Introduction to statistical spoken dialogue systems

Milica Gašić

Dialogue Systems Group, Cambridge University Engineering Department

October 28, 2016

In this lecture...

Architecture of a spoken dialogue system

Turn-taking in dialogue

Dialogue acts

Modular architecture of a dialogue system

What is a spoken dialogue system?

- A spoken dialogue system is a computer system that enables human computer interaction where primary input is speech.
- Speech does not need to be the only input. We can interact with machines also using touch, gesture or facial expressions and these are multi-modal dialogue systems.

Examples from popular culture

- Turing test: Are we talking to a machine or a human?
- Chat-bots Eliza
- ► Goal-oriented dialogue there is a goal or several goals that must be fulfilled during conversation ► Medical Bayesian Kiosk

Personal assistants

- Most commonly used dialogue systems are personal assistants such as Siri, Cortana, Google Now and Alexa
- these are server-based accessed via a range of devices: smart-phones, tablets, laptops, watches and specialist devices such as Amazon Echo (Alexa).

Properties

What constitutes a spoken dialogue system?

- Being able to understand the user
- Being able to decide what to say back
- Being able to conduct a conversation beyond simple voice commands or question answering

Limited domain spoken dialogue systems

ontology a database that defines properties of entities that a dialogue system can talk about

system-initiative vs user-initiative who takes the initiative in the dialogue:

- System: Hello. Please tell me your date of birth using the six digit format.
- System: Hello, how may I help you?

Turn-taking in dialogue - Who speaks when?

Dialogue can be described in terms of system and user turns

System: How may I help you?

▶

- ▶ User: I'm looking for a restaurant
- System: What kind of food would you like?

Turn taking can be more complex and characterised by barge-ins System: *How may I...* User: *I'm looking for a restaurant*

back channels User: I'm looking for a restaurant [System: uhuh] in the centre of town

Turn-taking in dialogue – Multi-party dialogue

- Dialogue system can be built to operate with multiple users and also be situated in space.
- Example: Robot giving directions
- In this case a complex attention mechanism is needed to determine who speaks when. For that both spoken and visual input can be used.

Dialogue acts

One simple dialogue act formalism would consist of dialogue act type - encodes the system or the user intention in a (part of) dialogue turn

semantic slots and values - further describe entities from the ontology that a dialogue turn refers to

Is there um maybe a cheap place in the centre of town please?

Dialogue act formalism describes meaning encoded in each dialogue turn [Traum, 2000].

- Relation to ontology
- Encode intention of the speaker
- Relation to logic
- Context
- Partial information from ASR (primitive dialogue acts)

Traditional approach to dialogue systems - Call flow

Node processing in a call flow

Part of a deployed call-flow [Paek and Pieraccini, 2008]

Problems

What breaks dialogue systems?

- Speech recognition errors
- Not keeping track of what happened previously
- Need to hand-craft a large number of rules
- Poor decisions
- User's request is not supported

▶ ...

Modular architecture of a dialogue system

Machine learning in spoken dialogue systems

Data

/		
(Predictions	

- Dialogues
- Labelled user intents
- Transcribed speech

- Regression
- Classification
- Markov decision process
- Neural networks

- What the user wants
- What is the best response
- How to formulate the response

Architecture of a statistical dialogue system

Automatic speech recognition for dialogue

Provide alternative recognition result

- N-best list
- Confusion network
- Lattice

Figure 1: Confusion network

Automatic speech recognition for dialogue systems

Recognise when the user has started speaking

- Key-word spotter running on a smartphone always listening [Chen et al., 2015]
- Requirements: low memory footprint, low computational cost and high precision

Recognise when the user has stopped speaking

This is studied in the broad context of voice activity detection

Acoustic modelling for dialogue systems

- Spoken dialogue systems are meant to be used everywhere: busy street, noisy car
- Advantage: the conversation spans over several turns so it is possible to perform adaptation in the first turn to improve future interactions
- Advantage: the same speaker through-out the dialogue

Language modelling for dialogue systems

- The vocabulary in limited domain dialogue systems is small so the language model can be trained with in-domain data
- A general purpose language model can be combined with in-domain language model to provide better recognition results and also deal with out-of-domain requests.

Semantic decoding for dialogue systems

- Extract meaning from user utterance
- Do they serve Korean food
- Can you repeat that please
- Hi I want to find an Italian restaurant
- I want a different restaurant

- confirm(food=Korean)
- repeat()
- hello(type=restaurant, food=Italian)
- reqalts()

Statistical semantic decoding

Dialogue management

- Maintain belief about what user said: dialogue states/user intent
- Choose the best answer

Belief tracking and policy optimisation

Reinforcement learning for dialogue

Q-function:
$$Q^{\pi}(\mathbf{b}, a) = E_{\pi}\left(\sum_{t=k}^{T} r_k | b_t = \mathbf{b}, a_t = a\right)$$

Policy: $\pi(\mathbf{b}) = a$

28 / 32

Natural language generation for dialogue systems

 Generate semantic representation of system action into natural text

- request(area)
- select(pricerange=expensive, pricerange=cheap)
- confirm(food=Korean)
- inform(name="Little Seoul", food=Korean, area=centre)

- What part of town are you looking for?
- Are you looking for something cheap or expensive?
- Did you say Korean food?
- Little Seoul is a nice Korean restaurant in the centre.

Speech synthesis for dialogue systems

- In a dialogue system the context is available from the dialogue manager.
- Text-to-speech system can make use of the context to produce more natural and expressive speech [Yu et al., 2010].

Summary

- Goal directed limited domain dialogue systems
- Turn taking mechanism between system and user
- Dialogue act formalism for conveying meaning
- Limitations of traditional approach
- Architecture of statistical dialogue systems
- Role of each component in a spoken dialogue system

References

Chen, G., Parada, C., and Sainath, T. (2015). Query-by-example keyword spotting using long short-term memory networks.

In Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on, pages 5236–5240.

- Paek, T. and Pieraccini, R. (2008).
 Automating spoken dialogue management design using machine learning: An industry perspective.
 Speech Commun., 50(8-9):716–729.
- Traum, D. R. (2000).
 20 questions on dialogue act taxonomies. JOURNAL OF SEMANTICS, 17:7–30.
- Yu, K., Zen, H., Mairesse, F., and Young, S. (2010).
 Context adaptive training with factorized decision trees for hmm-based speech synthesis.
 In *Proceedings of Interspeech*.
- 32 / 32