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• Learn Prolog

• Reflect about deep questions 

• What’s a declarative language? 

• How does Prolog compare/relate to other languages I 
know? 

• What kind of problems would I use this language for? 

• As a side-effect: learn how to model problems using 
logic (a.k.a write programs in Prolog).

Aims
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Why?

• Technical depth, and exposure to different ideas. 

• Prolog brings theory to life: discrete maths, 
database theory, program semantics, logic and 
proof. 

• Prolog-based languages are useful. 
(Next slide)
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Prolog is a living language

Prolog and its derivatives are used in Software-defined 
networking, various products (Datomic, LogicBlox, SEMMLE), 
resource planning, automated trading, law enforcement, …

You don’t have to be a logician to use Prolog.  
(You don’t have to be French to speak French…)



How did we get here?
• Prolog emerged from research on logic, 

programming and linguistics. 

• Many years of research by many people in different 
disciplines. 

• For more background see: 

• “The early years of logic programming” by Kowalski 

• “The birth of Prolog” by Colmerauer
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This course is taught differently 
to all the others

https://openclipart.org/6



Course content will be through 
videos rather than lectures

• Videos of all the content are available online. 

• You can watch them whenever you want. 

• Useful for revision.
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Course content will be through 
videos rather than lectures

• Videos of all the content are available online. 

• You can watch them whenever you want. 

• Useful for revision.

"I can watch them naked at 4am while eating cereal. 
Also, I can re-watch the parts that I haven't 

understood ... I can pause the lecture and google 
something ... or even write some relevant code while the 

lecture is ongoing, all without missing anything!"

Student pre-course survey8



We are collecting statistics 
about how you use the site

• Your supervisor can see 
how you are progressing. 

• We will anonymise the data 
once the course is over. 

• The data will not be used 
to assess you.

9



Why?
• Technical depth, and exposure to different ideas. 

• Prolog brings theory to life: discrete maths, 
database theory, program semantics, logic and 
proof. 

• Prolog-based languages are useful. 
e.g., Software-defined networking, NLP, recent 
products (Datomic, LogicBlox, SEMMLE), resource 
planning, automated trading, law enforcement, …(Recall slide. Let’s explore the bigger Why next.)
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Programming is about 
processing information 

based on some 
model of the problem, 

and involves 
changing the world 
to achieve a result.
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Programming is about 
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Programming languages support 
us in lifting this cognitive load.

Computers then carry out 
automated processing.
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• Programming ultimately results in changing the world (side-
effects are necessary)… 

• …if only by redistributing voltages on tiny scraps of silicon! 

• But we don’t think at that low-level scale!  
“We don’t design bridges by using quantum physics”. 

• We need abstractions — programming languages provide 
us with these. 

• Prolog’s abstractions: terms (including variables, which 
have a special role) and clauses.  
Simple but powerful.
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MAKE  

PROGRAMMING 

GREAT  AGAIN



MAKE  

PROGRAMMING 

GREAT  AGAIN

Beware oversimplification

e.g., “Best language ever”



https://i.imgur.com/Sex1E8m.jpg

Now with
more

lambdas!
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i.e., The best language for the task at hand, given its 
expressiveness, compiler targets, toolchain support, 

abundance of trained programmers, who else uses it, …, 
budget and deadlines.

Cultivate judgement.
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Spoiler:
3 things about Prolog

• Program with relations, not functions. 
We need to think slightly differently from “calling a 
function” or “passing parameters”. 

• Giving a procedural interpretation to logic. As a result, 
lose some properties (e.g., commutativity) but gain 
others (better control over search space). 

• Computation by deduction.  
Compute with knowledge, as formalised in FOL.  
In Prolog, truth = provability, falsehood = unprovability, 
both in a “small world”.
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Example

List membership.
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(Excepting side-conditions, since they’d apply  
similarly to functions and relations)  

• With functions, you have inputs and outputs. 
• With relations, any of the parameters could be the inputs or 
outputs.

Relation vs Function
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Everything
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Everything

Non-List 
Things

List Things
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Everything (a.k.a. Herbrand Universe)
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Non-List Things Lists Things

1 [1]
[1,1]2

3
…

…
[1,2,3]
[1,2,3,1]
…
[[1],[2,3],1]
…

Everything (a.k.a. Herbrand Universe)
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Every possible assertion (a.k.a. Herbrand Base)

27



member(1,[1,1])
member(1,[1])

member(1,[1,2,3])
member(1,[1,2,3,1])
member(1,[[1],[2,3],1])

Every possible assertion (a.k.a. Herbrand Base)

…

member(2,[1,1])
member(2,[1])

member(2,[1,2,3])
member(2,[1,2,3,1])
member(2,[[1],[2,3],1])
…
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But what makes some assertions true
but others false?
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member(1,[1,1])
member(1,[1])
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…
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…
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R1(Thing,List)

Which is the ‘membership’ relation I seek?

R2(Thing,List)

…

Relations between 
Things and Lists

R3(Thing,List)
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R1(Thing,List)

Which is the ‘membership’ relation I seek?

Relations between 
Things and Lists

Example behaviours
• Empty relation 
• Thing is an element of List 
• Thing is NOT an element  

of List 
• Thing is the GREATEST  

element of List 
• Thing is the 1st element of  

List 
• Thing is the 2nd element of  

List 
…

R2(Thing,List)

…

R3(Thing,List)
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Which is the ‘membership’ relation I seek?

Answer: this is what your Prolog implementation specifies.

Demo
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All other “lectures” will take 
place in Intel Lab

• Bring your own laptop+headphones. 

• We'll be there to answer your questions 
and talk to you about the course. 

• You are free to work through the course in 
your own time if you prefer.
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Question book

• Help you review the course material. 

• Questions categorised 
{Bookwork, Shallow, Deep, Open}. 

• Can be used for supervisions, self-study, 
and revision.
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Feedback and problems
• If you are stuck: 

• come to a lab session  
(Intel Lab) 

• talk to your peers 

• talk to your supervisor 

• If the software isn’t 
working then email me. (Not actual student 

     experiencing Prolog)
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Assessment is through practical 
exercise (Tick) and an exam question

• Tick’s due date announced shortly by email.  
Exercise details on the course website. 

• You need to complete either the Prolog or the  
C/C++ exercise. 

• There is one Prolog question in the exam.
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In Tick we’ll also look for 
good programming style.

• Simple is often best. “Clever” often leads to overengineering, technical 
debt, .… 

• Readability is essential.

• Reason: it makes it easier to evaluate correctness, and maintain the 
program. 
cf. “Obfuscated C contest” 

• For coding style advice, see “Coding Guidelines for Prolog” by 
Covington et al. 

• Or “The Elements of Programming Style"  
https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style 

• Practice empathy, think of the reader (of your code).
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Send me your videos
• Explain something in the course. 

• Worked solution to supervision question or a tripos 
question 

• If they are clear and correct I'll include them in the 
course and credit you as a contributor at the top of the 
course webpages. (CV points!) 

• Avoid filming naked at 4am.. 

• (Explaining something is a good way to learn it)
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Wrap-up: Objectives
• be able to write programs in Prolog using techniques 

such as accumulators and difference structures; 

• know how to model the backtracking behaviour of 
program execution; 

• appreciate the unique perspective Prolog gives to 
problem solving and algorithm design; 

• understand how larger programs can be created 
using the basic programming techniques used in this 
course.
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