new physics

Course Outline

A total of eight lecturers:

- 1. Bits and Qubits (this lecture)
- 2. Linear Algebra
- 3. Quantum Mechanics
- 4. Model of Quantum Computation
- 5. Quantum Information Protocols
- 6. Search Algorithm
- 7. Factoring
- 8. Complexity

Useful Resources

Bookzz.org:

Each of these books covers the basic material very well:

- Kaye P., Laflamme R., Mosca M., An Introduction to Quantum Computing
- Hirvensalo M., Quantum Computing
- Mermin N.D., Quantum Computer Science: An Introduction

This is a comprehensive reference (covers the basics too):

• Nielsen M.A., Chuang I.L., Quantum Computation and Quantum Information

Papers:

- Braunstein S.L., Quantum computation [link]
- Aharonov D., Quantum computation [arXiv:quant-ph/9812037]
- Steane A., Quantum computing [arXiv:quant-ph/9708022]

Other lecture notes:

- Umesh Vazirani (UC Berkeley) [link] basics and beyond
- John Preskill (Caltech) [link] basics and beyond
- Andrew Childs (U of Maryland) [link] quantum algorithms
- John Watrous (U of Waterloo) [link] quantum information

Course website: http://www.cl.cam.ac.uk/teaching/1617/QuantComp/

Bits

A building block of classical computational devices is a two-state system or a classical bit:

0 ● 1

Indeed, any system with a finite set of discrete and stable states, with controlled transitions between them, will do:

Probabilistic bits

When you don't know the state of a system exactly but only have partial information, you can use probabilities to describe it:

It is convenient to represent system's state using vectors:

Then a uniformly random bit is represented by

Using probabilities to represent information (or lack of it...) is more useful than you might think!

		We	ather	fored	cast		
Camb Thursday Chance	o ridge, y of Rain	UK					
6 °CI°F				Precipitation: 40% Humidity: 83% Wind: 13 mph			
				Temperatu	ure Precip	itation	Wind
6%	10%	24%	31%	<u>24%</u>	3%	3%	3%
03:00	06:00	09:00	12:00	15:00	18:00	21:00	00:00
Wed	Thu	Fri	Sat	Sun	Mon	Tue	Wed
	20						
	11		//				

Party planning

Name	Coming?	Chances?		
John	Y	0.1		
Sarah	Ν	0.1		
Peter	-	0.8		
Anna	-	0.5		
Tom	Ν	0.0		
Rebecca	Y	1.0		
Andy	-	0.6		
Kathy	-	0.3		
Richard	-	0.7		
Total:	2-7	4.1		

Probability as a stock price

Quantum superposition...

In nature, the state of an actual physical system is more uncertain than we are used to in our daily lives...

© Charles Addams, The New York Times

That's why complex amplitudes rather than probabilities are used in quantum mechanics!

Complex numbers $(i^2 = -1)$

Representations:

- algebraic: z = a + ib
- exponential: $z = re^{i\varphi} = r(\cos\varphi + i\sin\varphi)$

Operations:

- addition and subtraction: $(a + ib) \pm (c + id) = (a \pm c) + i(b \pm d)$
- multiplication: $\begin{array}{l} (a+ib)\cdot(c+id)=(ac-bd)+i(ad+bc)\\ re^{i\varphi}\cdot r'e^{i\varphi'}=rr'e^{i(\varphi+\varphi')} \end{array}$
- complex conjugate: $z^* = \bar{z} = a ib = re^{-i\varphi}$
- absolute value: $|z| = \sqrt{a^2 + b^2} = r$, $|z_1 \cdot z_2| = |z_1| \cdot |z_2|$
- absolute value squared: $|z|^2 = a^2 + b^2 = r^2$ important: $|z|^2 = z\overline{z}$

• inverse: $1/z = \bar{z}/|z|^2$

Classical vs quantum bits

Classical

Recall that a random bit can be described by a probability vector:

$$p \underbrace{\qquad} + q \underbrace{\qquad} = p \begin{pmatrix} 1 \\ 0 \end{pmatrix} + q \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} p \\ q \end{pmatrix}$$

where $p, q \in \mathbb{R}$ such that $p, q \ge 0$ and p + q = 1.

