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The Course

The OOP Course

 So far you have studied some procedural programming in 
Java and functional programming in ML

 Here we take your procedural Java and build on it to get 
object-oriented Java

 You have ticks in Java
 This course complements the practicals
 Some material appears only here
 Some material appears only in the practicals
 Some material appears in both: deliberately*! 

* Some material may be repeated unintentionally. If so I will claim it was deliberate. 

So far in this term you have been taught to program us-
ing the functional programming language ML. There
are many reasons we started with this, chief among
them being that everything is a well-formed function,
by which we mean that the output is dependent solely
on the inputs (arguments). This generally makes un-
derstanding easier since it maps directly to the func-
tions you are so familiar with from maths. In fact, if
you try any other functional language (e.g. Haskell)
you’ll probably discover that it’s very similar to ML
in many respects and translation is very easy. This
is a consequence of functional languages having very
carefully defined features and rules.

However, if you have any real-world experience of pro-
gramming, you’re probably aware that functional pro-
gramming is a niche choice. It is growing in popularity,
but the dominant paradigm is undoubtedly impera-
tive programming. Unlike their functional equivalents,
imperative languages can look quite different to each
other, although as time goes on there does seem to be
more uniformity arising. Imperative programming is
much more flexible1 and, crucially, not all imperative
languages support all of the same language concepts
in the same way. So, if you just learn one language
(e.g. Java) you’ll probably struggle to separate the un-
derlying programming concepts from the Java-specific
quirks and jumping ship (to, say, C++) can prove a
bit challenging.

This is quite similar to learning ‘natural’ languages

1some would say it gives you more rope to hang yourself with!

(i.e. the languages we write and speak in). We are all
proficient, if not expert, in our mother tongue. Oddly
we are very good at spotting text that breaks the
‘rules’ of that language (grammar, spelling, etc.), but
almost hopeless at identifying the rules themselves.
Becoming fluent in a new language forces you to break
language down into its constituent rules, and you be-
come better at your original language! Those that are
multilingual often comment that once you know two
languages well, picking up more is quite trivial: it’s
just a case of figuring out which rules to apply, possibly
adding a few new rules, and learning the vocabulary.
So it is with programming: once you’ve gone through
the effort of learning a couple of languages picking up
new ones is easy.

Now, the ‘examinable’ imperative language for Pa-
per 1 is Java, and you won’t be required to program
in anything else. However, Java doesn’t support all
the interesting concepts found in imperative program-
ming (yet) so other languages will be used to demon-
strate certain features. For those of you continuing in
the Natural Sciences Tripos next year, you’ll probably
need to get to grips with C++, so I will make that a
nominal second language (albeit non-examinable). We
may also find time to try out Python and some other
popular languages.

Outline

1. Types, Objects and Classes
2. Pointers, References and Memory
3. Creating Classes
4. Inheritance
5. Polymorphism
6. Lifecycle of an Object
7. Error Handling
8. Copying Objects
9. Java Collections
10.   Object Comparison 
11.   Design Patterns
12.   Design Pattern (cont.)
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Books and Resources I

 OOP Concepts
 Look for books for those learning to first program in an OOP 

language (Java, C++, Python)
 Java: How to Program by Deitel & Deitel (also C++)
 Thinking in Java by Eckels
 Java in a Nutshell (O' Reilly)  if you already know another OOP 

language
 Java specification book: http://java.sun.com/docs/books/jls/
 Lots of good resources on the web

 Design Patterns
 Design Patterns by Gamma et al.
 Lots of good resources on the web

Books and Resources II

 Also check the course web page

 Updated notes (with annotations where possible)
 Code from the lectures
 Sample tripos questions

http://www.cl.cam.ac.uk/teaching/current/OOProg/

There are many books and websites describing the
basics of OOP. The concepts themselves are quite
abstract, although most texts will use a specific
language to demonstrate them. The books I’ve
listed favour Java but you shouldn’t see that as
a dis-recommendation for other books. In terms
of websites, Oracle produce a series of tutorials
for Java, which cover OOP: http://java.sun.com/
docs/books/tutorial/ but you’ll find lots of other
good resources if you search.

0.1 Ticks

There are five OOP ticks, all in Java. They follow
on from the work you did in module three of the
Pre-arrival course, using the concepts from lectures to
build ever-better Game of Life implementations.

If you cannot meet a tick deadline you should
speak to your Director of Studies (DoS) in the first
instance. If they agree there is a legitimate reason
for late submission or a missed ticking slot, they can
email me to request an extension or new slot. Any

such action will always require the explicit support of
the DoS.
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Lecture 1

Types, Objects and Classes

1.1 Imperative, Procedural,
Object Oriented

Types of Languages

 Declarative - specify what to do, not 
how to do it. i.e. 
 E.g. HTML describes what should appear on a web 

page, and not how it should be drawn to the screen
 E.g. SQL statements such as “select * from table” tell a 

program to get information from a database, but not 
how to do so

 Imperative – specify both what and how
 E.g. “double x“ might be a declarative instruction 

that you want the variable x doubled somehow. 
Imperatively we could have “x=x*2” or “x=x+x”

Firstly a recap on declarative vs imperative:

Declarative languages specify what should be done
but not necessarily how it should be done. In a
functional language such as ML you specify what
you want to happen essentially by providing an
example of how it can be achieved. The ML com-
piler/interpreter can do exactly that or something
equivalent (i.e. it must give the same output or
result).

Imperative languages specify exactly how something
should be done. You can consider an imperative
compiler to act very robotically—it does exactly
what you tell it to and you can easily map your
code to what goes on at a machine code level;

There’s a nice meme1 that helps here:

Functional programming is like describing
your problem to a mathematician. Imper-

1attributed to arcus, #scheme on Freenode

ative programming is like giving instructions
to an idiot.

Those of you who have done the Databases course will
have encountered SQL. Even those that haven’t can
probably decipher the language to a point—here’s a
trivial example:

select * from person_table where name="Bob";

This gets all entries from the database person table
where the name column contains “Bob”. This lan-
guage is highly functional: I have specified what I
want to achieve but given no indication as to how it
should be done. The point is that the SQL language
simply doesn’t have any way to specify how to look
something up—that functionality is built into the un-
derlying database and we(as users) shouldn’t concern
ourselves.

On the other hand, the machine and assembly code
you saw in the pre-arrival course are arguably the ul-
timate imperative languages. However, as you can
imagine, programming directly in them isn’t very nice.
Other imperative languages have evolved from these,
each attempting to make the coding process more
human-friendly.

A key innovation was the use of procedures (equate
these to functions for now) to form procedural pro-
gramming. The idea is to group statements together
into procedures/functions that can be called to manip-
ulate the state. Code ends up as a mass of functions
plus some logic that calls them in an appropriate way
to achieve the desired result. That’s exactly how you
used Java in the pre-arrival course.

OOP is an extension to procedural programming (so
still imperative) where we recognise that these pro-
cedures/functions can themselves be usefully grouped
(e.g. all procedures that update a PackedLong vs all
procedures that draw to screen) and furthermore that
it often makes sense to group the state they affect with
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them (e.g. group the PackedLong methods with the
underlying long).

Wait...

You might be struggling with the fact you specified
functions in ML that appear to fit the imperative
mould: there were statements expressing how to do
something. Think of these as specifying the desired
result by giving an example of how it might be ob-
tained. Exactly what the compiler does may or may
not be the same as the example—so long as it gives
the same outputs for all inputs, it doesn’t matter.

ML as a Functional Language

 Functional languages are a subset of 
declarative languages
 ML is a functional language
 It may appear that you tell it how to do 

everything, but you should think of it as 
providing an explicit example of what should 
happen

 The compiler may optimise i.e. replace your 
implementation with something entirely 
different but 100% equivalent.

Although it’s useful to paint languages with these
broad strokes, the truth is today’s high-level languages
should be viewed more as a collection of features. ML
is a good example: it is certainly viewed as a func-
tional language but it also supports all sorts of imper-
ative programming constructs (e.g. references). Simi-
larly, the compilers for most imperative languages sup-
port optimisations where they analyse small chunks of
code and implement something different at machine-
level to increase performance—this is of course a trait
of declarative programming2. So the boundaries are
blurred, but ML is predominantly functional and Java
predominantly imperative.

1.1.1 Java as a Procedural Language

We used Java to introduce you to general procedural
programming in the pre-arrival course. This is not
ideal since Java is designed as an object oriented lan-
guage first. Trying to force it to act entirely procedu-

2Note that we need a way to switch off optimisations because
they don’t always work due to the presence of side effects in
functions. Tracking down an error in an optimisation is painful:
the ‘bug’ isn’t in the code you’ve written..!

rally required a number of ugly hacks:

• all the functions had to be static (we’ll explain
that shortly);

• we had to create placeholder classes
(public class TinyLife...); and.

• we had a lot of annoying ‘boilerplate’
code that seemed rather unnecessary (e.g.
public static void main(...

Over the next few lectures the reason why these irrita-
tions are necessary should become apparent. Ideally,
we would have used a purely procedural language that
didn’t need such hacks, but we didn’t want to force
you to setup and learn another language in one year.

1.2 Procedures, Functions,
Methods etc

Up to now, we’ve treated procedures as the same as
functions. Herein it’s useful for us to start making
some distinctions. One of the key properties of func-
tional languages is that they use proper functions. By
this I mean functions that have the same properties as
those you find in maths:

• ll functions return a (non-void) result;

• the result is only dependent on the inputs (argu-
ments); and

• no state outside of the function can be modified
(i.e. no “side effects”).

