Lecture 3: Prediction and part-of-speech tagging

Outline of today's lecture

Lecture 3: Prediction and part-of-speech tagging

Corpora in NLP Word prediction Part-of-speech (POS) tagging Evaluation in general, evaluation of POS tagging

First of two lectures that concern syntax (i.e., how words fit together). This lecture: 'shallow' syntax: word sequences and POS tags. Next lecture: more detailed syntactic structures.

First lecture on statistical NLP

Lecture 3: Prediction and part-of-speech tagging

Statistical techniques: NLP and linguistics

But it must be recognized that the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term. (Chomsky 1969)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Whenever I fire a linguist our system performance improves. (Jelinek, 1988: reported)

Lecture 3: Prediction and part-of-speech tagging

Statistical techniques: NLP and linguistics

But it must be recognized that the notion 'probability of a sentence' is an entirely useless one, under any known interpretation of this term. (Chomsky 1969)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Whenever I fire a linguist our system performance improves. (Jelinek, 1988: reported)

Lecture 3: Prediction and part-of-speech tagging

Corpora in NLP

Corpora

- corpus: text that has been collected for some purpose.
- balanced corpus: texts representing different genres genre is a type of text (vs domain)
- tagged corpus: a corpus annotated with POS tags
- treebank: a corpus annotated with parse trees
- specialist corpora e.g., collected to train or evaluate particular applications
 - Movie reviews for sentiment classification
 - Data collected from simulation of a dialogue system

Lecture 3: Prediction and part-of-speech tagging

Word prediction

Prediction

Guess the missing word:

Wright tells her story with great _____.

Lecture 3: Prediction and part-of-speech tagging

Word prediction

Prediction

Guess the missing word:

Wright tells her story with great professionalism

・ロト・日本・日本・日本・日本・日本

Lecture 3: Prediction and part-of-speech tagging

Word prediction

Uses of prediction

Ianguage modelling for speech recognition to disambiguate results from signal processing: e.g., using n-grams.

- have an ice Dave
- heaven ice day
- have a nice day
- word prediction for communication aids:
 e.g., to help enter text that's input to a synthesiser
- text entry on mobile phones and similar devices

Lecture 3: Prediction and part-of-speech tagging

Word prediction

Uses of prediction

Ianguage modelling for speech recognition to disambiguate results from signal processing: e.g., using n-grams.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

- have an ice Dave
- heaven ice day
- have a nice day
- word prediction for communication aids:
 e.g., to help enter text that's input to a synthesiser
- text entry on mobile phones and similar devices

Lecture 3: Prediction and part-of-speech tagging

Word prediction

Uses of prediction

Ianguage modelling for speech recognition to disambiguate results from signal processing: e.g., using n-grams.

- have an ice Dave
- heaven ice day
- have a nice day
- word prediction for communication aids:
 e.g., to help enter text that's input to a synthesiser
- text entry on mobile phones and similar devices

Lecture 3: Prediction and part-of-speech tagging

Word prediction

bigrams (n-gram with N=2)

A probability is assigned to a word based on the previous word:

 $P(w_n|w_{n-1})$

where w_n is the nth word in a sentence.

Probability of a sequence of words (assuming independence):

$$P(W_1^n) \approx \prod_{k=1}^n P(w_k | w_{k-1})$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 ・

 <

Lecture 3: Prediction and part-of-speech tagging

Word prediction

bigrams: probability estimation

Probability is estimated from counts in a training corpus:

$$P(w_n|w_{n-1}) = \frac{C(w_{n-1}w_n)}{\sum_w C(w_{n-1}w)} \approx \frac{C(w_{n-1}w_n)}{C(w_{n-1})}$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

i.e. count of a particular bigram in the corpus divided by the count of all bigrams starting with the prior word.

Lecture 3: Prediction and part-of-speech tagging

Word prediction

$\begin{array}{l} \langle s \rangle \ good \ morning \ \langle /s \rangle \ \langle s \rangle \ good \ afternoon \ \langle /s \rangle \ \langle s \rangle \ good \ afternoon \ \langle /s \rangle \ \langle s \rangle \ it \ is \ good \ \langle /s \rangle \end{array}$

sequence	count	bigram probability
$\langle s \rangle$	5	
⟨s⟩ good	3	.6
$\langle s \rangle$ it	2	.4
good	5	
good morning	1	.2
good afternoon	2	.4
good $\langle /s \rangle$	2	.4

• • •

Lecture 3: Prediction and part-of-speech tagging

-Word prediction

Sentence probabilities

 $\begin{array}{l} \langle s \rangle \ \text{good morning} \ \langle / s \rangle \ \langle s \rangle \ \text{good afternoon} \ \langle / s \rangle \ \langle s \rangle \ \text{good} \\ \text{afternoon} \ \langle / s \rangle \ \langle s \rangle \ \text{it is good} \ \langle / s \rangle \\ \end{array}$

Probability of $\langle s \rangle$ it is good afternoon $\langle s \rangle$ is estimated as: $P(it|\langle s \rangle)P(is|it)P(good|is)P(afternoon|good)P(\langle s \rangle|afternoon)$ $= .4 \times 1 \times .5 \times .4 \times 1 = .08$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

What about the probability of $\langle s \rangle$ very good $\langle /s \rangle$? *P*(very $|\langle s \rangle$)?

