[08] SEGMENTATION
OUTLINE

- Segmentation
 - An Alternative to Paging
- Implementing Segments
 - Segment Table
 - Lookup Algorithm
- Protection and Sharing
 - Sharing Subtleties
 - External Fragmentation
- Segmentation vs Paging
 - Comparison
 - Combination
- Summary
- Extras
 - Dynamic Linking & Loading
SEGMENTATION

- Segmentation
 - An Alternative to Paging
- Implementing Segments
- Protection and Sharing
- Segmentation vs Paging
- Summary
- Extras
AN ALTERNATIVE TO PAGING

View memory as a set of segments of no particular size, with no particular ordering.

This corresponds to typical modular approaches taken to program development.

The length of a segment depends on the complexity of the function (e.g., sqrt)
WHAT IS A SEGMENT?

Segmentation supports the user-view of memory that the logical address space becomes a collection of (typically disjoint) segments

Segments have a name (or a number) and a length. Addresses specify segment, and offset within segment

To access memory, user program specifies segment + offset, and the compiler (or, as in MULTICS, the OS) translates

This contrasts with paging where the user is unaware of memory structure — everything is managed invisibly by the OS
IMPLEMENTING SEGMENTS

- Segmentation
- Implementing Segments
 - Segment Table
 - Lookup Algorithm
- Protection and Sharing
- Segmentation vs Paging
- Summary
- Extras
IMPLEMENTING SEGMENTS

Logical addresses are pairs, (segment, offset)

For example, the compiler might construct distinct segments for global variables, procedure call stack, code for each procedure/function, local variables for each procedure/function

Finally the loader takes each segment and maps it to a physical segment number
IMPLEMENTING SEGMENTS

<table>
<thead>
<tr>
<th>Segment</th>
<th>Access</th>
<th>Base</th>
<th>Size</th>
<th>Others!</th>
</tr>
</thead>
</table>

Maintain a **Segment Table** for each process:

- If there are too many segments then the table is kept in memory, pointed to by **ST Base Register** (STBR)
- Also have an **ST Length Register** (STLR) since the number of segments used by different programs will diverge widely
- ST is part of the process context and hence is changed on each process switch
- ST logically accessed on each memory reference, so speed is critical
IMPLEMENTING SEGMENTS: ALGORITHM

1. Program presents address \((s, d)\).
2. If \(s \geq \text{STLR}\) then give up.
3. Obtain table entry at reference \(s + \text{STBR}\), a tuple of form \((b_s, l_s)\).
4. If \(0 \leq d < l_s\) then this is a valid address at location \((b_s, d)\), else fault.

- The two operations \(b_s, d\) (concatenation) and \(0 \leq d < l_s\) can be done simultaneously to save time.
- Still requires 2 memory references per lookup though, so care needed.
- E.g., Use a set of associative registers to hold most recently used ST entries.
- Similar performance gains to the TLB description earlier.
PROTECTION AND SHARING

- Segmentation
- Implementing Segments
- Protection and Sharing
 - Sharing Subtleties
 - External Fragmentation
- Segmentation vs Paging
- Summary
- Extras
PROTECTION

Segmentation's big advantage is to provide protection between components. That protection is provided *per segment*; i.e. it corresponds to the logical view.

Protection bits associated with each ST entry checked in usual way, e.g., instruction segments should not be self-modifying, so are protected against writes.

Could go further — e.g., place every array in its own segment so that array limits can be checked by the hardware.
SHARING

Segmentation also facilitates sharing of code/data:

- Each process has its own STBR/STLR
- Sharing is enabled when two processes have entries for the same physical locations
- Sharing occurs at segment level, with each segment having own protection bits
 - For data segments can use copy-on-write as per paged case
- Can share only parts of programs, e.g., C library but there are subtleties
SHARING: SUBTLETIES

- For example, jumps within shared code
 - Jump specified as a condition + transfer address, i.e., (segment, offset)
 - Segment is (of course) this one
 - Thus all programs sharing this segment must use the same number to refer to it, else confusion will result
 - As the number of users sharing a segment grows, so does difficulty of finding a common shared segment number
 - Thus, specify branches as PC-relative or relative to a register containing the current segment number
 - (Read only segments containing no pointers may be shared with different seg numbers)
SHARING SEGMENTS

• Wasteful (and dangerous) to store common information on shared segment in each process segment table
• Assign each segment a unique **System Segment Number** (SSN)
• **Process Segment Table** simply maps from a **Process Segment Number** (PSN) to SSN
EXTERNAL FRAGMENTATION RETURNS

Long term scheduler must find spots in memory for all segments of a program. Problem is that segments are variable size – thus, we must handle fragmentation

1. Usually resolved with best/first fit algorithm
2. External frag may cause process to have to wait for sufficient space
3. Compaction can be used in cases where a process would be delayed

Tradeoff between compaction/delay depends on average segment size

• Each process has just one segment reduces to variable sized partitions
• Each byte has its own segment separately relocated quadruples memory use!
• Fixed size small segments is equivalent to paging!
• Generally, with small average segment sizes, external fragmentation is small – more likely to make things fit with lots of small ones (box packing)
SEGMENTATION VS PAGING

