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Motivation

We have seen optimisation techniques which involve 
removing and reordering code at both the source- and 
intermediate-language levels in an attempt to achieve 

the smallest and fastest correct program.

These techniques are platform-independent, and pay 
little attention to the details of the target architecture.

We can improve target code if we consider the 
architectural characteristics of the target processor.



Single-cycle implementation 
In single-cycle processor designs, an entire instruction 

is executed in a single clock cycle.

Each instruction will use some of the processor’s 
functional units:

Instruction 
fetch
(IF)

Register 
fetch
(RF)

Execute
(EX)

Memory 
access
(MEM)

Register 
write-back

(WB)

For example, a load instruction uses all five.



Single-cycle implementation 

IF RF EX MEM WB IF RF EX MEM WB IF RF EX MEM WB

lw $1,0($0) lw $2,4($0) lw $3,8($0)



Single-cycle implementation 

On these processors, the order of instructions doesn’t 
make any difference to execution time: each instruction 
takes one clock cycle, so n instructions will take n cycles 

and can be executed in any (correct) order.

In this case we can naïvely translate our optimised 3-
address code by expanding each intermediate instruction 

into the appropriate sequence of target instructions; 
clever reordering is unlikely to yield any benefits.



Pipelined implementation 

In pipelined processor designs (e.g. MIPS R2000), each 
functional unit works independently and does its job 
in a single clock cycle, so different functional units 

can be handling different instructions simultaneously.

These functional units are arranged in a pipeline, and 
the result from each unit is passed to the next one 
via a pipeline register before the next clock cycle.



Pipelined implementation 

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

lw $1,0($0)

lw $2,4($0)

lw $3,8($0)



Pipelined implementation 

In this multicycle design the clock cycle is much 
shorter (one functional unit vs. one complete 

instruction) and ideally we can still execute one 
instruction per cycle when the pipeline is full.

Programs will therefore execute more quickly.



Pipeline hazards
However, it is not always possible to run the 

pipeline at full capacity.

Some situations prevent the next instruction 
from executing in the next clock cycle: this is a 

pipeline hazard.

On interlocked hardware (e.g. SPARC) a hazard 
will cause a pipeline stall; on non-interlocked 

hardware (e.g. MIPS) the compiler must 
generate explicit NOPs to avoid errors.



add $3,$1,$2
add $5,$3,$4

Pipeline hazards

Consider data hazards: these occur when an instruction 
depends upon the result of an earlier one.

The pipeline must stall until the result of the first add 
has been written back into register $3.



Pipeline hazards

IF RF EX MEM WB

IF RF EX

add $3,$1,$2

add $5,$3,$4 STALL



Pipeline hazards

The severity of this effect can be reduced by using 
feed-forwarding: extra paths are added between 

functional units, allowing data to be used before it 
has been written back into registers.



Pipeline hazards

IF RF EX MEM WBadd $3,$1,$2

add $5,$3,$4 IF RF EX MEM WB



Pipeline hazards

But even when feed-forwarding is used, 
some combinations of instructions will 

always result in a stall.



Pipeline hazards

IF RF EX MEM WBlw $1,0($0)

add $3,$1,$2 IF RF EX MEM WBSTALL



Instruction order

lw $1,0($0)
add $2,$2,$1
lw $3,4($0)
add $4,$4,$3

Since particular combinations of instructions cause this 
problem on pipelined architectures, we can achieve better 
performance by reordering instructions where possible. 



Instruction order

IF RF EX MEM WBlw $1,0($0)

add $2,$2,$1 IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

lw $3,4($0)

add $4,$4,$3

STALL

STALL

10 cycles



lw $3,4($0)

add $2,$2,$1

Instruction order

IF RF EX MEM WBlw $1,0($0)

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WBadd $4,$4,$3

8 cycles



Instruction dependencies

We can only reorder target-code instructions if 
the meaning of the program is preserved.

We must therefore identify and respect the data 
dependencies which exist between instructions.

In particular, whenever an instruction is 
dependent upon an earlier one, the order of 
these two instructions must not be reversed.



Instruction dependencies

There are three kinds of data dependency:

• Read after write

• Write after read

• Write after write

Whenever one of these dependencies exists between 
two instructions, we cannot safely permute them.



Instruction dependencies

Read after write:
An instruction reads from a location

after an earlier instruction has written to it.

add $3,$1,$2
…
add $4,$4,$3

add $4,$4,$3
…
add $3,$1,$2

✗Reads old value



Instruction dependencies

Write after read:
An instruction writes to a location

after an earlier instruction has read from it.

add $4,$4,$3
…
add $3,$1,$2

add $3,$1,$2
…
add $4,$4,$3

✗Reads new value



Instruction dependencies

Write after write: 
An instruction writes to a location

after an earlier instruction has written to it.

add $3,$1,$2
…
add $3,$4,$5

add $3,$4,$5
…
add $3,$1,$2

✗Writes old value



Instruction scheduling
We would like to reorder the instructions 

within each basic block in a way which

• preserves the dependencies between those 
instructions (and hence the correctness of 
the program), and

• achieves the minimum possible number of 
pipeline stalls.

We can address these two goals separately.



