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Last session: Zipf's Law and Heaps’ Law

m Heaps’ Law means that we will systematically always
encounter unknown words in new texts.

m Zipf’'s Law means that the number of low frequency words
is large —“long tail”
m Smoothing works by
m lowering the MLE estimate for seen events
m redistributing this probability to unseen events (e.g. for
words in long tail we might encounter during our
experiment).



Observed system improvement

m This produced a better system.
m Or at least, you observed higher accuracies.

m Today: we use a statistical test to gather evidence that one
system is really better than another system.



Variation in the data

m Documents are different (writing style, length, type of
words used, ...)

m Some documents will make it easier for your system to
score well, some will make it easier for the other system.

m Maybe you were just lucky and all documents in the test
set are in your favour?
m This could be the case if you don’t have enough data.
m This could be the case if the difference in accuracy is small.

m Maybe both systems perform equally well in reality?



Statistical Significance Testing

m Null Hypothesis: two result sets come from the same
distribution

m System 1 is (really) equally good as System 2.
m First, choose a significance level (p), e.g., p = 0.01.

m We then try to reject the null hypothesis with at least
probability 1 — p (99% in this case)

m That means showing that the observed result is very
unlikely to have occurred by chance.



Reporting significance

m |f we successfully pass the significance test, and only then,
we can report:

“The difference between System A and System B
is significant at p < 0.01.”

m Any other statements based on raw accuracy differences
alone are strictly speaking meaningless.



Sign Test (nonparametric, paired)

m The sign test uses a binary event model.
m Here, n events (corresponding to n documents).

m Events have binary outcomes:

m Positive: System 1 beats System 2 on this document
(PLUS times).

m Negative: System 2 beats System 1 on this document
(MINUS times).

m (Tie: System 1 and System 2 do equally well on this
document; NULL times)

m Call the probability of a positive outcome q (here g = 0.5)
m Binary distribution allows us to calculate the probability

that, say, at least 1247 out of 2000 such binary events are
positive.

m Which equals the probability that at most 753 out of 2000
are negative.



Binomial Distribution B(N, q)

m Probability of observing X = k negative events out of n
PalX = kin) = (1) (1 a)"*
m At most k negative events:

Py(X < k|n) :i() (1-q)""

i=0
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Binary Event Model and Statistical Tests

m [f the probability of observing our events under Null
Hypothesis is very small (smaller than our pre-selected
significance level p, e.g. 1%), we can safely reject the Null
hypothesis.

m The P(X < k) we just calculated directly gives us the
significance level p we are after.

m This means there is only a 1% chance that System 1 and
System 2 were not different.

m Well, almost. ..



Two-Tailed vs. One-Tailed Tests

m So far we received P(X < k) as answer to the question:
m What is the probability of getting at most 753 negative out
of 2000 trials? [One-tailed test]
m But maybe the question should be
m What is the probability of getting a result that is as extreme
as the one | observed (or even more extreme)? [Two-tailed
test]
m The answer to this question is 2P(X < k) (because
B(n,0.5) is symmetric).




Use the two-tailed test

m Why is it safer to use the second question?

m Because the first question makes the assumption that our
chosen system is better.

m Therefore — always use the two-tailed test.



Treatment of Ties

m When comparing two systems in classification tasks, it is
common for a large number of ties (“Null” events) to occur.

m Simply disregarding the ties is not an option.

m Here we will treat ties by adding 0.5 events to the positive
and 0.5 events to the negative side (and round up at the
end):

NULL

k = MINUS + [ =]



Error bars

m Error bars are another way of communicating statistical
significance.

m Error bars show the range of values that might also have
been observed under our experimental conditions (instead
of the really observed ones), with a given probability.

m 95% error bars are common.

m We can read off the error bars of two systems whether they
are significantly different.




Your first task today

m Implement the above-introduced test for statistical
significance, so that you can compare two systems.



Your second task today

m Create more (potentially better) systems to use the
significance test on.

m Modify the lexicon-based simple classifier by weighting
terms with stronger sentiment more.
m The pretester will accept a system where strong indicators
have weight 2.
m You can also empirically find out the optimal weight.
m We call this process parameter setting.
m Use the training corpus to set your parameters, then test on
the 200 documents as before.



Parameter setting — NB Smoothing

m Formula for smoothing with a constant w:

count(w;, ) + w
(> wev count(w, c)) + w| V|
m We used add-one smoothing in Task 2 (w = 1).

m Using the training corpus, we can optimise the smoothing
parameter w.

P(wilc) =
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