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Last session: catchup 1

m Research ideas from sentiment detection
m This concludes the part about statistical classification.
m We are now moving onto sequence learning.



Markov Chains

m A Markov Chain is a stochastic process with transitions
from one state to another in a state space.

m Models sequential problems — your current situation
depends on what happened in the past

m States are fully observable and discrete; transitions are
labelled with transition probabilities.
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Markov Chains

m Once we observe a sequence of states, we can calculate a
probability for a sequences of states we have been in.

m Important assumption: the probability distribution of the
next state depends only on the current state

m not on the sequence of events that preceded it.

m This model is appropriate in a number of applications,
where states can be unambiguously observed.



Example: Predictive texting

m The famous A9 Algorithm, based on character n-grams

m A nice application based on it — Dasher, developed at
Cambridge by David McKay
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A harder problem

m But sometimes the observations are ambiguous with
respect to their underlying causes

m In these cases, there is no 1:1 mapping between
observations and states.

m A number of states can be associated with a particular
observation, but the association of states and observations
is governed by statistical behaviour.

m The states themselves are “hidden” from us.
m We only have access to the observations.

m We now have to infer the sequence of states that
correspond to a sequence of observations.



Example where states are hidden

m Imagine a fraudulous croupier in a casino where
customers bet on dice outcomes.

m She has two dice — a fair one and a loaded one.

m The fair one has the normal distribution of outcomes —
P(O) = { for each number 1 to 6.

m The loaded one has a different distribution.
m She secretly switches between the two dice.

m You don’t know which dice is currently in use. You can only
observe the numbers that are thrown.




Hidden Markov Model; States and Observations

Se ={s1,...,5nv} asetof N emitting states,
Sp aspecial start state,
St aspecial end state.

K ={ky,...kn} an output alphabet of M observations
(vocabulary).



Hidden Markov Model; State and Observation

Sequence

O=o0;...01r a sequence of T observations, each
one drawn from K.

X=X;...Xr a sequence of T states, each one
drawn from S.



Hidden Markov Model; State Transition Probabilities

A: astate transition probability matrix of size (N+1) x (N+1).

a1 dp2 &3 . .- . anN —
apy a2 a3 . . . aiN  ais
azxy 8 a3z . . . N Ao
A p—
lant an2 anz . . . ann  anr|

aj is the probability of moving from state s; to state s;:

aj = P(X: = Sj|Xt_1 =5j)

N
V,-Za,-,- =1
j=1
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Start state sp and end state s;

m Not associated with observations

m aqy; describe transition probabilities out of the start state
into state s;

m aj; describe transition probabilities into the end state

m Transitions into start state (a;g) and out of end state (ay)
undefined.



Hidden Markov Model; Emission Probabilities

B: an emission probability matrix of size N x M.

biki) ba(k) bs(ki) . . . bu(ki)
bilk) bo(ke) ba(ke) . . . bu(k)

s | - . . .
biku) ba(ku) bs(kw) . - . bu(ke)

bi(k;) is the probability of emitting vocabulary item k; from state s;:
bi(ky) = P(Or = k| X; = s))

An HMM is defined by its parameters 1. = (A, B).



A Time-elapsed view of an HMM

observable hidden
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A state-centric view of an HMM

observable hidden
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The dice HMM

observable hidden

e

m There are two states (fair and loaded)
m Distribution of observations differs between the states



Markov assumptions

Output Independence: sequence of T observations.
Each depends only on current state, not on history

P(Oy|Xi...Xp, ... X7, Ot ..., Oy, ..., OF) = P(O4] Xy)

Limited Horizon: Transitions depend only on current
state:

P(Xt| X1... Xi—1) = P(Xt| Xi—1)

m This is a first order HMM.
m In general, transitions in an HMM of order n depend on the
past n states.



Tasks with HMMs

m Problem 1 (Labelled Learning)

m Given a parallel observation and state sequence O and X,
learn the HMM parameters A and B. — today

m Problem 2 (Unlabelled Learning)

m Given an observation sequence O (and only the set of
emitting states S;), learn the HMM parameters A and B.

m Problem 3 (Likelihood)

m Given an HMM . = (A, B) and an observation sequence O,
determine the likelihood P(O|u).

m Problem 4 (Decoding)

m Given an observation sequence O and an HMM p = (A, B),
discover the best hidden state sequence X. — Task 8



Your Task today

Task 7:

m Your implementation performs labelled HMM learning, i.e.
it has

m Input: dual tape of state and observation (dice outcome)
sequences X and O.

[FTCTCTCTFTFTF
5lele[5[T 23]

m Output: HMM parameters A, B.

[s0 [ F]
[

L1

FIF [FTLTLTLTLTFTFT s
[3 4] T[4 3|54 1|2

[2] ]

m As usual, the data is split into training, validation, test
portions.

m Note: you will in a later task use your code for an HMM
with more than two states. Either plan ahead now or
modify your code later.



Parameter estimation of HMM parameters A, B

So | X1 | Xo [ X3 | Xq | X5 | Xe | X7 | X | Xo [ Xio | X1 | X2
O1 | O | O3 | Oy | Os | Os | O7 | Og | Og | O10 | Oyy

m Transition matrix A consists of transition probabilities aj;

count(X; = sj, X111 = Sj)
count(X; = s;)

ajj = P(Xt+1 = Sj|Xt = S,') ~
m Emission matrix B consists of emission probabilities b;(k;)

count(Or = ki, X; = s;)
count(X; = s;)

bi(kj) = P(Or = kj| Xt = sj) ~

m Add-one smoothed versions of these



Literature

m Manning and Schutze (2000). Foundations of Statistical
Natural Language Processing, MIT Press. Chapters 9.1,
9.2.

m We use state-emission HMM instead of arc-emission HMM

m We avoid initial state probability vector = by using explicit
start state sy and incorporating the corresponding
probabilities into transition matrix A.

m (Jurafsky and Martin, 2nd Edition, Chapter 6.2 (but careful,
notation!))



