
Prolog

“Programming using logic”

Nik Sultana

With thanks to Andy Rice and Alastair Beresford

• Learn Prolog

• Reflect about deep questions

• What’s a declarative language?

• How does Prolog compare/relate to other languages I
know?

• What kind of problems would I use this language for?

• As a side-effect: learn how to model problems using
logic (a.k.a write programs in Prolog).

Aims

2

Why?

• Technical depth, and exposure to different ideas.

• Prolog brings theory to life: discrete maths,
database theory, program semantics, logic and
proof.

• Prolog-based languages are useful. 
(Next slide)

3

Prolog is a living language

Prolog and its derivatives are used in Software-defined
networking, various products (Datomic, LogicBlox, SEMMLE),
resource planning, automated trading, law enforcement, …

You don’t have to be a logician to use Prolog.  
(You don’t have to be French to speak French…)

How did we get here?
• Prolog emerged from research on logic,

programming and linguistics.

• Many years of research by many people in different
disciplines.

• For more background see:

• “The early years of logic programming” by Kowalski

• “The birth of Prolog” by Colmerauer

5

This course is taught differently
to all the others

https://openclipart.org/6

Course content will be through
videos rather than lectures

• Videos of all the content are available online.

• You can watch them whenever you want.

• Useful for revision.

7

Course content will be through
videos rather than lectures

• Videos of all the content are available online.

• You can watch them whenever you want.

• Useful for revision.

"I can watch them naked at 4am while eating cereal.
Also, I can re-watch the parts that I haven't

understood ... I can pause the lecture and google
something ... or even write some relevant code while the

lecture is ongoing, all without missing anything!"

Student pre-course survey8

We are collecting statistics
about how you use the site

• Your supervisor can see
how you are progressing.

• We will anonymise the data
once the course is over.

• The data will not be used
to assess you.

9

Why?
• Technical depth, and exposure to different ideas.

• Prolog brings theory to life: discrete maths,
database theory, program semantics, logic and
proof.

• Prolog-based languages are useful. 
e.g., Software-defined networking, NLP, recent
products (Datomic, LogicBlox, SEMMLE), resource
planning, automated trading, law enforcement, …(Recall slide. Let’s explore the bigger Why next.)

10

Programming is about
processing information

based on some
model of the problem, 

and involves
changing the world
to achieve a result.

11

Programming is about
processing information

based on some
model of the problem, 

and involves
changing the world
to achieve a result.

12

Programming is about
processing information

based on some
model of the problem, 

and involves
changing the world
to achieve a result.

13

Programming languages support
us in lifting this cognitive load.

Computers then carry out
automated processing.

14

• Programming ultimately results in changing the world (side-
effects are necessary)…

• …if only by redistributing voltages on tiny scraps of silicon!

• But we don’t think at that low-level scale!  
“We don’t design bridges by using quantum physics”.

• We need abstractions — programming languages provide
us with these.

• Prolog’s abstractions: terms (including variables, which
have a special role) and clauses.  
Simple but powerful.

15

MAKE

PROGRAMMING

GREAT AGAIN

MAKE

PROGRAMMING

GREAT AGAIN

Beware oversimplification

e.g., “Best language ever”

https://i.imgur.com/Sex1E8m.jpg

Now with
more

lambdas!
18

https://i.imgur.com/Sex1E8m.jpg

i.e., The best language for the task at hand, given its
expressiveness, compiler targets, toolchain support,

abundance of trained programmers, who else uses it, …,
budget and deadlines.

Cultivate judgement.

19

Spoiler:
3 things about Prolog

• Program with relations, not functions. 
We need to think slightly differently from “calling a
function” or “passing parameters”.

• Giving a procedural interpretation to logic. As a result,
lose some properties (e.g., commutativity) but gain
others (better control over search space).

• Computation by deduction.  
Compute with knowledge, as formalised in FOL.  
In Prolog, truth = provability, falsehood = unprovability,
both in a “small world”.

20

Example

List membership.