• Segmentation
• Implementing Segments
• Protection and Sharing
• Segmentation vs Paging
 ▪ Comparison
 ▪ Combination
• Summary
• Extras
SEGMENTATION VERSUS PAGING

- Protection, Sharing, Demand etc are all per segment or page, depending on scheme
- For **protection and sharing**, easier to have it per logical entity, i.e., per segment
- For **allocation and demand access** (and, in fact, certain types of sharing such as COW), we prefer paging because:
 - Allocation is easier
 - Cost of sharing/demand loading is minimised

<table>
<thead>
<tr>
<th></th>
<th>logical view</th>
<th>allocation</th>
</tr>
</thead>
<tbody>
<tr>
<td>segmentation</td>
<td>good</td>
<td>bad</td>
</tr>
<tr>
<td>paging</td>
<td>bad</td>
<td>good</td>
</tr>
</tbody>
</table>
COMBINING SEGMENTATION AND PAGING

1. **Paged segments**, used in Multics, OS/2
 - Divide each segment s_i into $k = \lceil l_i/2^n \rceil$ pages, where l_i is the limit (length) of the segment
 - Provision one page table per segment
 - Unfortunately: high hardware cost and complexity; not very portable

2. **Software segments**, used in most modern OSs
 - Consider pages $[m, \ldots, m + l]$ to be a segment
 - OS must ensure protection and sharing kept consistent over region
 - Unfortunately, leads to a loss of granularity
 - However, it is relatively simple and portable

Arguably, main reason hardware segments lost is portability: you can do software segments with just paging hardware, but cannot (easily) do software paging with segmentation hardware
SUMMARY

- Segmentation
- Implementing Segments
- Protection and Sharing
- Segmentation vs Paging
- **Summary**
- Extras
SUMMARY: VIRTUAL ADDRESSING

- Direct access to physical memory is not great as have to handle:
 - Contiguous allocation: need a large lump, end up with external fragmentation
 - Address binding: handling absolute addressing
 - Portability: how much memory does a "standard" machine have?
- Avoid problems by separating concepts of virtual (logical) and physical addresses (Atlas computer, 1962)
- Needham's comment

"every problem in computer science can be solved by an extra level of indirection"
SUMMARY: VIRTUAL TO PHYSICAL ADDRESS MAPPING

- Runtime mapping of logical to physical addresses handled by the MMU. Make mapping per-process, then:
 - Allocation problem split:
 - Virtual address allocation easy
 - Allocate physical memory 'behind the scenes'
 - Address binding solved:
 - Bind to logical addresses at compile-time
 - Bind to real addresses at load time/run time
- Modern operating systems use paging hardware and fake out segments in software
SUMMARY: IMPLEMENTATION CONSIDERATIONS

- **Hardware support**
 - Simple base register enough for partitioning
 - Segmentation and paging need large tables
- **Performance**
 - Complex algorithms need more lookups per reference plus hardware support
 - Simple schemes preferred eg., simple addition to base
- **Fragmentation**: internal/external from fixed/variable size allocation units
- **Relocation**: solves external fragmentation, at high cost
 - Logical addresses must be computed dynamically, doesn't work with load time relocation
- **Swapping**: can be added to any algorithm, allowing more processes to access main memory
- **Sharing**: increases multiprogramming but requires paging or segmentation
- **Protection**: always useful, necessary to share code/data, needs a couple of bits
EXTRAS

- Segmentation
- Implementing Segments
- Protection and Sharing
- Segmentation vs Paging
- Summary
- Extras
 - Dynamic Linking & Loading
DYNAMIC LINKING

Relatively new appearance in OS (early 80's). Uses *shared objects/libraries* (Unix), or *dynamically linked libraries* (DLLs; Windows). Enables a compiled binary to invoke, at runtime, routines which are dynamically linked:

- If a routine is invoked which is part of the dynamically linked code, this will be implemented as a call into a set of stubs
- Stubs check if routine has been loaded
- If not, linker loads routine (if necessary) and replaces stub code by routing
- If sharing a library, the address binding problem must also be solved, requiring OS support: in the system, only the OS knows which libraries are being shared among which processes
- Shared libs must be stateless or concurrency safe or copy on write

Results in smaller binaries (on-disk and in-memory) and increase flexibility (fix a bug without relinking all binaries)
DYNAMIC LOADING

- At runtime a routine is loaded when first invoked
- The dynamic loader performs relocation on the fly
- It is the responsibility of the user to implement loading
- OS may provide library support to assist user
SUMMARY

• Segmentation
 ▪ An Alternative to Paging
• Implementing Segments
 ▪ Segment Table
 ▪ Lookup Algorithm
• Protection and Sharing
 ▪ Sharing Subtleties
 ▪ External Fragmentation
• Segmentation vs Paging
 ▪ Comparison
 ▪ Combination
• Summary
• Extras
 ▪ Dynamic Linking & Loading