Alias and Points-to Analysis

Alan Mycroft
Computer Laboratory, Cambridge University

http://www.cl.cam.ac.uk/teaching/current/OptComp

Lecture 13a [may be updated for 2013]
Points-to analysis, parallelisation etc.

Consider an MP3 player containing code:

```c
for (channel = 0; channel < 2; channel++)
    process_audio(channel);
```

or even

```c
process_audio_left();
process_audio_right();
```

Can we run these two calls in parallel?
Points-to analysis, parallelisation etc. (2)

Multi-core CPU: *probably* want to run these two calls in parallel:

```c
#pragma omp parallel for // OpenMP
for (channel = 0; channel < 2; channel++)
    process_audio(channel);
```

or

```c
spawn process_audio_left(); // e.g. Cilk, X10
process_audio_right();
sync;
```

or

```c
par { process_audio_left() // language primitives
    ||| process_audio_right()
}
```

Question: when is this transformation *safe*?
Can we know what locations are read/written?

Basic parallelisation criterion: parallelise only if neither call writes to a memory location read or written by the other.

So, we want to know (at compile time) what locations a procedure might write to at run time. Sounds hard!
Can we know what locations are read/written?

Non-address-taken variables are easy, but consider:

```c
    for (i = 0; i < n; i++) v[i]->field++;
```

Can this be parallelised? Depends on knowing that each cell of $v[]$ points to a distinct object (i.e. there is no aliasing).

So, given a pointer value, we are interested in finding a finite description of what locations it might point to – or, given a procedure, a description of what locations it might read from or write to.

If two such descriptions have empty intersection then we can parallelise.
Can we know what locations are read/written?

For simple variables, even including address-taken variables, this is moderately easy (we have done similar things in “ambiguous ref” in LVA and “ambiguous kill” in Avail). Multi-level pointers, e.g.

```c
int a, *b, **c;
b=&a;
c=&b;
```

make the problem more complicated here.

What about `new`, especially in a loop?

Coarse solution: treat all allocations done at a single program point as being aliased (as if they all return a pointer to a single piece of memory).
Andersen’s points-to analysis

An $O(n^3)$ analysis – underlying problem same as 0-CFA.
We’ll only look at the intra-procedural case.

First assume program has been re-written so that all pointer-typed operations are of the form

\[
x := \text{new}_\ell \quad \ell \text{ is a program point (label)}
\]

\[
x := \text{null} \quad \text{optional, can see as variant of new}
\]

\[
x := \&y \quad \text{only in C-like languages, also like new variant}
\]

\[
x := y \quad \text{copy}
\]

\[
x := *y \quad \text{field access of object}
\]

\[
*x := y \quad \text{field access of object}
\]

Note: no pointer arithmetic (or pointer-returning functions here).
Also fields conflated (but ‘field-sensitive’ is possible too).
Andersen’s points-to analysis (2)

Get set of abstract values \(V = \text{Var} \cup \{ \text{new}_\ell \mid \ell \in \text{Prog} \} \cup \{ \text{null} \} \).

Note that this means that all \text{new} allocations at program point \(\ell \) are confflated – makes things finite but loses precision.

The \textit{points-to} relation is seen as a function \(pt : V \rightarrow \mathcal{P}(V) \). While we might imagine having a different \(pt \) at each program point (like liveness) Andersen keeps one per function.

Have type-like constraints (one per source-level assignment)

\[
\begin{align*}
\frac{}{x := \&y : y \in pt(x)} & \quad \frac{}{x := y : pt(y) \subseteq pt(x)} \\
\frac{z \in pt(y)}{x := *y : pt(z) \subseteq pt(x)} & \quad \frac{z \in pt(x)}{*x := y : pt(y) \subseteq pt(z)}
\end{align*}
\]

\(x := \text{new}_\ell \) and \(x := \text{null} \) are treated identically to \(x := \&y \).
Andersen’s points-to analysis (3)

Alternatively, the same formulae presented in the style of 0-CFA (this is only stylistic, it’s the same constraint system, but there are no obvious deep connections between 0-CFA and Andersen’s points-to):

- for command $x := &y$ emit constraint $pt(x) \supseteq \{y\}$
- for command $x := y$ emit constraint $pt(x) \supseteq pt(y)$
- for command $x := *y$ emit constraint implication $pt(y) \supseteq \{z\} \implies pt(x) \supseteq pt(z)$
- for command $*x := y$ emit constraint implication $pt(x) \supseteq \{z\} \implies pt(z) \supseteq pt(y)$
Andersen’s points-to analysis (4)

Flow-insensitive – we only look at the assignments, not in which order they occur. Faster but less precise – syntax-directed rules all use the same set-like combination of constraints (∪ here).