Restricting ourselves to proper functions makes it eas-
ier for the compiler to assert declarative-like optimisa-
tions: a given function is completely standalone (i.e.
dependent on no state). You can pluck out an arbi-
trary function without reference to anything else in the
program and optimise it as you see fit.
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Function Side Effects

 Functions in imperative languages can use 
or alter larger system state  → procedures

Maths: m(x,y) = xy

ML: fun m(x,y) = x*y;

Java: int m(int x, int y) = x*y;

int y = 7;
int m(int x) {

y=y+1;
return x*y;

}

Procedures have similarities to (proper) functions but
permit side effects and hence break the three rules
given above. Here’s another example:

fun add(x,y)=x+y;

add(1,2);

This ML (proper) function will always return 3 regard-
less of the statements before or after it. In Java, we
could write:

static int z=0; // this is some global state

static int addimp(int x, int y) {

z=z+1;

return x+y+z;

}

addimp(1,2); // 4

addimp(1,2); // 5

addimp(1,2); // 6

Eeek! Three calls with the same arguments gives three
different answers. You certainly don’t get that in
maths! The problem is that the output is dependent
on some other state in the system (z), which it changes
(a side effect of calling it). Given only the procedure
name and its arguments, we cannot predict what the
state of the system will be after calling it without read-
ing the full procedure definition and analysing the cur-
rent state of the computer.

To really hammer this home, you can now have use-
ful functions with no arguments that return nothing
(void)—both rather useless in maths:

void Procedures

 A void procedure returns nothing:

int count=0;

void addToCount() {
   count=count+1;
}

Health warning: Many imperative programmers use
the word ‘function’ as a synonym for ‘procedure’. Even
in these lectures I will use ‘function’ loosely. You will
have to use your intelligence when you hear the words.

Procedures are much more powerful, but as that awful
line in Spiderman goes, “with great power comes great
responsibility”. Now, that’s not to say that impera-
tive programming makes you into some superhuman
freak who runs around in his pyjamas climbing walls
and battling the evil functionals. It’s just that it in-
troduces a layer of complexity into programming that
might make the results better but the job harder.

1.3 Recap: Control Flow

You’ve covered control flow in the pre-arrival course
but it seems wrong not to at least mention it here
(albeit the coverage in lectures will be very brief).
The associated statements are classified into decision-
making, looping and branching.

Decision-making is quite simple:
if (...) {...} else {...} is the main thing
we care about. Looping doesn’t require recursion
(yay!) since we have for and while:
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Control Flow: Looping

for( initialisation; termination; increment )

while( boolean_expression )

for (int i=0; i<8; i++) …

int j=0;  for(; j<8; j++) …

for(int k=7;k>=0; j--) ...

int i=0;  while (i<8) { i++; …}

int j=7; while (j>=0) { j--; ...}

These examples all loop eight times. The following
code loops over the entirety of an array (the for ap-
proach is more usual for this task!):

Control Flow: Looping Examples

int arr[] = {1,2,3,4,5};

for (int i=0; i<arr.length;i++) {
System.out.println(arr[i]);

}

int i=0;
while (i<arr.length) {

System.out.println(arr[i]);
i=i+1;

}

For branching, we mainly care about return, break and
continue:

Control Flow: Branching I

 Branching statements interrupt the current control flow
 return

 Used to return from a function at any point

boolean linearSearch(int[] xs, int v) {
   for (int i=0;i<xs.length; i++) {

if (xs[i]==v) return true;
   }
   return false;
} 

Control Flow: Branching II

 Branching statements interrupt the current control flow

 break
 Used to jump out of a loop

boolean linearSearch(int[] xs, int v) {
   boolean found=false;
   for (int i=0;i<xs.length; i++) {

if (xs[i]==v) {
found=true;
break;   // stop looping

}
   }
   return found;
} 

Control Flow: Branching III

 Branching statements interrupt the current control flow

 continue
 Used to skip the current iteration in a loop

void printPositives(int[] xs) {
   
   for (int i=0;i<xs.length; i++) {

if (xs[i]<0) continue;
System.out.println(xs[i]);

   }
} 

1.4 Values, Variables and Types

1.4.1 State Mutability

Immutable to Mutable Data

- val x=5;
> val x = 5 : int
- x=7;
> val it = false : bool
- val x=9;
> val x = 9 : int

int x=5;
x=7;

int x=9;

Java

ML

In ML you had values and in Java you have variables.
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A simple way to ensure that functions in ML do not
depend on external state is to make all state constant,
or immutable. In ML you could write:

val x = 5;

x=7;

val x=9;

But these almost certainly didn’t do what you ex-
pected the first time you tried them. The first line
(val x = 7) creates a chunk of memory, sets the con-
tents to 7 and associates it with a label x. The second
(x = 5) you probably wanted to reassign the value,
but—since the values are constant—it actually per-
formed a comparison of x and 5, giving false! The third
line val x=5 actually creates another value in memory,
sets the value to 5 and reassigns the label x to point
to it. The original value of 7 remains untouched in
memory: you just can’t update it. So now you should
be able to understand the behaviour of:

val x = 7;

fun f(a)=x*a;

f(3);

val x=5;

f(3);

Java doesn’t have the shackles of proper functions so
we can have variables that can be updated (i.e. mu-
table state)–this is actually the essence of imperative
programming:

int x = 7; // create x and init to 7

x=5; // change the value of x

x==5; // compare the value of x

int x = 9; // error: x already created

1.4.2 Explicit Types vs Type Inference

Types and Variables

 Most imperative languages don't have type 
inference

 The high-level language has a series of primitive (built-
in) types that we use to signify what’s in the memory
 The compiler then knows what to do with them
 E.g. An “int” is a primitive type in C, C++, Java and many 

languages.  It’s usually a 32-bit signed integer 

 A variable is a name used in the code to refer to a 
specific instance of a type
 x,y,z are variables above
 They are all of type int

int x = 512;
int y = 200;
int z = x+y;

In ML you created values of various types (real, int,
etc). You were (correctly) taught to avoid explicitly
assigning types wherever possible: ML had the capa-
bility to infer types. This was particularly useful be-
cause it allowed polymorphism to avoid writing sepa-
rate functions for integers, reals, etc. Every now and
then you had to help it out and manually specify a
type, but ML’s type inference is essentially a really
nice feature to have “baked in”. (I acknowledge that
ML’s error messages about type errors could be a little
less... cryptic).

Type inference isn’t unique to ML or functional lan-
guages, although it’s quite rare in imperative lan-
guages (Python and Javascript spring to mind). Java
doesn’t have it and is characterised by:

• every value has a type assigned on declaration;
and

• every function specifies the type of its output (its
‘return type’) and the types of its arguments.3

You have already met the primitive (built-in) types in
the pre-arrival course, but here’s a recap4

E.g. Primitive Types in Java

 “Primitive” types are the built in ones.
 They are building blocks for more complicated types that 

we will be looking at soon.

 boolean – 1 bit (true, false)
 char – 16 bits
 byte – 8 bits as a signed integer (-128 to 127)
 short – 16 bits as a signed integer
 int – 32 bits as a signed integer
 long – 64 bits as a signed integer
 float – 32 bits as a floating point number
 double – 64 bits as a floating point number

3Later we meet Generics, where the type is left more open.
However, there is a type assigned to everything, even if it’s just
a placeholder.

4For any C/C++ programmers out there: yes, Java looks a
lot like the C syntax. But watch out for the obvious gotcha—a
char in C is a byte (an ASCII character), whilst in Java it is
two bytes (a Unicode character). If you have an 8-bit number
in Java you may want to use a byte, but you also need to be
aware that a byte is signed..!).
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1.4.3 Polymorphism vs Overloading

Overloading Functions

 Same function name
 Different arguments
 Possibly different return type

 But not just a different return type

int myfun(int a, int b) {…}
float myfun(float a, float b) {…}
double myfun(double a, double b) {...}

int myfun(int a, int b) {…}
float myfun(int a, int b) {…} x

Since Java demands that all types are explicit (disre-
garding Generics, which we’ll come to soon), we rather
lose the ability to write one function that can be ap-
plied to multiple types—the cool polymorphism you
saw in ML. Instead we can make use of procedure over-
loading. This allows you to write multiple functions
with the same name but different argument types:

int myfun(int a,int b,int c) {

// blah blah blah

}

int myfun(double a, double b, double c) {

// blah blah blah

}

When you call myfun the compiler looks at the argu-
ment types and picks the function that best matches.
This is nowhere near as elegant as what we had in
ML (I have to write out a separate function for ev-
ery argument set) but at least when it’s being used
there is naming consistency. In passing, we note
that we talk about function prototypes or signatures
to mean the combination of return type, function
name and argument set—i.e. the first line such as
int myfun(double a, double b, double c).

Function Prototypes

 Functions are made up of a prototype 
and a body
 Prototype specifies the function name, 

arguments and possibly return type
 Body is the actual function code

fun myfun(a,b) = …;

int myfun(int a, int b) {...}

1.5 Classes and Objects

Sooner or later, using just the built-in primitive types
becomes restrictive. You saw this in ML, where you
could create your own types. This is also possible in
imperative programming and is, in fact, the crux of
object oriented programming.

Custom Types

datatype 'a seq = Nil 
                           |  Cons of 'a * (unit -> 'a seq);

public class Vector3D {
   float x;
   float y;
   float z;
}

Let’s take a simple example: representing 3D vectors
(x,y,z). We could keep independent variables in our
code. e.g.

float x3=0.0;

float y3=0.0;

float z3=0.0;

void add_vec(float x1, float y1, float z1,

float x2, float y2, float z2) {

x3=x1+x2;

y3=y1+y2;

z3=z1+z2;
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}

Clearly, this is not very elegant code. Note that, be-
cause I can only return one thing from a function, I
can’t return all three components of the answer (ML’s
tuples don’t exist here—sorry!). Instead, I had to ma-
nipulate external state. You see a lot of this style of
coding in procedural C coding. Yuk.

