Mobile and Sensor Systems

Lecture 7: Mobile Privacy

Prof Cecilia Mascolo
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Mobile Privacy

* |n this lecture we will discuss some
issues and solutions related to mobile
systems and data privacy
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Mobile Phone Data

* Mobile phones generate user data which can
reveal a lot about the user

* Where does this data go!

* Initially collected by a few “trusted” companies

* More and more smaller companies have built
their business model around data
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App Data Gathering

* More often than not apps collect sensing data
beyond its technical needs (for advertising
purposes)
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Where does the data go!

* The app collect location. Does it then go to:
— Location services

— Advertisers
— Developers

— The OS does not offer support to know this...
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Permissions: Android

App permissions
Storage

App permissions

Angry Birds

Phone calls

!rj-app purchasgs Network communication

Storage :
5 ‘g Hide

Phone calls Storage

Network communication Network communication

See all Your accounts

Affects Battery
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Permission:iOS

* Apple doing the vetting

* Now notifying users about location data usage
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Privacy Data Breach Detection

* Monitor behavior of apps to determine when privacy
sensitive information leaves the phone.

* Data Flow Analysis (DFA):looks for routes between
data sources and sinks
— Any of these routes without user consent is classified as
leak
* Capability Leak:
— Explicit: malicious app manages to hijack permissions
granted to other trusted apps

— eg apps can have sharedUserlID: apps by same developer
have same |ID so permissions for that ID are shared
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Sources and Sinks

Sources

Location Data: GPS, last base station location, WLAN

Unique,Identifiers: IMEI, IMSI

Authentication,Data: Cashed password data

Contact and Calendar, Contacts, address and schedule

Call State, Start and end of incoming call, number of incoming call

Sinks

SMS, Communication: data can be transferred by SMS

File Output: Applications can write data to files that are globally readable

Network: Applications can access network by sockets or HTTP

Intents, objects: applications can send data objects to other apps

Content, Resolver Apps can use API to edit shared memory of device
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Dynamic Analysis: TaintDroid

e Challenges ...
o Smartphones are resource constrained

o Third-party applications are entrusted with several types of
privacy sensitive information

o Context-based privacy information is dynamic

o Applications can share information

o TaintDroid is a modification to the Android OS which
allows for dynamic tracking of sensitive data movements
from an app to other apps and sinks
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TaintDroid

* TaintDroid automatically labels data from privacy-
sensitive sources and transitively applies labels as
sensitive data propagates through program
variables, files, and interprocess messages.

* When tainted data are transmitted over the
network, or otherwise leave the system,
TaintDroid logs the data labels, the application
responsible for transmitting the data, and the data
destination.
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Static Analysis

* Static Analysis covers all the paths from

sources to sinks

— Takes much longer than dynamic analysis

— No time or efficiency overhead (done offline)

— Example (LeakMiner):

app
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Cellular Network Leaks

* Various parts of a cellular network are prone
to leaks and attacks...
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Cellular Network Leaks

* Mobile devices roam around and register with
BTSs: they can be identified from these
records and pre-existing location profiles. One
paper identifies 80% of users.

* the network interface itself can allow listening
attacks/leaks (GSM).
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WiFi based Leaks

* WLAN fingerprints can be used to infer social
relation between the users.

 Mobile devices broadcast their Wi-Fi
information that contain devise ID or MAC
address, it is possible for adversaries to track
locations of devices.

* Users’ names can also be detected by
analyzing applications, websites and ad content
in traffic data through WiFi hot-spots
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WiFi based Leaks (2)

* By havingWiFi connection info,applications can get the
MAC address of devices,which is a unique ID. Since this ID
is permanent,it allows third parties to track users.

* Applications can also learn aboutthe last scanned list of
WiFi hot spots. This includes MAC address,name, signal
strength, operating channels and so on.This information can
later be geo-locate user positions.

* Itisalso possible for applications to determine configured
network lists on devices. Moreover,by comparing these
lists, social relationship between individuals can also be
inferred, such as professional,family,interest groups and the
like.
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Mobile Sensing Leaks

* Sensors are powerful (eg mood automatic
recognition)

* Accelerometer is different on all devices (so it
can be used as a “user signature”).

* Or it can be used to identify different users of
same device

* Touch sensor usage behaviour, keying
behaviour can give away user identity
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Mobile Sensing De-anonymization

* Even in large anonymized datasets there is a
risk that a user can be identified.

— Example of the Netflix challenge
— Mobile sensing datasets exhibit data “sparsity”

* With some user information it is possible to
single out the user in a dataset that just
contains activity profiles of users.
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De-anonimyzation

* Netflix type datasets contains narrow range of
behaviour (preferences of movies)

* Sensing data contain a wider range:

* Correlation of activities can be a “key”

— Eg you go to the gym at a certain time after a
train ride

— This increases data sparsity

— Broad range of auxiliary information which can be
used by an adversary
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Example

* Auxiliary information of the adversary is a
collection of activities by a user.

* Aim: ldentify which of the anonymized activity
streams belongs to the target user.

* Auxiliary information may be collected by
observing the user or from available public

Sources.
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Location Data Privacy
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L ocation Data Leaks

* Location aware apps collect data which is
(sometimes) provided to third parties

— Advertisement!

* Location data can be used to infer more
personal information (or user identity from
anonymous datasets)

* Profile of users can be built from solely
location tracks
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Examples

e GPS of |72 users find their home location
with median error of 60m.

— Features (last destination of day, long stay, time..)

e Similar features have been used to detect
“significant places” for a user (work, gym etc)

* Speed of travelling/transport modality
* Data can be cross correlated with social
network data for more deanonymization
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And more

* |f the approximate locations of a user’s home and
workplace can be deduced from a location trace,then the
median size of the individual’s anonymity set in the U.S.
working populationis |,21 and 34,980, for locations known
at the granularity of a census block, census track and
county respectively.
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Mobility Prediction

* Given user patterns are highly regular, a user
can not only be identified in a dataset but his
previous patterns can be used to predict her
future movements

* In addition her friends patterns if known can
considerably aid this prediction
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Different Types of Prediction

* Location can be:
— Logical location (workplace,home)

— Geographic location
* Discrete areas (e.g., square in a grid)
* GPS locations

* Not only where but also when

— Spatio-temporal prediction is hard
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Various Prediction
Techniques '

* Techniques forecast

— the next location of a
user

— his/her arrival and
residence time, i.e.,
the interval of time
spent at that location.
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Prediction through correlated
movement

* Analysis of the correlation of mobility patterns
of the users

* Movement correlation is measured through
mutual information

* The resulting network can be considered as a
network of “movements”
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Summary

* We have described various privacy issues

related to mobile devices and shown how they
could be addressed.

* Challenges we discussed were

— Systems related
— Sensing related
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