8: Hidden Markov Models
Machine Learning and Real-world Data

Simone Teufel and Ann Copestake

Computer Laboratory
University of Cambridge

Lent 2017
Last session: catchup 1

- Research ideas from sentiment detection
- This concludes the part about statistical classification.
- We are now moving onto sequence learning.
A Markov Chain is a stochastic process with transitions from one state to another in a state space. Models sequential problems – your current situation depends on what happened in the past. States are fully observable and discrete; transitions are labelled with transition probabilities.
Markov Chains

- Once we observe a sequence of states, we can calculate a probability for a sequences of states we have been in.
- Important assumption: the probability distribution of the next state depends only on the current state, not on the sequence of events that preceded it.
- This model is appropriate in a number of applications, where states can be unambiguously observed.
Example: Predictive texting

- The famous A9 Algorithm, based on character n-grams
- A nice application based on it – Dasher, developed at Cambridge by David McKay
A harder problem

- But sometimes the observations are ambiguous with respect to their underlying causes.
- In these cases, there is no 1:1 mapping between observations and states.
- A number of states can be associated with a particular observation, but the association of states and observations is governed by statistical behaviour.
- The states themselves are “hidden” from us.
- We only have access to the observations.
- We now have to infer the sequence of states that correspond to a sequence of observations.
Imagine a fraudulent croupier in a casino where customers bet on dice outcomes. She has two dice – a fair one and a loaded one. The fair one has the normal distribution of outcomes – \( P(O) = \frac{1}{6} \) for each number 1 to 6. The loaded one has a different distribution. She secretly switches between the two dice. You don’t know which dice is currently in use. You can only observe the numbers that are thrown.
$S_e = \{s_1, \ldots, s_N\}$ a set of $N$ emitting states,
   $s_0$ a special start state,
   $s_f$ a special end state.

$K = \{k_1, \ldots k_m\}$ an output alphabet of $M$ observations (vocabulary).
Hidden Markov Model; State and Observation Sequence

\[ O = o_1 \ldots o_T \] a sequence of \( T \) observations, each one drawn from \( K \).

\[ X = X_1 \ldots X_T \] a sequence of \( T \) states, each one drawn from \( S_e \).
**Hidden Markov Model; State Transition Probabilities**

A: a state transition probability matrix of size \((N+1) \times (N+1)\).

\[
A = \begin{bmatrix}
  a_{01} & a_{02} & a_{03} & \cdots & a_{0N} & - \\
  a_{11} & a_{12} & a_{13} & \cdots & a_{1N} & a_{1f} \\
  a_{21} & a_{22} & a_{23} & \cdots & a_{2N} & a_{2f} \\
  \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
  a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} & a_{Nf}
\end{bmatrix}
\]

\(a_{ij}\) is the probability of moving from state \(s_i\) to state \(s_j\):

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i)
\]

\[
\forall i \sum_{j=1}^{N} a_{ij} = 1
\]
A: a state transition probability matrix of size \((N+1) \times (N+1)\).

\[
A = \begin{bmatrix}
a_{01} & a_{02} & a_{03} & \cdots & a_{0N} & - \\
a_{11} & a_{12} & a_{13} & \cdots & a_{1N} & a_{1f} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2N} & a_{2f} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
a_{N1} & a_{N2} & a_{N3} & \cdots & a_{NN} & a_{Nf}
\end{bmatrix}
\]

\(a_{ij}\) is the probability of moving from state \(s_i\) to state \(s_j\):

\[
a_{ij} = P(X_t = s_j | X_{t-1} = s_i)
\]

\[
\forall i \sum_{j=1}^{N} a_{ij} = 1
\]
Start state \( s_0 \) and end state \( s_f \)

- Not associated with observations
- \( a_{0i} \) describe transition probabilities out of the start state into state \( s_i \)
- \( a_{if} \) describe transition probabilities into the end state
- Transitions into start state \( (a_{i0}) \) and out of end state \( (a_{fi}) \) undefined.
Hidden Markov Model; Emission Probabilities

$B$: an emission probability matrix of size $N \times M$.

$$B = \begin{bmatrix}
  b_1(k_1) & b_2(k_1) & b_3(k_1) & \ldots & b_N(k_1) \\
  b_1(k_2) & b_2(k_2) & b_3(k_2) & \ldots & b_N(k_2) \\
   \vdots & \vdots & \vdots & \ddots & \vdots \\
  b_1(k_M) & b_2(k_M) & b_3(k_M) & \ldots & b_N(k_M)
\end{bmatrix}$$

