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What is Quantum Computing?

Aim: use quantum mechanical phenomena that have no counterpart in
classical physics for computational purposes.

(Classical = not quantum)

Two central research directions:

• Experimental
• building devices with a specified quantum behaviour

• Theoretical
• quantum algorithms: designing algorithms that use quantum

mechanical phenomena for computation
• quantum information: designing protocols for transmitting and

processing quantum information

Mediating experiments and theory is a mathematical model of quantum
computation.



Why look at Quantum Computing?

• The physical world is quantum
• information is physical
• classical computation provides only a crude level of abstraction

Nature isn’t classical, dammit, and if you want to make a simulation of
nature, you’d better make it quantum mechanical, and by golly it’s a
wonderful problem, because it doesn’t look so easy.

– Richard Feynman (1982)

• Devices are getting smaller
• Moore’s law
• on very small scale, the classical laws of physics break down

• Exploit quantum phenomena
• using quantum phenomena may allow to perform computational and

cryptographic tasks that are otherwise not efficient or even possible
• understand the world and discover new physics

Course Outline

A total of eight lecturers:

1. Bits and Qubits (this lecture)

2. Linear Algebra

3. Quantum Mechanics

4. Model of Quantum Computation

5. Quantum Information Protocols

6. Search Algorithm

7. Factoring

8. Complexity



Useful Resources

Bookzz.org:

Each of these books covers the basic material very well:

• Kaye P., Laflamme R., Mosca M., An Introduction to Quantum Computing

• Hirvensalo M., Quantum Computing

• Mermin N.D., Quantum Computer Science: An Introduction

This is a comprehensive reference (covers the basics too):

• Nielsen M.A., Chuang I.L., Quantum Computation and Quantum Information

Papers:

• Braunstein S.L., Quantum computation [link]

• Aharonov D., Quantum computation [arXiv:quant-ph/9812037]

• Steane A., Quantum computing [arXiv:quant-ph/9708022]

Other lecture notes:

• Umesh Vazirani (UC Berkeley) [link] – basics and beyond

• John Preskill (Caltech) [link] – basics and beyond

• Andrew Childs (U of Maryland) [link] – quantum algorithms

• John Watrous (U of Waterloo) [link] – quantum information

Course website: http://www.cl.cam.ac.uk/teaching/1617/QuantComp/

Bits

A building block of classical computational devices is a two-state system
or a classical bit:

0 1

Indeed, any system with a finite set of discrete and stable states, with
controlled transitions between them, will do:

https://www-users.cs.york.ac.uk/~schmuel/comp/comp_best.pdf
https://arxiv.org/pdf/quant-ph/9812037.pdf
https://arxiv.org/pdf/quant-ph/9708022.pdf
http://www-inst.eecs.berkeley.edu/~cs191/sp12/
http://www.theory.caltech.edu/people/preskill/ph229/
http://cs.umd.edu/~amchilds/qa/
https://cs.uwaterloo.ca/~watrous/TQI/
http://www.cl.cam.ac.uk/teaching/1617/QuantComp/


Probabilistic bits
When you don’t know the state of a system exactly but only have partial
information, you can use probabilities to describe it:
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It is convenient to represent system’s state using vectors:
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Then a uniformly random bit is represented by
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Using probabilities to represent information (or lack of it. . . ) is more
useful than you might think!

Weather forecast

Source: Google / Weather.com



Party planning

Name Coming? Chances?

John Y 0.1
Sarah N 0.1
Peter - 0.8
Anna - 0.5
Tom N 0.0
Rebecca Y 1.0
Andy - 0.6
Kathy - 0.3
Richard - 0.7

Total: 2-7 4.1

Probability as a stock price



Quantum superposition. . .
In nature, the state of an actual physical system is more uncertain than
we are used to in our daily lives. . .

c©Charles Addams, The New York Times

That’s why complex amplitudes rather than probabilities are used in
quantum mechanics!