Flow-insensitive means property inference rules are essentially of the form:

(ASS) \(\vdash x := e : \ldots \)

(SEQ) \(\vdash C : S \quad \vdash C' : S' \)

(COND) \(\vdash C : S \quad \vdash C' : S' \)

\(\vdash \text{if } e \text{ then } C \text{ else } C' : S \cup S' \)

(WHILE) \(\vdash C : S \)

\(\vdash \text{while } e \text{ do } C : S \)
Andersen: example

[Example taken from notes by Michelle Mills Strout of Colorado State University]

<table>
<thead>
<tr>
<th>command</th>
<th>constraint</th>
<th>solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a = & b;$</td>
<td>$pt(a) \supseteq { b }$</td>
<td>$pt(a) = { b, d }$</td>
</tr>
<tr>
<td>$c = a;$</td>
<td>$pt(c) \supseteq pt(a)$</td>
<td>$pt(c) = { b, d }$</td>
</tr>
<tr>
<td>$a = & d;$</td>
<td>$pt(a) \supseteq { d }$</td>
<td>$pt(b) = pt(d) = {}$</td>
</tr>
<tr>
<td>$e = a;$</td>
<td>$pt(e) \supseteq pt(a)$</td>
<td>$pt(e) = { b, d }$</td>
</tr>
</tbody>
</table>

Note that a flow-sensitive algorithm would instead give $pt(c) = \{ b \}$ and $pt(e) = \{ d \}$ (assuming the statements appear in the above order in a single basic block).
Andersen: example (2)

<table>
<thead>
<tr>
<th>Command</th>
<th>Constraint</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a = & b;)</td>
<td>(pt(a) \supseteq { b })</td>
<td>(pt(a) = { b, d })</td>
</tr>
<tr>
<td>(c = & d;)</td>
<td>(pt(c) \supseteq { d })</td>
<td>(pt(c) = { d })</td>
</tr>
<tr>
<td>(e = & a;)</td>
<td>(pt(e) \supseteq { a })</td>
<td>(pt(e) = { a })</td>
</tr>
<tr>
<td>(f = a;)</td>
<td>(pt(f) \supseteq pt(a))</td>
<td>(pt(f) = { b, d })</td>
</tr>
<tr>
<td>(* e = c;)</td>
<td>(pt(e) \supseteq { z } \implies pt(z) \supseteq pt(c))</td>
<td></td>
</tr>
<tr>
<td>(generates)</td>
<td>(pt(a) \supseteq pt(c))</td>
<td></td>
</tr>
</tbody>
</table>
Points-to analysis – some other approaches

• Steensgaard’s algorithm: treat $e := e'$ and $e' := e$ identically.
 Less accurate than Andersen’s algorithm but runs in almost-linear time.

• shape analysis (Sagiv, Wilhelm, Reps) – a program analysis with elements being abstract heap nodes (representing a family of real-world heap notes) and edges between them being must or may point-to. Nodes are labelled with variables and fields which may point to them. More accurate but abstract heaps can become very large.

 Coarse techniques can give poor results (especially inter-procedurally), while more sophisticated techniques can become very expensive for large programs.
Points-to and alias analysis

“Alias analysis is undecidable in theory and intractable in practice.”

It’s also very discontinuous: small changes in program can produce global changes in analysis of aliasing. Potentially bad during program development.

So what can we do?

Possible answer: languages with type-like restrictions on where pointers can point to.

- Dijkstra said (effectively): spaghetti code is bad; so use structured programming.

- I argue elsewhere that spaghetti data is bad; so need language primitives to control aliasing (“structured data”).