We would rather create a new type (call it Vector3D)
that contains all three components, as per the slide. In
OOP languages, the definition of such a type is called
a class. But it goes further than just being a grouping
of variables...

1.5.1 State and Behaviour

State and Behaviour

datatype 'a seq = Nil 
                           |  Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,_)) = x;                   

public class Vector3D {
   float x;
   float y;
   float z;

   void add(float vx, float vy, float vz) {
      x=x+vx;
      y=y+vy;
      z=z+vz;
   }
}

What we’ve done so far looks a lot like procedural pro-
gramming. Here you create custom types to hold your
data or state, then write a ton of functions/procedures
to manipulate that state, and finally create your pro-
gram by sequencing the various procedure calls ap-
propriately. ML was similar: each time you created
a new type (such as sequences), you also had to con-
struct a series of helper functions to manipulate it (e.g.
hd(), tail(), merge(), etc.). There was an implicit link
between the data type and the helper functions, since
one was useless without the other.

OOP goes a step further, making the link explicit by
having the class hold both the type and the helper
functions that manipulate it. OOP classes therefore
glue together both the state (i.e. variables) and the
behaviour (i.e. functions or procedures).

Loose Terminology (again!)

Behaviour
Functions
Methods

Procedures

State
Fields

Instance Variables
Properties
Variables
Members

Having made all that fuss about ‘function’ and ‘pro-
cedure’, it only gets worse here: when we’re talking
about a procedure inside a class, it’s more properly
called a method.

In the wild, you’ll find people use ‘function’, ‘pro-
cedure’ and ‘method’ interchangeably. Thankfully
you’re all smart enough to cope!

1.5.2 Instantiating classes: Objects

Classes, Instances and Objects

 Classes can be seen as templates for representing 
various concepts 

 We create instances of classes in a similar way. 
e.g.

makes two instances of class MyCoolClass.
 An instance of a class is called an object

MyCoolClass m = new  MyCoolClass();
MyCoolClass n = new  MyCoolClass();

So a class is a grouping of state (data/variables) and
behaviour (methods). Whenever we create an instance
of a class, we call it an object. The difference between
a class and an object is thus very simple, but you’d be
surprised how much confusion it can cause for novice
programmers. Classes define what properties and pro-
cedures every object of the type should have (a tem-
plate if you like), while each object is a specific im-
plementation with particular values. So a Person class
might specify that a Person has a name and an age.
Our program may instantiate two Person objects—one
might represent 40-year old Bob; another might repre-
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sent 20 year-old Alice. Programs are made up of lots
of objects, which we manipulate to get a result (hence
“object oriented programming”).

We’ve already seen how to create (define) objects in
the last lesson of the pre-arrival course. There we had:

// Define p as a new Vector3 object

Vector3 p = new Vector3();

// Reassign p to a new Vector3 object

p = new Vector3()

The things to note are that we needed a special new
keyword to instantiate an object; and that we pass it
what looks to be a method call (Vector3()). Indeed, it
is a method, but a special one: it’s called a constructor
for the class.

1.5.3 Defining Classes

Defining a Class

public class Vector3D {
   float x;
   float y;
   float z;

   void add(float vx, float vy, float vz) {
      x=x+vx;
      y=y+vy;
      z=z+vz;
   }
}

To define a class we need to declare the state and define
the methods it is to contain. Here’s a very simple Java
class containing one integer as its state and a single
method:

class MyShinyClass {

int x;

void setX(int xinput) {

x=xinput;

}

}

You were defining classes like this in your Pre-arrival
course code. Except there it was peppered with the
words public and static—we’ll look at both shortly.

1.5.4 Constructors

Constructors

 You will have noticed that the RHS looks rather like a 
function call, and that's exactly what it is.

 It's a method that gets called when the object is 
constructed, and it goes by the name of a constructor 
(it's not rocket science). It maps to the datatype 
constructors you saw in ML.

 We use constructors to initialise the state of the class in a 
convenient way
 A constructor has the same name as the class
 A constructor has no return type

MyObject m = new MyObject();

You can define one or more constructors for a class.
These are simply methods that are run when the ob-
ject is created. As with many OOP features, not all
languages support it. Python, for example, doesn’t
have constructors. It does have a single init method
in each class that acts a bit like a constructor but
technically isn’t (python fully constructs the object,
and returns a reference that gets passed to init if it
exists—similar, but not quite the same thing.

In Java, C++ and most other OOP languages, con-
structors have two properties:

1. they have the same name as the class; and

2. they have no return type.

You can’t specify a return type for a constructor be-
cause it is always called using the special new keyword,
which must return a reference to the newly constructed
object. You can, however, specify arguments for a con-
structor in the usual way for a method:

class MyShinyClass {

int x;

MyShinyClass(int x_init) {

setX(x_init);

}

void setX(int xinput) {

x=xinput;

}

}

Here, the constructor is used to initialise the member
variable x to a value passed in. We would specify this
when using the new keyword to create an object. e.g.
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MyShinyClass m = new MyShinyClass(42);

Overloaded Constructors

public class Vector3D {
   float x;
   float y;
   float z;

   Vector3D(float xi, float yi, float zi) {
      x=xi;
      y=yi;
      z=zi;
   } 

    Vector3D() {
      x=0.f;
      y=0.f;
      z=0.f;
   } 

   // ...
}

Vector3D v = new Vector3D(1.f,0.f,2.f);
Vector3D v2 = new Vector3D();

You can have multiple constructors by overloading the
method:

class MyShinyClass {

int x;

MyShinyClass() {

set

}

MyShinyClass(int x_init) {

setX(x_init);

}

void setX(int xinput) {

x=xInput;

}

}

//...

// An object with x set to 42

MyShinyClass m = new MyShinyClass(42);

// And object with x set to 0

MyShinyClass m2 = new MyShinyClass();

Again, not all languages support this. Python doesn’t
support multiple overloaded init methods, and this
can be a bit frustrating,

Default Constructor

public class Vector3D {
   float x;
   float y;
   float z;
}

Vector3D v = new Vector3D();

 No constructor provided
 So blank one generated with 

no arguments

If you don’t specify any constructor at all, Java fills in
a default constructor for you. This takes no arguments
and does nothing, other than allowing you to make
objects. i.e.

class MyShinyClass {

}

is converted to

class MyShinyClass {

MyShinyClass() { }

}

so you can write MyShinyClass m = new MyShinyClass();.

1.5.5 Static

Sometimes there is state that is more logically asso-
ciated with a class than with an object. An example
will help here:

Class-Level Data and Functionality I

 A static field is created only once in the program's execution, 
despite being declared as part of a class

public class ShopItem {
   private float mVATRate;
   private static float sVATRate;
   ....
}

One of these created 
every time a new 
ShopItem is 
instantiated. Nothing 
keeps them all in 
sync.

Only one of these created 
ever. Every ShopItem object 
references it.
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So a static variable is only instantiated once per class
not per object. Therefore you don’t even need to cre-
ate an object to access a static variable. Just writing
ShopItem.sVATRate would give you access.

You see examples of this in the Math class provided
by Java: you can just call Math.PI to get the value of
pi, rather than creating a Math object first. The same
goes for methods: you write Math.sqrt(...) rather than
having to first instantiate a Math object.

Class-Level Data and Functionality II

 Auto synchronised 
across instances

 Space efficient
17.5

0.2

0.2

0.2

17.5

0.2

public class Whatever {
   public static void main(String[] args) {
      ...
   }
}

 Also static methods:

Methods can also be static. In this case they must
not use anything other than local or static variables.
So it can’t use anything that is instance-specific (i.e.
non-static member variables are out).

Looking back at the pre-arrival course, we really
wanted something that had no class notion at all. The
closest we could get in Java was to make everything
static so there weren’t any objects floating around.

Why use Static Methods?
 Easier to debug (only depends on static state)

 Self documenting

 Groups related methods in a Class without requiring an object

 The compiler can produce more efficient code since no 
specific object is involved

public class Math {
   public float sqrt(float x) {…}
   public double sin(float x) {…}
   public double cos(float x) {…}
}

…
Math mathobject = new Math();
mathobject.sqrt(9.0);
...

public class Math {
   public static float sqrt(float x) {…}
   public static float sin(float x) {…}
   public static float cos(float x) {…}
}

…
Math.sqrt(9.0);
...

vs
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Lecture 2

Designing Classes

2.1 Identifying Classes

What Not to Do

 Your ML has doubtless been one big file 
where you threw together all the functions 
and value declarations

 Lots of C programs look like this :-(
 We could emulate this in OOP by having one 

class and throwing everything into it

 We can do (much) better

Having one massive class, MyApplication perhaps,
with all the state and behaviour in it, is a surpris-
ingly common novice error. This achieves nothing (in
fact it just adds boilerplate code). Instead we aim to
have multiple classes, each embodying a well-defined
concept.

Identifying Classes

 We want our class to be a grouping of 
conceptually-related state and behaviour

 One popular way to group is using grammar
 Noun  Object→
 Verb  Method→

“A simulation of the Earth's orbit around 
the Sun”

Very often classes follow naturally from the problem
domain. So, if you are making a snooker game, you

might have an object to represent the table; to repre-
sent each ball; to represent the cue; etc. Identifying
the best possible set of classes for your program is more
of an art than a science and depends on many factors.
However, it is usually straightforward to develop sen-
sible classes, and then we keep on refining them on
them (“refactoring”) until we have something better.

A helpful way to break your program down is in
term of tangible things—represented by the nouns you
would use when describing the program. Similarly, the
verbs often map well to the behaviour required of your
classes. Think of these as guidelines or rules of thumb,
not rules.

