[05] SCHEDULING ALGORITHMS
OUTLINE

- First-Come First-Served
- Shortest Job First
- Shortest Response Time First
- Predicting Burst Length
- Round Robin
- Static vs Dynamic Priority
FIRST-COME FIRST-SERVED (FCFS)

Simplest possible scheduling algorithm, depending only on the order in which processes arrive

E.g. given the following demand:

<table>
<thead>
<tr>
<th>Process</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>25</td>
</tr>
<tr>
<td>P_2</td>
<td>4</td>
</tr>
<tr>
<td>P_3</td>
<td>7</td>
</tr>
</tbody>
</table>
EXAMPLE: FCFS

Consider the average waiting time under different arrival orders

\(P_1, P_2, P_3 : \)

- Waiting time \(P_1 = 0, P_2 = 25, P_3 = 29 \)
- Average waiting time: \(\frac{0+25+29}{3} = 18 \)

\(P_3, P_2, P_1 : \)

- Waiting time \(P_1 = 11, P_2 = 7, P_3 = 0 \)
- Average waiting time: \(\frac{11+7+0}{3} = 6 \)

Arriving in reverse order is three times as good!

- The first case is poor due to the \textbf{convoy effect}: later processes are held up behind a long-running first process
- FCFS is simple but not terribly robust to different arrival processes
SHORTEST JOB FIRST (SJF)

Intuition from FCFS leads us to *shortest job first* (SJF) scheduling

- Associate with each process the length of its next CPU burst
- Use these lengths to schedule the process with the shortest time
- Use, e.g., FCFS to break ties
EXAMPLE: SJF

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_1)</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>(P_2)</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>(P_3)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>(P_4)</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Waiting time for \(P_1 = 0, P_2 = 6, P_3 = 3, P_4 = 7\). Average waiting time:

\[
\frac{(0+6+3+7)}{4} = 4
\]

SJF is optimal with respect to average waiting time:

- It minimises average waiting time for a given set of processes
- What might go wrong?
SHORTEST REMAINING-TIME FIRST (SRTF)

Simply a preemptive version of SJF: preempt the running process if a new process arrives with a CPU burst length less than the remaining time of the current executing process.
EXAMPLE: SRTF

As before:

<table>
<thead>
<tr>
<th>Process</th>
<th>Arrival Time</th>
<th>Burst Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_1</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>P_2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>P_3</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>P_4</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

Waiting time for $P_1 = 9, P_2 = 1, P_3 = 0, P_4 = 2$

Average waiting time: $\frac{(9+1+0+2)}{4} = 3$
EXAMPLE: SRTF

Surely this is optimal in the face of new runnable processes arriving? Not necessarily – why?

- Context switches are not free: many very short burst length processes may thrash the CPU, preventing useful work being done
- More fundamentally, we can’t generally know what the future burst length is!
PREDICTING BURST LENGTHS

- For both SJF and SRTF require the next "burst length" for each process means we must estimate it.

- Can be done by using the length of previous CPU bursts, using exponential averaging:

 1. $t_n = \text{actual length of } n^{th} \text{ CPU burst.}$
 2. $\tau_{n+1} = \text{predicted value for next CPU burst.}$
 3. For $\alpha, 0 \leq \alpha \leq 1$ define:

 $\tau_{n+1} = \alpha t_n + (1 - \alpha)\tau_n$
PREDICTING BURST LENGTHS

• If we expand the formula we get:

\[\tau_{n+1} = \alpha t_n + \ldots + (1 - \alpha)^j \alpha t_{n-j} + \ldots + (1 - \alpha)^{n+1} \tau_0 \]

where \(\tau_0 \) is some constant

• Choose value of \(\alpha \) according to our belief about the system, e.g., if we believe history irrelevant, choose \(\alpha \approx 1 \) and then get \(\tau_{n+1} \approx t_n \)

• In general an exponential averaging scheme is a good predictor if the variance is small

• Since both \(\alpha \) and \((1 - \alpha) \) are less than or equal to one, each successive term has less weight than its predecessor

• NB. Need some consideration of load, else get (counter-intuitively) increased priorities when increased load
ROUND ROBIN

A preemptive scheduling scheme for time-sharing systems.

- Define a small fixed unit of time called a quantum (or time-slice), typically 10 – 100 milliseconds
- Process at the front of the ready queue is allocated the CPU for (up to) one quantum
- When the time has elapsed, the process is preempted and appended to the ready queue
ROUND ROBIN: PROPERTIES

Round robin has some nice properties:

- Fair: given \(n \) processes in the ready queue and time quantum \(q \), each process gets \(1/n^{th} \) of the CPU
- Live: no process waits more than \((n - 1)q\) time units before receiving a CPU allocation
- Typically get higher average turnaround time than SRTF, but better average response time

But tricky to choose the correct size quantum, \(q \):

- \(q \) too large becomes FCFS/FIFO
- \(q \) too small becomes context switch overhead too high
PRIORITY SCHEDULING

Associate an (integer) priority with each process, e.g.,

<table>
<thead>
<tr>
<th>Prio</th>
<th>Process type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>system internal processes</td>
</tr>
<tr>
<td>1</td>
<td>interactive processes (staff)</td>
</tr>
<tr>
<td>2</td>
<td>interactive processes (students)</td>
</tr>
<tr>
<td>3</td>
<td>batch processes</td>
</tr>
</tbody>
</table>

Simplest form might be just system vs user tasks
PRIORITY SCHEDULING

• Then allocate CPU to the highest priority process: "highest priority" typically means smallest integer
 ▪ Get preemptive and non-preemptive variants
 ▪ E.g., SJF is a priority scheduling algorithm where priority is the predicted next CPU burst time
TIE-BREAKING

What do with ties?

- Round robin with time-slicing, allocating quantum to each process in turn
- Problem: biases towards CPU intensive jobs (Why?)
- Solution?
 - Per-process quantum based on usage?
 - Just ignore the problem?
STARVATION

Urban legend about IBM 7074 at MIT: when shut down in 1973, low-priority processes were found which had been submitted in 1967 and had not yet been run...

This is the biggest problem with static priority systems: a low priority process is not guaranteed to run — ever!
DYNAMIC PRIORITY SCHEDULING

Prevent the starvation problem: use same scheduling algorithm, but allow priorities to change over time

- Processes have a (static) base priority and a dynamic effective priority
 - If process starved for k seconds, increment effective priority
 - Once process runs, reset effective priority
EXAMPLE: COMPUTED PRIORITY

First used in Dijkstra’s THE

- Timeslots: \(\ldots, t, t + 1, \ldots \)
- In each time slot \(t \), measure the CPU usage of process \(j \) : \(u^j \)
- Priority for process \(j \) in slot \(t + 1 \):
 \[
p_{t+1}^j = f(u_t^j, p_t^j, u_{t-1}^j, p_{t-1}^j, \ldots)
 \]
- E.g., \(p_{t+1}^j = \frac{p_t^j}{2} + ku_t^j \)
- Penalises CPU bound but supports IO bound

Once considered impractical but now such computation considered acceptable
SUMMARY

- First-Come First-Served
- Shortest Job First
- Shortest Response Time First
- Predicting Burst Length
- Round Robin
- Static vs Dynamic Priority