$b_i(k_j)$ is the probability of emitting vocabulary item $k_j$ from state $s_i$:

$$b_i(k_j) = P(O_t = k_j | X_t = s_i)$$

An HMM is defined by its parameters $\mu = (A, B)$. 
A Time-elapsed view of an HMM
A state-centric view of an HMM
The dice HMM

- There are two states (fair and loaded)
- Distribution of observations differs between the states
Markov assumptions

1. **Output Independence:** sequence of $T$ observations. Each depends only on current state, not on history

   $$P(O_t|X_1...X_t, ..., X_T, O_1, ..., O_t, ..., O_T) = P(O_t|X_t)$$

2. **Limited Horizon:** Transitions depend only on current state:

   $$P(X_t|X_1...X_{t-1}) = P(X_t|X_{t-1})$$

- This is a first order HMM.
- In general, transitions in an HMM of order $n$ depend on the past $n$ states.
**Tasks with HMMs**

- **Problem 1 (Labelled Learning)**
  - Given a parallel observation and state sequence $O$ and $X$, learn the HMM parameters $A$ and $B$. → today

- **Problem 2 (Unlabelled Learning)**
  - Given an observation sequence $O$ (and only the set of emitting states $S_e$), learn the HMM parameters $A$ and $B$.

- **Problem 3 (Likelihood)**
  - Given an HMM $\mu = (A, B)$ and an observation sequence $O$, determine the likelihood $P(O|\mu)$.

- **Problem 4 (Decoding)**
  - Given an observation sequence $O$ and an HMM $\mu = (A, B)$, discover the best hidden state sequence $X$. → Task 8
Your Task today

Task 7:

- Your implementation performs labelled HMM learning, i.e. it has
  - Input: dual tape of state and observation (dice outcome) sequences $X$ and $O$.
  
<table>
<thead>
<tr>
<th>$s_0$</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>F</th>
<th>F</th>
<th>F</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>L</th>
<th>F</th>
<th>F</th>
<th>$s_F$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

- Output: HMM parameters $A$, $B$.
- As usual, the data is split into training, validation, test portions.
- Note: you will in a later task use your code for an HMM with more than two states. Either plan ahead now or modify your code later.
Parameter estimation of HMM parameters A, B

<table>
<thead>
<tr>
<th></th>
<th>$s_0$</th>
<th>$X_1$</th>
<th>$X_2$</th>
<th>$X_3$</th>
<th>$X_4$</th>
<th>$X_5$</th>
<th>$X_6$</th>
<th>$X_7$</th>
<th>$X_8$</th>
<th>$X_9$</th>
<th>$X_{10}$</th>
<th>$X_{11}$</th>
<th>$X_{12}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O_1$</td>
<td></td>
</tr>
<tr>
<td>$O_2$</td>
<td></td>
</tr>
<tr>
<td>$O_3$</td>
<td></td>
</tr>
<tr>
<td>$O_4$</td>
<td></td>
</tr>
<tr>
<td>$O_5$</td>
<td></td>
</tr>
<tr>
<td>$O_6$</td>
<td></td>
</tr>
<tr>
<td>$O_7$</td>
<td></td>
</tr>
<tr>
<td>$O_8$</td>
<td></td>
</tr>
<tr>
<td>$O_9$</td>
<td></td>
</tr>
<tr>
<td>$O_{10}$</td>
<td></td>
</tr>
<tr>
<td>$O_{11}$</td>
<td></td>
</tr>
</tbody>
</table>

- Transition matrix A consists of transition probabilities $a_{ij}$

$$a_{ij} = P(X_{t+1} = s_j | X_t = s_i) \sim \frac{\text{count}(X_t = s_i, X_{t+1} = s_j)}{\text{count}(X_t = s_i)}$$

- Emission matrix B consists of emission probabilities $b_i(k_j)$

$$b_i(k_j) = P(O_t = k_j | X_t = s_i) \sim \frac{\text{count}(O_t = k_j, X_t = s_i)}{\text{count}(X_t = s_i)}$$

- Add-one smoothed versions of these

- We use state-emission HMM instead of arc-emission HMM
- We avoid initial state probability vector \( \pi \) by using explicit start state \( s_0 \) and incorporating the corresponding probabilities into transition matrix \( A \).

(Jurafsky and Martin, 2nd Edition, Chapter 6.2 (but careful, notation!))