UML: Representing a Class Graphically

MyFancyClass

- age : int

+ SetAge(age: int) : void
Behaviour

State

“+” means
public access

“-” means
private access

The graphical notation used here is part of UML (Uni-
fied Modeling Language). UML is a standardised set
of diagrams that can be used to describe software inde-
pendently of any programming language used to im-
plement it. UML contains many different diagrams.
In this course we will only use the UML class diagram
such as the one in the slide.
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The has-a Association

College Student1 0...*

 Arrow going left to right says “a College has zero or more 
students”

 Arrow going right to left says “a Student has exactly 1 
College”

 What it means in real terms is that the College class will 
contain a variable that somehow links to a set of Student 
objects, and a Student will have a variable that 
references a College object.

 Note that we are only linking classes: we don't start 
drawing arrows to primitive types.

Note that the arrowhead must be ‘open’. It is normal
to annotate the head with the multiplicity, but some
programmers are lax on this (for examination pur-
poses, you are expected to annotate the heads). I’ve
shown a dual-headed arrow; if the multiplicity value is
zero, you can leave off the arrowhead and annotation
entirely.

Anatomy of an OOP Program (Java)

public class MyFancyClass {

public int someNumber;
public String someText;

public void someMethod() {

}

public static void main(String[] args) {
MyFancyClass c = new

MyFancyClass();
}

}

Class name

Class state (properties 
that an object has such as 
colour or size)

Class behaviour (actions 
an object can do)

'Magic' start point 
for the program 
(named main by 
convention)

Create an object of 
type MyFancyClass in 
memory

Create a reference to a 
MyFancyClass object 
and call it c

Access modifier

class MyFancyClass {

public:
int someNumber;
public String someText;

void someMethod() {

}

};

void main(int argc, char **argv) {
MyFancyClass c;

MyFancyClass *cp = new MyFancyClass() 

}

Anatomy of an OOP Program (C++)
Class name

Class state

Class behaviour 

'Magic' start point 
for the program 

Create an object of 
type MyFancyClass and 
call it cc

Access modifier

Create an object of 
type MyFancyClass and 
return a reference to it

Create a pointer to a 
MyFancyClass object and call it cp

2.2 OOP Concepts

OOP Concepts

 OOP provides the programmer with a 
number of important concepts:

 Modularity
 Code Re-Use
 Encapsulation
 Inheritance
 Polymorphism

 Let's look at these more closely...

Let’s be clear here: OOP doesn’t enforce the correct
usage of the ideas we’re about to look at. Nor are
the ideas exclusively found in OOP languages. The
main point is that OOP encourages the use of these
concepts, which we believe is good for software design.

2.2.1 Modularity and Code Re-Use

Modularity and Code Re-Use

 You've long been taught to break down 
complex problems into more tractable sub-
problems.

 Each class represents a sub-unit of code that (if 
written well) can be developed, tested and 
updated independently from the rest of the 
code.

 Indeed, two classes that achieve the same 
thing (but perhaps do it in different ways) can 
be swapped in the code

 Properly developed classes can be used in 
other programs without modification.

Modularity is extremely important in OOP. It’s a com-
mon Computer Science trick: break big problems down
into chunks and solve each chunk. In this case, we
have large programs, meaning scope for lots of cod-
ing bugs. By identifying objects in our problem, we
can write classes that represent them. Each class can
be developed, tested and maintained independently of
the others. Then, when we sequence hem together to
make our larger program, there are far fewer places
where it can go wrong.

There is a further advantage to breaking a program
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down into self-contained objects: those objects can be
ripped from the code and put into other programs.
So, once you’ve developed and tested a class that rep-
resents a Student, say, you can use it in lots of other
programs with minimal effort. Even better, the classes
can be distributed to other programmers so they don’t
have to reinvent the wheel. Therefore OOP strongly
encourages software re-use.

As an aside, modularity often goes further than the
classes/objects. Java has the notion of packages to
group together classes that are conceptually linked.
C++ has a similar concept in the form of namespaces.

2.2.2 Encapsulation and Information
Hiding

Encapsulation I

class Student {
   int age;
};

void main() {
   Student s = new Student();
   s.age = 21;

   Student s2 = new Student();
   s2.age=-1;

   Student s3 = new Student();
   s3.age=10055;
}

This code defines a basic Student class, with only one
piece of state per Student. In the main() method we
create three instances of Students. We observe that
nothing stops us from assigning nonsensical values to
the age.

Encapsulation II
class Student {
   private int age;
   
   boolean setAge(int a) {
      if (a>=0 && a<130) {

age=a;
return true;

      }
      return false;
   }

   int getAge() {return age;}
}

void main() {
   Student s = new Student();
   s.setAge(21);
}

Here we have assigned an access modifier called private
to the age variable. This means nothing external to the
class (i.e. no piece of code defined outside of the class
definition) can read or write the age variable directly.

Another name for encapsulation is information hiding
or even implementation hiding in some texts. The ba-
sic idea is that a class should expose a clean interface
that allows full interaction with it, but should expose
nothing about its internal state. The general rule you
can follow is that all state is private unless there is a
very good reason for it not to be.

To get access to the age variable we define a getAge()
and a setAge() method to allow read and write, re-
spectively. On the face of it, this is just more code
to achieve the same thing. However, we have new op-
tions: by omitting setAge() altogether we can prevent
anyone modifying the age (thereby adding immutabil-
ity!); or we can provide sanity checks in the setAge()
code to ensure we can only ever store sensible values.

Encapsulation III

class Location {
   private float x;
   private float y;
   
   float getX() {return x;}
   float getY() {return y;}

   void setX(float nx) {x=nx;}
   void setY(float ny) {y=ny;}
}

class Location {

   private Vector2D v;
   
   float getX() {return v.getX();}
   float getY() {return v.getY();}

   void setX(float nx) {v.setX(nx);}
   void setY(float ny) {v.setY(ny);}
}

Here we have a simple example where we wish to
change the underlying representation of a co-ordinate
(x,y) from raw primitives to a custom Vector2D object.
We can do this without changing the public interface
to the class and hence without having to update any
piece of code that uses the Location class.

You may hear people talking about coupling and cohe-
sion. Coupling refers to how much one class depends
on another. High coupling is bad since it means chang-
ing one class will require you to fix up lots of others.
Cohesion is a qualitative measure of how strongly re-
lated everything in the class is—we strive for high co-
hesion. Encapsulation helps to minimise coupling and
maximise cohesion.
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Access Modifiers

Everyone Subclass Same 
package 
(Java)

Same 
Class

private X

package 
(Java)

X X

protected X X X

public X X X X

OOP languages feature some set of access modifiers
that allow us to do various levels of data hiding. C++
has the set {public, protected, private}, to which Java
has added package. Don’t worry if you don’t yet know
what a “Subclass” is—that’s in the next lecture.

2.3 Immutability

The discussion of access modifiers leads us naturally
to talk about immutability. You should recall from
FoCS that every value in ML is immutable: once it’s
set, it can’t be changed. From a low-level perspective,
writing val x=7; allocates a chunk of memory and
sets it to the value 7. Thereafter you can’t change
that chunk of memory. You could reassign the label by
writing val x=8; but this sets a new chunk of memory
to the value 8, rather than changing the original chunk
(which sticks around, but can’t be addressed directly
now since x points elsewhere).

It turns out that immutability has some serious ad-
vantages when concurrency is involved—knowing that
nothing can change a particular chunk of memory
means we can happily share it between threads with-
out worry of contention issues. It also has a tendency
to make code less ambiguous and more readable. It is,
however, more efficient to manipulate allocated mem-
ory rather than constantly allocate new chunks. In
OOP, we can have the best of both worlds.

Immutability

 Everything in ML was immutable (ignoring the 
reference stuff). Immutability has a number of 
advantages:
 Easier to construct, test and use
 Can be used in concurrent contexts
 Allows lazy instantiation

 We can use our access modifiers to create 
immutable classes

To make a class immutable:

• Make sure all state is private.

• Consider making state final (this just tells the
compiler that the value never changes once con-
structed).

• Make sure no method tries to change any internal
state.

To quote Effective Java by Joshua Bloch:

“Classes should be immutable unless there’s
a very good reason to make them mutable...
If a class cannot be made immutable, limit
its mutability as much as possible.”

2.4 Parameterised Types

We commented earlier that Java lacked the nice poly-
morphism that type inference gave us. Languages
evolve, however, and it has been retrofitted to the lan-
guage via something called Generics. It’s not quite
the same (it would have been too big a change to put
in full type inference), but it does give us similar flex-
ibility.
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Parameterised Classes

 ML's polymorphism allowed us to specify functions that could 
be applied to multiple types

 In Java, we can achieve something similar through Generics; 
C++ through templates
 Classes are defined with placeholders (see later lectures)
 We fill them in when we create objects using them

> fun self(x)=x;
val self = fn : 'a -> 'a
        

LinkedList<Integer> = new LinkedList<Integer>()

LinkedList<Double> = new LinkedList<Double>()

Initially, you will most likely encounter Generics when
using Java’s built-in data structures such as LinkedList,
ArrayList, Map, etc. For example, say you wanted a
linked list of integers or Vector3D objects. You would
declare:

LinkedList<Integer> lli = new LinkedList<Integer>();

LinkedList<Vector3D> llv = new LinkedList<Vector3D>();

This was shoe-horned into Java relatively recently,
so if you are looking at old code on the web
or old books, you might see them using the
non-Generics versions that ignore the type e.g.
LinkedList ll = new LinkedList() allows you to
throw almost anything into it (including a mix of
types—a source of many bugs!).

The astute amongst you may have noted that I used
LinkedList<Integer> and not the more expected
LinkedList<int>—it turns out that, in order to keep
old code working, we simply can’t use primitive types
directly in Generics classes. This is a java-specific
irritation and we will be looking at why later on in
the course. For now, just be aware that every primi-
tive has associated with it an (immutable) class that
holds a variable of that type. For example, int has
Integer,double has Double, etc.