Complex numbers (i2 = −1)
Representations:

• algebraic: z = a+ ib

• exponential: z = reiϕ = r(cosϕ+ i sinϕ)

Operations:

• addition and subtraction:
(a+ ib)± (c+ id) = (a± c) + i(b± d)

• multiplication:
(a+ ib) · (c+ id) = (ac− bd) + i(ad+ bc)
reiϕ · r′eiϕ′ = rr′ei(ϕ+ϕ

′)

• complex conjugate: z∗ = z̄ = a− ib = re−iϕ

• absolute value:
|z| =

√
a2 + b2 = r, |z1 · z2| = |z1| · |z2|

• absolute value squared: |z|2 = a2 + b2 = r2

important: |z|2 = zz̄

• inverse: 1/z = z̄/|z|2
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Classical vs quantum bits

Classical
Recall that a random bit can be described by a probability vector:

p + q = p
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where p, q ∈ R such that p, q ≥ 0 and p+ q = 1.

Quantum
A quantum bit (or qubit for short) is described by a quantum state:

α|0〉+ β|1〉 = α
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where α, β ∈ C are called amplitudes and satisfy |α|2 + |β|2 = 1. Here
|0〉, |1〉 are used as place-holders for the two discernible states of a coin
(or any other physical system for that matter).

Any system that can exist in states |0〉 and |1〉 can also exist in a
superposition α|0〉+ β|1〉, according to quantum mechanics!

Can I buy 4.1 + 2.8i bottles of wine?



Measurement

Classical
Observing a random coin

p + q

results in heads with probability p and tails with probability q.

Quantum
Measuring the quantum state

α|0〉+ β|1〉

results in |0〉 with probability |α|2 and |1〉 with probability |β|2.

Important:

• After the measurement, the system is in the measured state, so
repeating the measurement will always yield the same value!

• We can only extract one bit of information from a single copy of a
random bit or a qubit!

Global and relative phases

Phase
If reiϕ is a complex number, eiϕ is called phase.

Global phase
The following states differ only by a global phase:

|ψ〉 = α|0〉+ β|1〉 eiϕ|ψ〉 = eiϕα|0〉+ eiϕβ|1〉

These states are indistinguishable! Why? Because |α|2 = |eiϕα|2 and

|β|2 = |eiϕβ|2 so it makes no difference during measurements.

Relative phase
These states differ by a relative phase:

|+〉 := 1√
2
(|0〉+ |1〉) |−〉 := 1√

2
(|0〉 − |1〉)

Are they also indistinguishable? No! (Measure in a different basis.)

Remember: global phase does not matter, relative phase matters!



Qubit states: the Bloch sphere
Any qubit state can be written as

|ψ〉 = cos θ2︸ ︷︷ ︸
α

|0〉+ eiϕ sin θ
2︸ ︷︷ ︸

β

|1〉

for some angles θ ∈ [0, π] and ϕ ∈ [0, 2π).

There is a one-to-one correspondence between qubit states and points on
a unit sphere (also called Bloch sphere):

Bloch vector of |ψ〉 in
spherical coordinates:

x = sin θ cosϕ

y = sin θ sinϕ

z = cos θ

Measurement probabilities:

|α|2 = (cos θ2 )2 = 1
2 + 1

2 cos θ

|β|2 = (sin θ
2 )2 = 1
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Summary

• Quantum computing = quantum physics + computers + math

• Complex numbers: i2 = −1, if z = a+ ib then z̄ = a− ib and
|z|2 = zz̄ = a2 + b2, Euler’s identity: eiϕ = cosϕ+ i sinϕ

• Classical probabilities: p, q ≥ 0 and p+ q = 1

• Quantum amplitudes: α, β ∈ C and |α|2 + |β|2 = 1

• Qubit state:
( α
β

)
= α|0〉+ β|1〉 where α, β are as above

• Measurement: get 0 with probability |α|2 and 1 with prob. |β|2

• Phases: global phase eiϕ|ψ〉 does not matter, relative phase matters

• Bloch sphere: |ψ〉 = cos θ2 |0〉+ eiϕ sin θ
2 |1〉