Lecture 3: Prediction and part-of-speech tagging

-Word prediction

Sentence probabilities

 $\begin{array}{l} \langle s \rangle \ \text{good morning} \ \langle / s \rangle \ \langle s \rangle \ \text{good afternoon} \ \langle / s \rangle \ \langle s \rangle \ \text{good} \\ \text{afternoon} \ \langle / s \rangle \ \langle s \rangle \ \text{it is good} \ \langle / s \rangle \\ \end{array}$

Probability of $\langle s \rangle$ it is good afternoon $\langle s \rangle$ is estimated as: $P(it|\langle s \rangle)P(is|it)P(good|is)P(afternoon|good)P(\langle s \rangle|afternoon)$ $= .4 \times 1 \times .5 \times .4 \times 1 = .08$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

What about the probability of $\langle s \rangle$ very good $\langle /s \rangle$? $P(very|\langle s \rangle)$?

Lecture 3: Prediction and part-of-speech tagging

-Word prediction

Sentence probabilities

 $\begin{array}{l} \langle s \rangle \ \text{good morning} \ \langle / s \rangle \ \langle s \rangle \ \text{good afternoon} \ \langle / s \rangle \ \langle s \rangle \ \text{good} \\ \text{afternoon} \ \langle / s \rangle \ \langle s \rangle \ \text{it is good} \ \langle / s \rangle \\ \end{array}$

Probability of $\langle s \rangle$ it is good afternoon $\langle s \rangle$ is estimated as: $P(it|\langle s \rangle)P(is|it)P(good|is)P(afternoon|good)P(\langle s \rangle|afternoon)$ $= .4 \times 1 \times .5 \times .4 \times 1 = .08$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

What about the probability of $\langle s \rangle$ very good $\langle /s \rangle$? *P*(very $|\langle s \rangle$)?

Lecture 3: Prediction and part-of-speech tagging

Word prediction

Sentence probabilities

Problems because of sparse data:

- smoothing: distribute 'extra' probability between rare and unseen events
- backoff: approximate unseen probabilities by a more general probability, e.g. unigrams

cf Chomsky: *Colorless green ideas sleep furiously* smoothing means unseen phrases have a non-zero probability estimate.

Lecture 3: Prediction and part-of-speech tagging

Word prediction

Sentence probabilities

Problems because of sparse data:

- smoothing: distribute 'extra' probability between rare and unseen events
- backoff: approximate unseen probabilities by a more general probability, e.g. unigrams

cf Chomsky: *Colorless green ideas sleep furiously* smoothing means unseen phrases have a non-zero probability estimate.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Part of speech tagging

They can fish.

- They_pronoun can_modal fish_verb. ('can' meaning 'are able to')
- They_pronoun can_verb fish_plural-noun. ('can' meaning 'put into cans')

Ambiguity

can: modal verb, verb, singular noun *fish*: verb, singular noun, plural noun

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Tagset (CLAWS 5)

tagset: standardized codes for fine-grained parts of speech. CLAWS 5: over 60 tags, including:

NN1	singular noun	NN2	plural noun
PNP	personal pronoun	VM0	modal auxiliary verb
VVB	base form of verb	VVI	infinitive form of verb

- They_PNP can_VM0 fish_VVI ._PUN
- They_PNP can_VVB fish_NN2 ._PUN

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Stochastic part of speech tagging

- 1. Start with untagged text.
- 2. Assign all possible tags to each word in the text on the basis of a lexicon that associates words and tags.
- 3. Find the most probable sequence (or n-best sequences) of tags, based on probabilities from the training data.
 - lexical probability: e.g., is can most likely to be VM0, VVB, VVI or NN1?
 - and tag sequence probabilities: e.g., is VM0 or NN1 more likely after PNP?