2.4.1 Creating Parameterised Types

Creating Parameterised Types

 These just require a placeholder  type 

class Vector3D<T> {
   private T x;
   private T y;
   
   T getX() {return x;}
   T getY() {return y;}

   void setX(T nx) {x=nx;}
   void setY(T ny) {y=ny;}
}

We already saw how to use Generics types in Java (e.g.
LinkedList<Integer>). Declaring them is not much
harder than a ‘normal’ class. The T is just a place-
holder (and I could have used any letter or word—T

is just the de-facto choice). Once declared we can cre-
ate Vector3D objects with different underlying storage
types, just like with LinkedList:

Vector3D<Integer> vi = new Vector3D<Integer>(); // Vector of integers

Vector3D<Float> vi = new Vector3D<Float>(); // Vector of single precision reals

Vector3D<Double> vi = new Vector3D<Double>(); // Vector of double precision reals

There is no problem having parame-
terised types as parameters—for example
LinkedList< Vector3D<Integer> > declares a
list of integer vector objects. And we can have
multiple parameters in our definitions:

public class Pair<U,V> {

private U mFirst;

private V mSecond;

...

}

You see this most commonly with Maps in Java,
which represent dictionaries, mapping keys of some
type to values of (potentially) some other type. e.g.
a TreeMap<String,Integer> could be used to map
names to ages).
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Lecture 3

Pointers, References and Memory

Imperative languages manipulate state held in system
memory. They more naturally extend from assembly
and before we go any further we need a mental model
of how the compiler uses all this memory.

3.1 Pointers and References

Memory and Pointers

 In reality the compiler stores a mapping from 
variable name to a specific memory address, along 
with the type so it knows how to interpret the 
memory (e.g. “x is an int so it spans 4 bytes starting 
at memory address 43526”).

 Lower level languages often let us work with 
memory addresses directly. Variables that store 
memory addresses are called pointers or sometimes 
references

 Manipulating memory directly allows us to write fast, 
efficient code, but also exposes us to bigger risks
 Get it wrong and the program 'crashes' .

The compiler must manipulate the computer’s mem-
ory, but the notion of type doesn’t exist at the lowest
level. Memory is simply a vast sequence of bits, split
up (usually) into bytes, and the compiler must manu-
ally specify the byte it wants to read or change by it’s
memory address. This is little more than a number
uniquely identifying that byte. So when you ask for
an int to be created, the compiler knows to find a 4-
byte chunk of memory that isn’t being used (assuming
ints are 32 bits) and change the bytes appropriately.

Some languages allow us, as programmers, to move be-
yond the abstraction of memory provided by explicit
variable creation. They allow us to have variables that
contain the actual memory addresses and even to ma-
nipulate them. We call such variables pointers and
the traditional way to understand them is the “box
and arrow” model:

Pointers: Box and Arrow Model

 A pointer is just the memory address of the first 
memory slot used by the variable

 The pointer type tells the compiler how many 
slots the whole object uses

xptr2

xxptr1int x = 72;
int *xptr1 = &x;
int *xptr2 = xptr1;

Example: Representing Strings I

 A single character is fine, but a text string is of variable length – 
how can we cope with that? 

 We simply store the start of the string in memory and require it to 
finish with a special character (the NULL or terminating 
character, aka '\0')

 So now we need to be able to store memory addresses  use →
pointers

 We think of there being an array of characters (single letters) in 
memory, with the string pointer pointing to the first element of 
that array

C S R U L E S

11

\0

11 12 13 14 15 16 177 8 9 10 18
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Example: Representing Strings II

stringPointer

h e l l o  char letterArray[] = {'h','e','l','l','o','\0'};
  
  char *stringPointer = &(letterArray[0]);

  printf(“%s\n”,stringPointer);

  letterArray[3]='\0';

  printf(“%s\n”,stringPointer);

  

\0

Pointers are simply variables whose value is a mem-
ory address. We can arbitrarily modify them either
accidentally or intentionally and this can lead to all
sorts of problems. Although the symptom is usually
the same: program crash.

References

 A reference is an alias for another thing 
(object/array/etc)

 When you use it, you are 'redirected' 
somehow to the underlying thing

 Properties:
 Either assigned or unassigned
 If assigned, it is valid
 You can easily check if assigned

References are aliases for other objects—i.e. they redi-
rect to the ‘real’ object. You have of course met them
in ML.

Implementing References

 A sane reference implementation in an 
imperative language is going to use pointers

 So each reference is the same as a pointer 
except that the compiler restricts operations 
that would violate the properties of 
references

 For this course, thinking of a reference as a 
restricted pointer is fine 

Any sane implementation of a reference is likely to
use pointers (and in FoCS they were directly equated).
However, the concept of a reference forbids you from
doing all of the things you can do with a pointer:

Distinguishing References and Pointers

Pointers References

Can be unassigned 
(null)

Yes Yes

Can be assigned to 
established object

Yes Yes

Can be assigned to an 
arbitrary chunk of 
memory 

Yes No

Can be tested for validity No Yes

Can perform arithmetic Yes No

The ability to test for validity is particularly impor-
tant. A pointer points to something valid, something
invalid, or null (a special zero-pointer that indicates
it’s not initialised). References, however, either point
to something valid or to null. With a non-null ref-
erence, you know it’s valid. With a non-null pointer,
who knows? So references are going to be safer than
pointers.

For those with experience with pointers, you might
have found pointer arithmetic rather useful at times
(e.g. incrementing a pointer to move one place for-
ward in an array, etc). You can’t do that with a refer-
ence since it would lead to you being able to reference
arbitrary memory.

Languages and References

 Pointers are useful but dangerous
 C, C++: pointers and references
 Java: references only
 ML: references only
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Arrays
byte[] arraydemo1 = new byte[6];
byte   arraydemo2[] = new byte[6];

0x1AC594

0x1AC595

0x1AC596

0x1AC597

0x1AC598

0x1AC599

0x1AC5A0

0x1AC5A1

0x1AC5A2

References in Java

 Declaring unassigned

 Defining/assigning

SomeClass ref = null;  // explicit

SomeClass ref2;  // implicit

// Assign
SomeClass ref = new ClassRef();

// Reassign to alias something else
ref = new ClassRef();

// Reference the same thing as another reference
SomeClass ref2 = ref;

References Example (Java)
int[] ref1 = null;

ref1 = new int[]{1,2,3,4};

int[] ref2 = ref1;

ref1[3]=7;

ref2[1]=6;

ref1

ref1

ref1

ref2

1 2 3 4

1 2 3 4

ref1

ref2

ref1

ref2

1 2 3 7

1 6 3 7

<null>

Sun decided that Java would have only references and
no explicit pointers. Whilst slightly limiting, this
makes programming much safer (and it’s one of the
many reasons we teach with Java). Java has two
classes of types: primitive and reference. A primitive
type is a built-in type. Everything else is a reference
type, including arrays and objects.

3.2 Keeping Track of Function
Calls: The Call Stack

Keeping Track of Function Calls

 We need a way of keeping track of 
which functions are currently running

public void a() {
   //...
}

public void b() {
   a();
}

When we call b(), the system must run a() while re-
membering that we return to b() afterwards. When
a function is called from another, this is called nest-
ing1 (just as loops-within-loops are considered nested).
The nesting can go arbitrarily deep (well, OK, until we
run out of memory to keep track). The data structure
widely used to keep track is the call stack

The Call Stack

Remember the way the fetch-execute cycle handles
procedure calls2: whenever a procedure is called we
jump to the machine code for the procedure, execute
it, and then jump back to where it was before and
continue on. This means that, before it jumps to the
procedure code, it must save where it is.

We do this using a call stack. A stack is a simple
data structure that is the digital analogue of a stack
of plates: you add and take from the top of the pile

1If the function is calling itself then it is of course recursive
2Review the pre-arrival course if not
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only3. By convention, we say that we push new entries
onto the stack and pop entries from its top. Here the
‘plates’ are called stack frames and they contain the
function parameters, any local variables the function
creates and, crucially, a return address that tells the
CPU where to jump to when the function is done.
When we finish a procedure, we delete the associated
stack frame and continue executing from the return
address it saved.

The Call Stack: Example
1 int twice(int d) return 2*d;
2 int triple(int d) return 3*d;
3 int a = 50;
4 int b = twice(a);
5 int c = triple(a);
6 ...

0 0

a=50

0

a=50

d=50

5

100

0

a=50

b=100

0

a=50

b=100

d=50

6

150

0

a=50

b=100

c=150

In this example I’ve avoided going down to assembly
code and just assumed that the return address can be
the code line number. This causes a small problem
with e.g. line 4, which would be a couple of machine
instructions (one to get the value of twice{) and one
to store it in b). I’ve just assumed the computer mag-
ically remembers to store the return value for brevity.
This is all very simple and the stack never gets very
big—things are more interesting if we start nesting
functions (i.e. calling functions from within another
function):

Nested Functions

0 0
a=50

0
a=50

d=50
5

0
a=50

d=50
5

d=50
2

100

0
a=50

d=50
5

d=100
2

200

0
a=50

d=50
5

a=200

0
a=50

b=200

1 int twice(int d) return 2*d;
2 int quadruple(int d) return twice(twice(d));
3 int a=50;
4 int b = quadruple(a);
5 ...

And even more interesting if we add nesting/recursion
into the mix:

3See Algorithms next term for a full analysis

Recursive Functions
1 int pow (int x, int y) {
2 if (y==0) return 1;
3 int p = pow(x,y-1);
4 return x*p;
5 }
6 int s=pow(2,7);
7 ...

0

y=7
4

x=2

0

y=7
4

x=2

0

y=6
4

x=3

y=7
4

x=2

0

y=6
4

x=2

y=7
4

x=2

0

y=6
4

x=2

...

y=5
4

x=2
y=5

4

x=2

y=4
4

x=2

y=7
4

x=2

0

y=6
4

x=2

y=5
4

x=2

p=16

y=7
4

x=2

0

y=6
4

x=2

p=32

...