Preserving dependencies

Firstly, we can construct a directed acyclic graph (DAG) 
to represent the dependencies between instructions:

• For each instruction in the basic block, create a 
corresponding vertex in the graph.

• For each dependency between two instructions, 
create a corresponding edge in the graph.

‣ This edge is directed: it goes from the earlier 
instruction to the later one.



Preserving dependencies

lw $1,0($0)
lw $2,4($0)
add $3,$1,$2
sw $3,12($0)
lw $4,8($0)
add $3,$1,$4
sw $3,16($0)

1
2
3
4
5
6
7

1 2

3 4

5 6

7



Preserving dependencies

Any topological sort of this DAG (i.e. any linear 
ordering of the vertices which keeps all the edges 

“pointing forwards”) will maintain the dependencies 
and hence preserve the correctness of the program.



Preserving dependencies
1 2

3 4

5 6

7

1, 2, 3, 4, 5, 6, 7
2, 1, 3, 4, 5, 6, 7

1, 2, 3, 5, 4, 6, 7
1, 2, 5, 3, 4, 6, 7
1, 5, 2, 3, 4, 6, 7
5, 1, 2, 3, 4, 6, 7

2, 1, 3, 5, 4, 6, 7
2, 1, 5, 3, 4, 6, 7
2, 5, 1, 3, 4, 6, 7
5, 2, 1, 3, 4, 6, 7



Minimising stalls
Secondly, we want to choose an instruction order 
which causes the fewest possible pipeline stalls.

Unfortunately, this problem is (as usual) NP-complete 
and hence difficult to solve in a reasonable amount of 

time for realistic quantities of instructions.

However, we can devise some static scheduling 
heuristics to help guide us; we will hence choose a 

sensible and reasonably optimal instruction order, if 
not necessarily the absolute best one possible.



Minimising stalls

• does not conflict with the previous emitted instruction

• is most likely to conflict if first of a pair (e.g. prefer lw 
to add)

• is as far away as possible (along paths in the DAG) 
from an instruction which can validly be scheduled last

Each time we’re emitting the next instruction, 
we should try to choose one which:



Algorithm

Armed with the scheduling DAG and the static 
scheduling heuristics, we can now devise an 
algorithm to perform instruction scheduling.



Algorithm

• Construct the scheduling DAG.

‣We can do this in O(n2) by scanning backwards 
through the basic block and adding edges as 
dependencies arise.

• Initialise the candidate list to contain the minimal 
elements of the DAG.



Algorithm

• While the candidate list is non-empty:

• If possible, emit a candidate instruction satisfying all 
three of the static scheduling heuristics;

• if no instruction satisfies all the heuristics, either 
emit NOP (on MIPS) or an instruction satisfying 
only the last two heuristics (on SPARC).

• Remove the instruction from the DAG and insert 
the newly minimal elements into the candidate list.



Algorithm
1 2

3 4

5 6

7

Candidates:
{ 1, 2, 5 }

lw $1,0($0)1



Algorithm
1 2

3 4

5 6

7

Candidates:
{ 2, 5 }

lw $1,0($0)
lw $2,4($0)

1
2



Algorithm
1 2

3 4

5 6

7

Candidates:
{ 3, 5 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)

1
2
5



Algorithm
1 2

3 4

5 6

7

Candidates:
{ 3 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2

1
2
5
3



Algorithm
1 2

3 4

5 6

7

Candidates:
{ 4 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)

1
2
5
3
4



Algorithm
1 2

3 4

5 6

7

Candidates:
{ 6 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)
add $3,$1,$4

1
2
5
3
4
6



Algorithm
1 2

3 4

5 6

7

Candidates:
{ 7 }

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)
add $3,$1,$4
sw $3,16($0)

1
2
5
3
4
6
7



Algorithm

lw $1,0($0)
lw $2,4($0)
add $3,$1,$2
sw $3,12($0)
lw $4,8($0)
add $3,$1,$4
sw $3,16($0)

1
2
3
4
5
6
7

lw $1,0($0)
lw $2,4($0)
lw $4,8($0)
add $3,$1,$2
sw $3,12($0)
add $3,$1,$4
sw $3,16($0)

1
2
5
3
4
6
7

2 stalls
13 cycles

no stalls
11 cycles

Original code: Scheduled code:



Dynamic scheduling

Instruction scheduling is important for getting the best 
performance out of a processor; if the compiler does a 
bad job (or doesn’t even try), performance will suffer.

As a result, modern processors (e.g. Intel Pentium) 
have dedicated hardware for performing instruction 

scheduling dynamically as the code is executing.

This may appear to render compile-time scheduling 
rather redundant.



Dynamic scheduling

• This is still compiler technology, just increasingly 
being implemented in hardware.

• Somebody — now hardware designers — must 
still understand the principles.

• Embedded processors may not do dynamic 
scheduling, or may have the option to turn the 
feature off completely to save power, so it’s still 
worth doing at compile-time.

But:



Summary

• Instruction pipelines allow a processor to work on 
executing several instructions at once

• Pipeline hazards cause stalls and impede optimal 
throughput, even when feed-forwarding is used

• Instructions may be reordered to avoid stalls

• Dependencies between instructions limit reordering

• Static scheduling heuristics may be used to achieve 
near-optimal scheduling with an O(n2) algorithm