(日) (日) (日) (日) (日) (日) (日) (日)

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Assigning probabilities

Estimate tag sequence: *n* tags with the maximum probability, given *n* words:

$$t_1^n = \operatorname*{argmax}_{t_1^n} P(t_1^n | w_1^n)$$

By Bayes theorem:

$$P(t_1^n|w_1^n) = \frac{P(w_1^n|t_1^n)P(t_1^n)}{P(w_1^n)}$$

but $P(w_1^n)$ is constant:

$$\hat{t}_1^n = \operatorname*{argmax}_{t_1^n} P(w_1^n | t_1^n) P(t_1^n)$$

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Bigrams

Bigram assumption: probability of a tag depends on previous tag, hence product of bigrams:

$$P(t_1^n) \approx \prod_{i=1}^n P(t_i|t_{i-1})$$

Probability of word estimated on basis of its tag alone:

$$P(w_1^n|t_1^n) \approx \prod_{i=1}^n P(w_i|t_i)$$

Hence:

$$\hat{t}_{1}^{n} = \operatorname*{argmax}_{t_{1}^{n}} \prod_{i=1}^{n} P(w_{i}|t_{i}) P(t_{i}|t_{i-1})$$

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Example

Tagging: *they fish* (ignoring punctuation) Assume PNP is the only tag for *they*, and that *fish* could be NN2 or VVB. Then the estimate for PNP NN2 will be:

P(they|PNP) P(NN2|PNP) P(fish|NN2)

and for PNP VVB:

P(they|PNP) P(VVB|PNP) P(fish|VVB)

(日)

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Training stochastic POS tagging

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP those_DT0 towns_NN2 ._PUN But_CJC now_AV0 few_DT0 people_NN2 fish_VVB in_PRP these_DT0 areas_NN2 ._PUN

sequence count bigram probability

NN2	4	
NN2 PRP	1	0.25
NN2 PUN	2	0.5
NN2 VVB	1	0.25

Also lexicon: fish NN2 VVB

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Training stochastic POS tagging

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP those_DT0 towns_NN2 ._PUN But_CJC now_AV0 few_DT0 people_NN2 fish_VVB in_PRP these_DT0 areas_NN2 ._PUN

بالألاط والمتروب والمتراجا

sequence	count	bigram probability
NN2	4	
NN2 PRP	1	0.25
NN2 PUN	2	0.5
NN2 VVB	1	0.25

Also lexicon: fish NN2 VVB

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Training stochastic POS tagging

They_PNP used_VVD to_TO0 can_VVI fish_NN2 in_PRP those_DT0 towns_NN2 ._PUN But_CJC now_AV0 few_DT0 people_NN2 fish_VVB in_PRP these_DT0 areas_NN2 ._PUN

بالألاط والمتروب والمتراجا

sequence	count	bigram probability
NN2	4	
NN2 PRP	1	0.25
NN2 PUN	2	0.5
NN2 VVB	1	0.25

Also lexicon: fish NN2 VVB

Lecture 3: Prediction and part-of-speech tagging

Part-of-speech (POS) tagging

Assigning probabilities, more details

- Maximise the overall tag sequence probability
- Actual systems use trigrams smoothing and backoff are critical.

(日)

Unseen words: these are not in the lexicon, so use all possible open class tags, possibly restricted by morphology.

Lecture 3: Prediction and part-of-speech tagging

Evaluation in general, evaluation of POS tagging

Evaluation of POS tagging

- percentage of correct tags, i.e. accuracy
- one tag per word (some systems give multiple tags when uncertain)
- accuracy over 95% for English (but note punctuation is unambiguous)

(日)

 baseline of taking the most common tag gives 90% accuracy

Lecture 3: Prediction and part-of-speech tagging

Evaluation in general, evaluation of POS tagging

Evaluation in general

- Training data and test data Test data must be kept unseen, often 90% training and 10% test data.
- Baseline simple approach, same training data
- Ceiling Human performance on the task, where the ceiling is the percentage agreement found between two annotators (interannotator agreement)
- Error analysis Error rates are nearly always unevenly distributed.
- Reproducibility

Lecture 3: Prediction and part-of-speech tagging

Evaluation in general, evaluation of POS tagging

Examples of PoS tagging errors

Turkey will keep for several days in a fridge.

Turkey_NP0 will_VM0 keep_VVI for_PRP several_DT0 days_NN2 in_PRP a_AT0 fridge_NN1

We have hope that the next year will be peaceful.

We_PNP have_VHB hope_VVB that_CJT the_AT0 next_ORD year_NN1 will_VM0 be_VBI peaceful_AJ0

(日)

Lecture 3: Prediction and part-of-speech tagging

Evaluation in general, evaluation of POS tagging

Examples of PoS tagging errors

Turkey will keep for several days in a fridge.

Turkey_NP0 will_VM0 keep_VVI for_PRP several_DT0 days_NN2 in_PRP a_AT0 fridge_NN1

We have hope that the next year will be peaceful.

We_PNP have_VHB hope_VVB that_CJT the_AT0 next_ORD year_NN1 will_VM0 be_VBI peaceful_AJ0