0
s=128

We immediately see a problem: computers only have
finite memory so if our recursion is really deep, we’ll be
throwing lots of stack frames into memory and, sooner
or later, we will run out of memory. We call this stack
overflow and it is an unrecoverable error that you’re
almost certainly familiar with from ML. You know that
tail-recursion does better, but:

Tail-Recursive Functions I
1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...
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0

...

128

t=1
y=7
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0

t=1
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y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=5

3

x=2

t=4

y=7

3

x=2

0

t=1

y=6

3

x=2

t=2

y=7

3

x=2

0

t=1

128

128

0
s=128

If you’re in the habit of saying tail-recursive functions
are better, be careful—they’re only better if the com-
piler/interpreter knows that it can optimise them to
use O(1) space. Java compilers don’t...4

4Language designers usually speak of ‘tail-call optimisation’
since there is actually nothing special about recursion in this
case: functions that call other functions may be written to use
only tail calls, allowing the same optimisations.
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Tail-Recursive Functions II
1 int pow (int x, int y, int t) {
2 if (y==0) return t;
3 return pow(x,y-1, t*x);
4 }
5 int s = pow(2,7,1);
6 ...

0

y=7

3

x=2

0

t=1

0 0

y=5

3

x=2

t=4

0
s=128

y=6

3

x=2

t=2
y=4

3

x=2

0

t=8

0 0

y=2

3

x=2

t=32
y=3

3

x=2

t=16

0

y=1

3

x=2

t=64

3.3 The Heap

There’s a subtlety with the stack that we’ve passed
over until now. What if we want a function to create
something that sticks around after the function is fin-
ished? Or to resize something (say an array)? We talk
of memory being dynamically allocated rather than
statically allocated as per the stack.

Why can’t we dynamically allocate on the stack? Well,
imagine that we do everything on a stack and you have
a function that resizes an array. We’d have to grow the
stack, but not from the top, but where the stack was
put. This rather invalidates our stack and means that
every memory address we have will need to be updated
if it comes after the array.

We avoid this by using a heap5. Quite simply we allo-
cate the memory we need from some large pool of free
memory, and store a pointer in the stack. Pointers are
of known size so won’t ever increase. If we want to
resize our array, we create a new, bigger array, copy
the contents across and update the pointer within the
stack.

5Note: you meet something called a ‘heap’ in Algorithms: it
is NOT the same thing

The Heap
int[] x = new int[3];
public void resize(int size) {
     int tmp=x;
     x=new int[size];
     for (int=0; i<3; i++)
 x[i]=tmp[i];
}
resize(5);

0

x

size=5

0

x

size=3
5 7 9

5 7 9 0

x

size=5

Heap

Stack

0

x

For those who do the Paper 2 O/S course, you will find
that the heap gets fragmented : as we create and delete
stuff we leave holes in memory. Occasionally we have
to spend time ‘compacting’ the holes (i.e. shifting all
the stuff on the heap so that it’s used more efficiently.

3.4 Pass-by-value and Pass-by-
reference

Argument Passing

 Pass-by-value. Copy the object into a new 
value in the stack

 Pass-by-reference. Create a reference to the 
object and pass that.

y=3

x=3
void test(int x) {...}
int y=3;
test(y);

y=3

xvoid test(int &x) {...}
int y=3;
test(y);

Note I had to use C here since Java doesn’t have a
pass-by-reference operator such as &.

Pass-by-value. The value of the argument is copied
into a new argument variable (this is what we as-
sumed in the call stack earlier)

Pass-by-reference. Instead of copying the object
(be it primitive or otherwise), we pass a reference
to it. Thus the function can access the original
and (potentially) change it.

When arguments are passed to java functions, you may
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hear it said that primitive values are “passed by value”
and arrays are “passed by reference”. I think this is
misleading (and technically wrong).

Passing Procedure Arguments In Java

class Reference {

   public static void update(int i, int[] array) {
      i++;
      array[0]++;
   }

   public static void main(String[] args) {
      int test_i = 1;
      int[] test_array = {1};
      update(test_i, test_array);
      System.out.println(test_i);
      System.out.println(test_array[0]);
   }

}

This example is taken from your practicals, where
you observed the different behaviour of test i and
test array—the former being a primitive int and the
latter being a reference to an array.

Let’s create a model for what happens when we pass
a primitive in Java, say an int like test i. A new stack
frame is created and the value of test i is copied into
the stack frame. You can do whatever you like to this
copy: at the end of the function it is deleted along
with the stack frame. The original is untouched.

Now let’s look at what happens to the test array vari-
able. This is a reference to an array in memory. When
passed as an argument, a new stack frame is created.
The value of test array (which is just a memory ad-
dress) is copied into a new reference in the stack frame.
So, we have two references pointing at the same thing.
Making modifications through either changes the orig-
inal array.

So we can see that Java actually passes all arguments
by value, it’s just that arguments are either primitives
or references. i.e. Java is strictly pass-by-value6.

The confusion over this comes from the fact that many
people view test array to be the array and not a refer-
ence to it. If you think like that, then Java passes it
by reference, as many books (incorrectly) claim. The
examples sheet has a question that explores this fur-
ther.

6Don’t believe me? See the Java specification, section 8.4.1.

Check...

A. “1 1”
B. “1 2”
C. “2 1”
D. “2 2”

public static void myfunction2(int x, int[] a) {
x=1;
x=x+1;
a = new int[]{1};
a[0]=a[0]+1;

}

public static void main(String[] arguments) {
int num=1;
int numarray[] = {1};

myfunction2(num, numarray);
System.out.println(num+" "+numarray[0]);

}

Things are a bit clearer in other languages, such as
C. They may allow you to specify how something is
passed. In this C example, putting an ampersand (‘&’)
in front of the argument tells the compiler to pass by
reference and not by value.

Having the ability to choose how you pass variables
can be very powerful, but also problematic. Look at
this code:

bool testA(HugeInt h) {

if (h > 1000) return TRUE;

else return FALSE;

}

bool testB(HugeInt &h) {

if (h > 1000) return TRUE;

else return FALSE;

}

Here I have made a fictional type HugeInt which is
meant to represent something that takes a lot of space
in memory. Calling either of these functions will give
the same answer, but what happens at a low level is
quite different. In the first, the variable is copied (lots
of memory copying required—bad) and then destroyed
(ditto). Whilst in the second, only a reference is cre-
ated and destroyed, and that’s quick and easy.

So, even though both pieces of code work fine, if you
miss that you should pass by reference (just one tiny
ampersand’s difference) you incur a large overhead and
slow your program.

I see this sort of mistake a lot in C++ programming
and I guess the Java designers did too—they stripped
out the ability to specify pass by reference or value
from Java!
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Lecture 4

Inheritance

Inheritance I

class Student {
   public int age;
   public String name;
   public int grade;   
}

class Lecturer {
   public int age;
   public String name;
   public int salary;    
}

 There is a lot of duplication here
 Conceptually there is a hierarchy that 

we're not really representing
 Both Lecturers and Students are people 

(no, really).
 We can view each as a kind of 

specialisation of a general person
 They have all the properties of a 

person
 But they also have some extra stuff 

specific to them

(I should not have used public variables here, but I did it to keep things simple)

Inheritance II

class Person {
   public int age;
   public String name;
}

class Student extends Person {
   public int grade;   
}

class Lecturer extends Person {
   public int salary;    
}

 We create a base class (Person) 
and add a new notion: classes 
can inherit properties from it
 Both state and functionality

 We say:
 Person is the superclass of 

Lecturer and Student
 Lecturer and Student subclass 

Person

Java uses the keyword extends to indicate inheritance
of classes. In C++ it’s a more opaque colon:

class Parent {...};

class Student : public Parent {...};

class Lecturer : public Parent {...};

Representing Inheritance Graphically

exam_score

Student

salary

Lecturer

name
age

Person Also known as an “is-a” 
relation

As in “Student is-a Person”

S
p
e
cia

li seG
e
n
e
ra

lis
e

name and age
inherited if not
private

Inheritance is an extremely powerful concept that is
used extensively in good OOP. We discussed the “has-
a” relation amongst classes; inheritance adds an “is-a”
concept. E.g. A car is a vehicle that has a steering
wheel.

We speak of an inheritance tree where moving down
the tree makes things more specific and up the tree
more general. Unfortunately, we tend to use an array
of different names for things in an inheritance tree.
For B extends A, you might hear any of:

• A is the superclass of B

• A is the parent of B

• A is the base class of B

• B is the child of A

• B derives from A

• B extends A

• B inherits from A

• B subclasses A

Many students confuse “is-a” and “has-a” arrows in
their UML class diagrams: please make sure you don’t!
Inheritance has an empty triangle for the arrowhead,
whilst association has two ‘wings’.
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4.1 Casting

Casting

 Many languages support type casting 
between numeric types

 With inheritance it is reasonable to type 
cast an object to any of the types 
above it in the inheritance tree...

int i = 7;
float f = (float) i;   // f==7.0
double d = 3.2;
int i2 = (int) d;     // i2==3

Widening

 Student is-a Person
 Hence we can use a Student 

object anywhere we want a 
Person object

 Can perform widening 
conversions (up the tree)

Person

Student

Student s = new Student()

Person p = (Person) s;

“Casting”

public void print(Person p) {...}

Student s = new Student();
print(s);

Implicit cast

Narrowing

 Narrowing conversions move 
down the tree (more specific)

 Need to take care...