Quantum

A quantum bit (or qubit for short) is described by a quantum state:

$$\alpha|0\rangle + \beta|1\rangle = \alpha \begin{pmatrix} 1\\ 0 \end{pmatrix} + \beta \begin{pmatrix} 0\\ 1 \end{pmatrix} = \begin{pmatrix} \alpha\\ \beta \end{pmatrix}$$

where $\alpha, \beta \in \mathbb{C}$ are called **amplitudes** and satisfy $|\alpha|^2 + |\beta|^2 = 1$. Here $|0\rangle, |1\rangle$ are used as place-holders for the two discernible states of a coin (or any other physical system for that matter).

Any system that can exist in states $|0\rangle$ and $|1\rangle$ can also exist in a superposition $\alpha |0\rangle + \beta |1\rangle$, according to quantum mechanics!

Can I buy 4.1 + 2.8i bottles of wine?

Measurement

Classical Observing a random coin

results in heads with probability p and tails with probability q.

Quantum

Measuring the quantum state

 $\alpha |0\rangle + \beta |1\rangle$

results in $|0\rangle$ with probability $|\alpha|^2$ and $|1\rangle$ with probability $|\beta|^2$.

Important:

- After the measurement, the system is in the measured state, so repeating the measurement will always yield the same value!
- We can only extract one bit of information from a single copy of a random bit or a qubit!

Global and relative phases

Phase If $re^{i\varphi}$ is a complex number, $e^{i\varphi}$ is called phase.

Global phase

The following states differ only by a global phase:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \qquad e^{i\varphi} |\psi\rangle = e^{i\varphi} \alpha |0\rangle + e^{i\varphi} \beta |1\rangle$$

These states are indistinguishable! Why? Because $|\alpha|^2 = |e^{i\varphi}\alpha|^2$ and $|\beta|^2 = |e^{i\varphi}\beta|^2$ so it makes no difference during measurements.

Relative phase

These states differ by a relative phase:

$$|+\rangle := \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle) \qquad |-\rangle := \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Are they also indistinguishable? No! (Measure in a *different basis*.)

Remember: global phase does not matter, relative phase matters!

Qubit states: the Bloch sphere

Any qubit state can be written as

$$|\psi\rangle = \underbrace{\cos\frac{\theta}{2}}_{\alpha}|0\rangle + \underbrace{e^{i\varphi}\sin\frac{\theta}{2}}_{\beta}|1\rangle$$

for some angles $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi)$.

There is a one-to-one correspondence between qubit states and points on a unit sphere (also called Bloch sphere):

Bloch vector of $|\psi\rangle$ in spherical coordinates:

$$\begin{cases} x = \sin \theta \cos \varphi \\ y = \sin \theta \sin \varphi \\ z = \cos \theta \end{cases}$$

Measurement probabilities:

$$|\alpha|^{2} = (\cos \frac{\theta}{2})^{2} = \frac{1}{2} + \frac{1}{2}\cos\theta$$
$$|\beta|^{2} = (\sin \frac{\theta}{2})^{2} = \frac{1}{2} - \frac{1}{2}\cos\theta$$

Summary

- **Quantum computing** = quantum physics + computers + math
- Complex numbers: $i^2 = -1$, if z = a + ib then $\overline{z} = a ib$ and $|z|^2 = z\overline{z} = a^2 + b^2$, Euler's identity: $e^{i\varphi} = \cos \varphi + i \sin \varphi$
- Classical probabilities: $p, q \ge 0$ and p + q = 1
- Quantum amplitudes: $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$
- Qubit state: $\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \alpha |0\rangle + \beta |1\rangle$ where α, β are as above
- **Measurement:** get 0 with probability $|\alpha|^2$ and 1 with prob. $|\beta|^2$
- **Phases:** global phase $e^{i\varphi}|\psi\rangle$ does not matter, relative phase matters
- Bloch sphere: $|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\varphi}\sin\frac{\theta}{2}|1\rangle$