
9: Viterbi Algorithm for HMM Decoding
Machine Learning and Real-world Data

Simone Teufel and Ann Copestake

Computer Laboratory
University of Cambridge

Lent 2017

Last session: estimating parameters of an HMM

The dishonest casino, dice edition
Two states: L (loaded dice), F (fair dice). States are hidden.
You estimated transition and emission probabilities.
Now let’s now see how well an HMM can discriminate this
highly ambiguous situation.
We need to write a decoder.

Decoding: finding the most likely path

Definition of decoding: Finding the most likely state
sequence X that explains the observations, given this
HMM’s parameters.

X̂ = argmax
X0...XT+1

P(X |O, µ) =

argmax
X0...XT+1

T+1∏
t=0

P(Ot |Xt)P(Xt |Xt−1)

Search space of possible state sequences X is O(NT); too
large for brute force search.

Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:

Optimal substructure property
An optimal state sequence X0 . . .Xj . . .XT+1 contains inside
it the sequence X0 . . .Xj , which is also optimal

Overlapping subsolutions property
If both Xt and Xu are on the optimal path, with u > t , then
the calculation of the probability for being in state Xt is part
of each of the many calculations for being in state Xu.

Viterbi is a Dynamic Programming Application

(Reminder from Algorithms course)
We can use Dynamic Programming if two conditions apply:

Optimal substructure property
An optimal state sequence X0 . . .Xj . . .XT+1 contains inside
it the sequence X0 . . .Xj , which is also optimal

Overlapping subsolutions property
If both Xt and Xu are on the optimal path, with u > t , then
the calculation of the probability for being in state Xt is part
of each of the many calculations for being in state Xu.

The intuition behind Viterbi

Here’s how we can save ourselves a lot of time.
Because of the Limited Horizon of the HMM, we don’t need
to keep a complete record of how we arrived at a certain
state.
For the first-order HMM, we only need to record one
previous step.
Just do the calculation of the probability of reaching each
state once for each time step.
Then memoise this probability in a Dynamic Programming
table
This reduces our effort to O(N2T).
This is for the first order HMM, which only has a memory of
one previous state.

Viterbi: main data structure

Memoisation is done using a trellis.
A trellis is equivalent to a Dynamic Programming table.
The trellis is N × (T + 1) in size, with states j as rows and
time steps t as columns.
Each cell j , t records the Viterbi probability δj(t), the
probability of the optimal state sequence ending in state sj
at time t :

δj(t) = max
X0,...,Xt−1

P(X0 . . .Xt−1,o1o2 . . . ot ,Xt = sj |µ)

Viterbi algorithm, initialisation

The initial δj(1) concerns time step 1.
It stores, for all states, the probability of moving to state sj
from the start state, and having emitted o1.
We therefore calculate it for each state sj by multiplying
transmission probability a0j from the start state to sj , with
the emission probability for the first emission o1.

δj(1) = a0jbj(o1),1 ≤ j ≤ N

Viterbi algorithm, initialisation

Viterbi algorithm, initialisation: observation is 4

Viterbi algorithm, initialisation: observation is 4

Viterbi algorithm, main step, observation is 3

δj(t) stores the probability of the best path ending in sj at
time step t .
This probability is calculated by maximising over the best
ways of transmitting into sj for each si .
This step comprises:

δi(t − 1): the probability of being in state si at time t − 1
aij : the transition probability from si to sj
bi(ot): the probability of emitting ot from destination state sj

δj(t) = max
1≤i≤N

δi(t − 1) · aij · bj(ot)

Viterbi algorithm, main step

Viterbi algorithm, main step

Viterbi algorithm, main step, ψ

ψj(t) is a helper variable that stores the t − 1 state index i
on the highest probability path.

ψj(t) = argmax
1≤i≤N

δi(t − 1)aijbj(ot)

In the backtracing phase, we will use ψ to find the previous
cell in the best path.

Viterbi algorithm, main step

Viterbi algorithm, main step

Viterbi algorithm, main step

Viterbi algorithm, main step, observation is 5

Viterbi algorithm, main step, observation is 5

Viterbi algorithm, termination

δf (T + 1) is the probability of the entire state sequence up
to point T + 1 having been produced given the observation
and the HMM’s parameters.

P(X |O, µ) = δf (T + 1) = max
1≤i≤N

δi · (T)aif

It is calculated by maximising over the δi(T) · aif , almost as
per usual
Not quite as per usual, because the final state sf does not
emit, so there is no bi(oT) to consider.

Viterbi algorithm, termination

Viterbi algorithm, backtracing

ψf is again calculated analogously to δf .

ψf (T + 1) = argmax
1≤i≤N

δi(T) · aif

It records XT , the last state of the optimal state sequence.
We will next go back to the cell concerned and look up its
ψ to find the second-but-last state, and so on.

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Viterbi algorithm, backtracing

Precision and Recall

So far we have measured system success in accuracy or
agreement in Kappa.
But sometimes it’s only one type of example that we find
interesting.
We don’t want a summary measure that averages over
interesting and non-interesting examples, as accuracy
does.
In those cases we use precision, recall and F-measure.
These metrics are imported from the field of information
retrieval, where the difference beween interesting and
non-interesting examples is particularly high.

Precision and Recall

System says:
F L Total

Truth is: F a b a+b
L c d c+d
Total a+c b+d a+b+c+d

Precision of L: PL = d
b+d

Recall of L: RL = d
c+d

F-measure of L: FL = 2PLRL
PL+RL

Accuracy: A = a+d
a+b+c+d

Your task today

Task 8:
Implement the Viterbi algorithm.
Run it on the dice dataset and measure precision of L (PL),
recall of L (RL) and F-measure of L (FL).

Ticking today

Task 7 – HMM Parameter Estimation

Literature

Manning and Schutze (2000). Foundations of Statistical
Natural Language Processing, MIT Press. Chapter 9.3.2.

We use a state-emission HMM, but this textbook uses an
arc-emission HMM. There is therefore a slight difference in
the algorithm as to in which step the initial and final bj(kt)
are multiplied in.

Jurafsky and Martin, 2nd Edition, chapter 6.4