Person

Student

Person p = new Person();

Student s = (Student) p;

FAILS. Not enough info
In the real object to represent
a Student

Student s = new Student();
Person p = (Person) s;
Students s2 = (Student) p;

OK because underlying object
really is a Student

When we create an object, a specific chunk of memory
is allocated with all the necessary info and a reference
to it returned (in Java). Casting just creates a new
reference with a different type and points it to the
same memory chunk. Everything we need will be in

the chunk if we cast to a parent class (plus some extra
stuff).

If we try to cast to a child class, there won’t be all
the necessary info in the memory so it will fail. But
beware—you don’t get a compiler error in the failed
example above! The compiler is fine with the cast and
instead the program chokes when we try to run that
piece of code—a runtime error.

Note the example of casting primitive numeric types
in the slide is a bit different, since a new variable of
the primitive type is created and assigned the relevant
value.

4.2 Shadowing

Fields and Inheritance

class Person {
   public String mName;
   protected int mAge;
   private double mHeight;
}

class Student extends Person {

  public void do_something() {
    mName=”Bob”;
    mAge=70;
    mHeight=1.70;
  }

}

Student inherits this as a 
public variable and so 
can access it

Student inherits this as a 
protected variable and so 
can access it

Student inherits this but 
as a private variable and 
so cannot access it 
directly

You will see that the protected access modifier can now
be explained. A protected variable is exposed for read
and write within a class, and within all subclasses of
that class. Code outside the class or its subclasses
can’t touch it directly1.

1At least, that’s how it is in most languages. Java actually
allows any class in the same Java package to access protected
variables as discussed previously.
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Fields and Inheritance: Shadowing
class A {   public int x; }

class B extends A {
   public int x;
}

class C extends B {
  public int x;

  public void action() {
      // Ways to set the x in C
      x = 10;
      this.x = 10;

      // Ways to set the x in B
      super.x = 10;
      ((B)this).x = 10;

      // Ways to set the x in A
      ((A)this.x = 10;
  }
}

What happens here?? There is an inheritance tree (A
is the parent of B is the parent of C). Each of these
declares an integer field with the name x. In memory,
you will find three allocated integers for every object
of type C. We say that variables in parent classes with
the same name as those in child classes are shadowed.

Note that the variables are genuinely being shadowed
and nothing is being replaced. This is in contrast to
the behaviour with methods...

NB: A common novice error is to assume that we have
to redeclare a field in its subclasses for it to be inher-
ited: not so. Every non-private field is inherited by a
subclass.

There are two new keywords that have appeared here:
super and this. The this keyword can be used in any
class method2 and provides us with a reference to the
current object. In fact, the this keyword is what you
need to access anything within a class, but because
we’d end up writing this all over the place, it is taken
as implicit. So, for example:

public class A {

private int x;

public void go() {

this.x=20;

}

}

becomes:

public class A {

private int x;

public void go() {

x=20;

}

2By this I mean it cannot be used outside of a class, such as
within a static method: see later for an explanation of these.

}

The super keyword gives us access to the direct parent
(one step up in the tree). You’ve met both keywords
in your Java practicals.

4.3 Overloading

We have already discussed function overloading, where
we had multiple functions with the same name, but a
different prototype (i.e. set of arguments). The same
is possible within classes.

4.4 Overriding

The remaining question is what happens to methods
when they are inherited and rewritten in the child
class. The obvious possibility is that they are treated
the same as fields, and shadowed. When this occurs
we say that the method is overridden. As it happens,
we can’t do this in Java, but it is the default in C++
so we can use that to demonstrate:

Methods and Inheritance: Overriding

 We might want to require that every Person can dance.  But 
the way a Lecturer dances is not likely to be the same as the 
way a Student dances...

class Person {
   public void dance() {
      jiggle_a_bit();
   }
}

class Student extends Person {
   public void dance() {
      body_pop();
   }
}

class Lecturer extends Person {  
}

Person defines a 
'default' 
implementation of 
dance()

Lecturer just 
inherits the default 
implementation and 
jiggles

Student overrides 
the default

Every object that has Person for a parent must have a
dance() method since it is defined in the Person class
and is inherited. If we override it in Child then Child
objects will behave differently. There are some sub-
tleties to this that we’ll return to next lecture.

A useful habit to get into is to annotate every function
you override using @Override. This serves two pur-
poses: firstly it tells anyone reading the code that it’s
an overridden method; secondly it allows the compiler
to check it really does override something. It’s surpris-
ingly easy to make a typo and think you’ve overridden
but actually not. We’ll see this later when we discuss
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object comparison.

4.5 Abstract Methods and
Classes

Abstract Methods

 Sometimes we want to force a class to implement a 
method but there isn't a convenient default behaviour

 An abstract method is used in a base class to do this
 It has no implementation whatsoever

class abstract Person {
   public abstract void dance();
}

class Student extends Person {
   public void dance() {
      body_pop();
   }
}

class Lecturer extends Person {  
   public void dance() {
      jiggle_a_bit();
   }
}

An abstract method can be thought of as a contractual
obligation: any non-abstract class that inherits from
this class will have that method implemented.

Abstract Classes

 Note that I had to declare the class abstract too. 
This is because it has a method without an 
implementation so we can't directly instantiate a 
Person.

 All state and non-abstract methods are inherited as 
normal by children of our abstract class

 Interestingly, Java allows a class to be declared 
abstract even if it contains no abstract methods!

public abstract class Person {
   public abstract void dance();
}

class Person {
   public:
      virtual void dance()=0;
}Java C++

Abstract classes allow us to partially define a type.
Because it’s not fully defined, you can’t make an ob-
ject from an abstract class (try it). Only once all of
the ‘blanks’ have been filled in can we create an ob-
ject from it. This is particularly useful when we want
to represent high level concepts that do not exist in
isolation.

Depending on who you’re talking to, you’ll find differ-
ent terminology for the initial declaration of the ab-
stract function (e.g. the public abstract void dance()
bit). Common terms include method prototype and
method stub.

Representing Abstract Classes

Student Lecturer

Person

+ dance()

+ dance()+ dance()

Italics indicate the 
class or method is 
abstract

You have to look at UML diagrams carefully since
the italics that represent abstract methods or classes
aren’t always obvious on a quick glance.

28



Lecture 5

Polymorphism

You should be comfortable with the polymorphism1

that you met in FoCS, where you wrote functions that
could operate on multiple types. It turns out that is
just one type of polymorphism in programming, and
it isn’t the form that most programmers mean when
they use the word. To understand that, we should look
back at our overridden methods:

Polymorphic Methods

 Assuming Person has a 
default dance() method, 
what should happen here??

Student s = new Student();
Person p = (Person)s;
p.dance();

 General problem: when we refer to an object via a 
parent type and both types implement a particular 
method: which method should it run? 

Polymorphic Concepts I

 Static polymorphism
 Decide at compile-time
 Since we don't know what the true type of the 

object will be, we just run the parent method
 Type errors give compile errors

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler says “p is of type 
Person”

 So p.dance() should do the 
default dance() action in 
Person

If we can get different method implementations by
casting the same object to different types, we have

1The etymology of the word polymorphism is from the an-
cient Greek: poly (many)–morph (form)–ism

static polymorphism. In general static polymor-
phism refers to anything where decisions are made at
compile-time (so-called early binding). You may re-
alise that all the polymorphism you saw in ML was
static polymorphism. The shadowing of fields also fits
this description.

Polymorphic Concepts II

 Dynamic polymorphism
 Run the method in the child
 Must be done at run-time since that's when we 

know the child's type
 Type errors cause run-time faults (crashes!)

Student s = new Student();
Person p = (Person)s;
p.dance();

 Compiler looks in memory 
and finds that the object is 
really a Student

 So p.dance() runs the 
dance() action in Student

Here we get the same method implementation regard-
less of what we cast the object to. In order to be
sure that it gets this right, we can’t figure out which
method to run when we are compiling. Instead, the
system has to run the program and, when a decision
needs to be made about which method to run, it must
look at the actual object in memory (regardless of the
type of the reference, which may be a cast) and act
appropriately.

This form of polymorphism is OOP-specific and is
sometimes called sub-type or ad-hoc polymorphism.
It’s crucial to good, clean OOP code. Because it must
check types at run-time (so-called late binding) there
is a performance overhead associated with dynamic
polymorphism. However, as we’ll see, it gives us much
more flexibility and can make our code more legible.

Beware: Most programmers use the word ‘polymor-
phism’ to refer to dynamic polymorphism.
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The Canonical Example I

 A drawing program that can draw 
circles, squares, ovals and stars

 It would presumably keep a list of all 
the drawing objects

 Option 1
 Keep a list of Circle objects, a list of 

Square objects,...
 Iterate over each list drawing each 

object in turn
 What has to change if we want to 

add a new shape?

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

The Canonical Example II

 Option 2
 Keep a single list of Shape references
 Figure out what each object really is, 

narrow the reference and then draw()

 What if we want to add a new shape?

Shape

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

for every Shape s in myShapeList
   if (s is really a Circle) 
      Circle c = (Circle)s;
      c.draw();
   else if (s is really a Square) 
      Square sq = (Square)s;
      sq.draw();
   else if...

The Canonical Example III

 Option 3 (Polymorphic)
 Keep a single list of Shape 

references
 Let the compiler figure out what to 

do with each Shape reference

 What if we want to add a new 
shape?

Shape
- x_position: int
- y_position: int

+ draw()

Circle
+ draw()

Square

Oval

Star

+ draw()

+ draw()

+ draw()

For every Shape s in myShapeList
   s.draw();

Implementations

 Java
 All methods are dynamic polymorphic.

 Python
 All methods are dynamic polymorphic.

 C++
 Only functions marked virtual are dynamic 

polymorphic

 Polymorphism in OOP is an extremely important 
concept that you need to make sure you understand...

C++ allows you to choose whether methods are in-
herited statically (default) or dynamically (explicitly
labelled with the keyword virtual). This can be good
for performance (you only incur the dynamic overhead
when you need to) but gets complicated, especially if
the base method isn’t dynamic but a derived method
is...