21

(Excepting side-conditions, since they’d apply  
similarly to functions and relations)  

• With functions, you have inputs and outputs.
• With relations, any of the parameters could be the inputs or
outputs.

Relation vs Function

22

Everything

23

Everything

Non-List
Things

List Things

24

Everything (a.k.a. Herbrand Universe)

25

Non-List Things Lists Things

1 [1]
[1,1]2

3
…

…
[1,2,3]
[1,2,3,1]
…
[[1],[2,3],1]
…

Everything (a.k.a. Herbrand Universe)

26

Every possible assertion (a.k.a. Herbrand Base)

27

member(1,[1,1])
member(1,[1])

member(1,[1,2,3])
member(1,[1,2,3,1])
member(1,[[1],[2,3],1])

Every possible assertion (a.k.a. Herbrand Base)

…

member(2,[1,1])
member(2,[1])

member(2,[1,2,3])
member(2,[1,2,3,1])
member(2,[[1],[2,3],1])
…

28

But what makes some assertions true
but others false?

29

member(1,[1,1])
member(1,[1])

member(1,[1,2,3])
member(1,[1,2,3,1])
member(1,[[1],[2,3],1])
…

member(2,[1,1])
member(2,[1])

member(2,[1,2,3])
member(2,[1,2,3,1])
member(2,[[1],[2,3],1])
…

But what makes some assertions true
but others false?

30

R1(Thing,List)

Which is the ‘membership’ relation I seek?

R2(Thing,List)

…

Relations between
Things and Lists

R3(Thing,List)

31

R1(Thing,List)

Which is the ‘membership’ relation I seek?

Relations between
Things and Lists

Example behaviours
• Empty relation
• Thing is an element of List
• Thing is NOT an element  

of List
• Thing is the GREATEST  

element of List
• Thing is the 1st element of  

List
• Thing is the 2nd element of  

List
…

R2(Thing,List)

…

R3(Thing,List)

32

Which is the ‘membership’ relation I seek?

Answer: this is what your Prolog implementation specifies.

Demo

33

All other “lectures” will take
place in Intel Lab

• Bring your own laptop+headphones.

• We'll be there to answer your questions
and talk to you about the course.

• You are free to work through the course in
your own time if you prefer.

34

Question book

• Help you review the course material.

• Questions categorised 
{Bookwork, Shallow, Deep, Open}.

• Can be used for supervisions, self-study,
and revision.

35

Feedback and problems
• If you are stuck:

• come to a lab session  
(Intel Lab)

• talk to your peers

• talk to your supervisor

• If the software isn’t
working then email me. (Not actual student

 experiencing Prolog)
36

Assessment is through practical
exercise (Tick) and an exam question

• Tick’s due date announced shortly by email.  
Exercise details on the course website.

• You need to complete either the Prolog or the  
C/C++ exercise.

• There is one Prolog question in the exam.

37

38

In Tick we’ll also look for
good programming style.

• Simple is often best. “Clever” often leads to overengineering, technical
debt, .…

• Readability is essential.

• Reason: it makes it easier to evaluate correctness, and maintain the
program. 
cf. “Obfuscated C contest”

• For coding style advice, see “Coding Guidelines for Prolog” by
Covington et al.

• Or “The Elements of Programming Style"  
https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style

• Practice empathy, think of the reader (of your code).
39

https://en.wikipedia.org/wiki/The_Elements_of_Programming_Style

Send me your videos
• Explain something in the course.

• Worked solution to supervision question or a tripos
question

• If they are clear and correct I'll include them in the
course and credit you as a contributor at the top of the
course webpages. (CV points!)

• Avoid filming naked at 4am..

• (Explaining something is a good way to learn it)

40

Wrap-up: Objectives
• be able to write programs in Prolog using techniques

such as accumulators and difference structures;

• know how to model the backtracking behaviour of
program execution;

• appreciate the unique perspective Prolog gives to
problem solving and algorithm design;

• understand how larger programs can be created
using the basic programming techniques used in this
course.

41