The Java designers avoided the problem by enforcing
dynamic polymorphism. You may find reference to
final methods being Java’s static polymorphism since
this gives a compile error if you try to override it
in subclasses. To me, this isn’t quite the same: it’s
not making a choice between multiple implementations
but rather enforcing that there can only be one imple-
mentation!

5.1 Multiple Inheritance and
Interfaces

Harder Problems

 Given a class Fish and a class DrawableEntity, how do 
we make a BlobFish class that is a drawable fish?

Fish

DrawableEntity

BlobFish

FishDrawableEntity BlobFish

X Dependency
between two
independent

concepts

X Conceptually wrong
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Multiple Inheritance

 If we multiple inherit, we 
capture the concept we want

 BlobFish inherits from both and 
is-a Fish and is-a 
DrawableEntity

 C++:

 But... 

Fish DrawableEntity

BlobFish

+ swim() + draw()

+ swim()
+ draw()

class Fish {…}
class DrawableEntity {…}

class BlobFish : public Fish, 
                         public DrawableEntity {...}

This is the obvious and (perhaps) sensible option that
manages to capture the concept nicely.

Multiple Inheritance Problems

 What happens here? Which of 
the move() methods is 
inherited?

 Have to add some grammar 
to make it explicit

 C++:

 Yuk.

Fish DrawableEntity

BlobFish

+ move() + move()

????

BlobFish *bf = new BlobFish();
bf->Fish::move();
bf->DrawableEntity::move();

Many texts speak of the “dreaded diamond”. This
occurs when a base class has two children who are the
parents of another class through multiple inheritance
(thereby forming a diamond in the UML diagram). If
the two classes in the middle independently override
a method from the top class, the bottom class suffers
from the problem in this slide.

Fixing with Abstraction

 Actually, this problem 
goes away if one or 
more of the conflicting 
methods is abstract

Fish DrawableEntity

BlobFish

+ move() + move()

+ move()

The problem goes away here because the methods are
abstract and hence have no implementation that can
conflict.

Java's Take on it: Interfaces
 Classes can have at most one parent. Period.
 But special 'classes' that are totally abstract can 

do multiple inheritance – call these interfaces

<<interface>>
       Drivable

+ turn()
+ brake()

Car

<<interface>>
    Identifiable

+ getIdentifier()

Bicycle

+ turn()
+ brake()

+ turn()
+ brake()

+ turn()
+ brake()
+ getIdentifier()

interface Drivable {
   public void turn();
   public void brake();
}

interface Identifiable {
   public void getIdentifier();
}

class Bicycle implements Drivable {
   public void turn() {...}
   public void brake() {… }
}

class Car implements Drivable, Identifiable {
   public void turn() {...}
   public void brake() {… }
   public void getIdentifier() {...}
}

So Java allows you to inherit from one class only
(which may itself inherit from one other, which may
itself...). Many programmers coming from C++ find
this limiting, but it just means you have to think of
another way to represent your classes (often a better
way, although not always!).

A Java interface is essentially just a class that has:

• No state whatsoever; and

• All methods abstract.

This is a greatly simplified concept that allows for mul-
tiple inheritance without any chance of conflict. Inter-
faces are represented in our UML class diagram with
a preceding <<interface>> label and inheritance oc-
curs via the implements keyword rather than through
extends.

Interfaces are so important in Java they are considered
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to be the third reference type (the other two being
classes and arrays). Using interfaces encourages high
abstraction level in code, which is generally a good
thing since it makes the code more flexible/portable.
However, it is possible to overdo it, ending up with 20
files where one would do...
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Lecture 6

Lifecycle of an Object

We met constructors earlier in the course as methods
that initialise objects. We can now add a bit more
detail. When you request a new object, Java will do
quite a lot of work:

Creating Objects in Java
new MyObject()

Load 
MyObject.class

Create
java.lang.Class

object

Allocate any
static fields

Run static 
initialiser blocks

Allocate memory
for object

Run non-static
initialiser blocks

Run constructor

Yes

No Is MyObject already loaded
in memory?

Note that Java maintains a java.lang.Class object for
every class it loads into memory from a .class file. This
object actually allows you query things about the class,
such as its name or to list all the methods it has. The
ability to do inspect (and possibly modify!) a pro-
gram’s structure is a feature called reflection. It’s quite
a powerful feature that exists in some (but certainly
not all) languages. It’s out of scope here but worth
exploring if you’re interested.

Initialisation Example

public class Blah {
   private int mX = 7;
   public static int sX = 9;

   { 
       mX=5;
    }

    static {
       sX=3;
    }

   public Blah() {
       mX=1;
      sX=9;
   }
}

Blah b = new Blah();
Blah b2 = new Blah();   

1. Blah loaded
2. sX created
3. sX set to 9
4. sX set to 3
5. Blah object allocated
6. mX set to 7
7. mX set to 5
8. Constructor runs (mX=1, sX=9)
9. b set to point to object

10. Blah object allocated
11. mX set to 7
12. mX set to 5
13. Constructor runs (mX=1, sX=9)
14. b2 set to point to object

Things get even more complex when we throw in some
inheritance:

Constructor Chaining

 When you construct an object of a type with 
parent classes, we call the constructors of all of 
the parents in sequence

Student s = new Student();

Animal

Person

Student

1. Call Animal()

2. Call Person()

3. Call Student()

In reality, Java asserts that the first line of a construc-
tor always starts with super(), which is a call to the
parent constructor (which itself starts with super(),
etc.). If it does not, the compiler adds one for you:

public class Person {

public Person() {
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}

}

becomes:

public class Person {

public Person() {

super();

}

}

In other languages that support multiple inheritance,
this becomes more complex since there may be more
than one parent and a simple keyword like super isn’t
enough. Instead they support manually specifying the
constructor parameters for the parents. E.g. for C++:

class Child : public Parent1, Parent2 {

public:

Child() : Parent1("Alice"), Parent2("Bob") {...}

}

Chaining without Default Constructors

 What if your classes have explicit constructors that take 
arguments? You need to explicitly chain 

 Use super in Java:

Person

Student

-mName : String
+Person(String name)

+Student()

public Person (String name) {
     mName=name;
}

public Student () {
    super(“Bob”);
}

Deterministic Destruction
 Objects are created, used and (eventually) destroyed. Destruction is very 

language-specific

 Deterministic destuction is what you would expect

 Objects are deleted at predictable times

 Perhaps manually deleted (C++):

 Or auto-deleted when out of scope (C++):

void UseRawPointer()
{
    MyClass *mc = new MyClass();
    // ...use mc...
    delete mc;
}

void UseSmartPointer()
{
    unique_ptr<MyClass> *mc = new MyClass();
    // ...use mc...
}  // mc deleted here

Destructors

 Most OO languages have a notion of a destructor too
 Gets run when the object is destroyed
 Allows us to release any resources (open files, etc) or 

memory that we might have created especially for the 
object

class FileReader {
   public:
   
      // Constructor
      FileReader() {
         f = fopen(“myfile”,”r”);
      }

      // Destructor
      ~FileReader() {
         fclose(f);
      }

   private :
      FILE *file;
}

int main(int argc, char ** argv) {

  // Construct a FileReader Object
  FileReader *f = new FileReader();

  // Use object here
  ...

  // Destruct the object
  delete f;

}

C++

It will shortly become apparent why I used C++ and
not Java for this example.

Non-Deterministic Destruction
 Deterministic destruction is easy to understand and seems simple 

enough. But it turns out we humans are rubbish of keeping track of 
what needs deleting when

 We either forget to delete (  memory leak) or we delete multiple →
times (  crash)→

 We can instead leave it to the system to figure out when to delete

 “Garbage Collection”
 The system someohow figures out when to delete and does it for us

 In reality it needs to be cautious and sure it can delete. This leads 
to us not being able to predict exactly when something will be 
deleted!!

 This is the Java approach!!

What about Destructors?

 Conventional destructors don’t make 
sense in non-deterministic systems
 When will they run?  
 Will they run at all??

 Instead we have finalisers: same concept 
but they only run when the system deletes 
the object (which may be never!)

OK, so a finaliser is just a rebadged destructor, but the
rebadging is important. It reminds us as programmers
that it won’t run deterministically. Because you can’t
tell when finalizer methods will get called in Java, their
value is greatly reduced. It’s actually quite rare to see
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them in Java in my experience.

Garbage Collection

 So how exactly does garbage collection work? How can a system 
know that something can be deleted?

 The garbage collector is a separate process that is constantly 
monitoring your program, looking for things to delete

 Running the garbage collector is obviously not free. If your 
program creates a lot of short-term objects, you will soon notice 
the collector running

 Can give noticeable pauses to your program!
 But minimises memory leaks (it does not prevent them...)

 There are various algorithms: we’ll look at two that can be found 
in Java
 Reference counting
 Tracing

Reference Counting

 Java’s original GC.  It keeps track of how many 
references point to a given object.  If there are none, 
the programmer can't access that object ever again so 
it can be deleted

Person object
#ref = 2

r2

r1

r1 = null;
r2 = null;

Person object
#ref = 0

r2

r1

Deletable

Note that reference counting has an associated cost
- every object needs more memory (to store the ref-
erence count) and we have to monitor changes to all
references to keep the counts up to date.

Reference Counting Gotcha

 Circular references are a pain

Person object
#ref = 2

r1 = null;
r2 = null;

r1

Person object
#ref = 2

field

field

r2

Person object
#ref = 1

Person object
#ref = 1

field

field

Objects
unreachable!!

Tracing

 Start with a list of all references you can get to

 Follow all refrences recursively, marking each object

 Delete all objects that were not marked

object

object

object

object
x

y

z

object

object
Unreachable 
so deleted
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