Part IV

Inference through time

Hidden Markov models (HMMs)
Probabilistic reasoning through time

A fundamental idea throughout the AI courses has been that an agent should keep track of the state of the environment:

- The environment’s state changes over time.
- The knowledge of how the state changes may be uncertain.
- The agent’s perception of the state of the environment may be uncertain.
States and evidence

We model the (unobservable) state of the environment as follows:

- We use a sequence
 \[(S_0, S_1, S_2, \ldots)\]
 of sets of random variables (RVs).
- Each \(S_t\) is a set of RVs
 \[S_t = \{S_{t}^{(1)}, \ldots, S_{t}^{(n)}\}\]
 denoting the state of the environment at time \(t\), where \(t = 0, 1, 2, \ldots\).

Think of the state as changing over time.

\[\begin{align*}
 S_0 & \rightarrow S_1 & \rightarrow S_2 & \rightarrow \ldots
\end{align*}\]
States and evidence

At each time t there is also an \textit{observable} set

$$E_t = \{E_t^{(1)}, \ldots, E_t^{(m)}\}$$

of random variables denoting the \textit{evidence that an agent obtains about the state} at time t.

As usual capitals denote RVs and lower case denotes actual values. So actual values for the assorted RVs are denoted

$$S_t = \{s_t^{(1)}, \ldots, s_t^{(n)}\} = s_t$$

$$E_t = \{e_t^{(1)}, \ldots, e_t^{(m)}\} = e_t$$
As \(t \) can in principle increase without bound we now need some simplifying assumptions.

1. **Assumption 1**: We deal with *stationary processes*—probability distributions do not change over time.

2. **Assumption 2**: We deal with *Markov processes*

\[
\Pr (S_t|S_{0:t-1}) = \Pr (S_t|S_{t-1})
\]

where \(S_{0:t-1} = (S_0, S_1, \ldots, S_{t-1}) \).

(Strictly speaking this is a *first order Markov Process*, and we’ll only consider these.)

\[
\Pr (S_t|S_{t-1}) \text{ is called the } \text{transition model}.
\]
Assumption 3: We assume that evidence only depends on the current state

\[
\Pr(E_t|S_{0:t}, E_{1:t-1}) = \Pr(E_t|S_t)
\]

Then

\[
\Pr(E_t|S_t)
\]

is called the **sensor model**.

\(\Pr(S_0)\) is the **prior probability** of the starting state. We need this as there has to be some way of getting the process started.
The full joint distribution

Given:

1. The prior $\text{Pr}(S_0)$.
2. The transition model $\text{Pr}(S_t|S_{t-1})$.
3. The sensor model $\text{Pr}(E_t|S_t)$.

along with the assumptions of stationarity and the assumptions of independence we have

$$
\text{Pr}(S_0, S_1, \ldots, S_t, E_1, E_2, \ldots, E_t) = \text{Pr}(S_0) \prod_{i=1}^{t} \text{Pr}(S_i|S_{i-1}) \text{Pr}(E_i|S_i).
$$
Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. To make a good start to the coming week, he climbs on a Sunday with probability 0.98. Being concerned for his own safety, he is less likely to climb today if he climbed yesterday, so

\[\Pr(\text{climb today}|\text{climb yesterday}) = 0.4. \]

If he did not climb yesterday then he is very unlikely to climb today, so

\[\Pr(\text{climb today}|\neg \text{climb yesterday}) = 0.1. \]

Unfortunately, he is not a very good climber, and is quite likely to injure himself if he goes climbing, so

\[\Pr(\text{injury}|\text{climb today}) = 0.8 \]

whereas

\[\Pr(\text{injury}|\neg \text{climb today}) = 0.1. \]
Performing inference

There are *four basic inference tasks* that we might want to perform.

In each of the following cases, assume that *we have observed the evidence*

\[E_{1:t} = e_{1:t}. \]

Filtering: Deduce what state we might now be in by computing

\[\Pr (S_t|e_{1:t}). \]

Prediction: Deduce what state we might be in some time in the future by computing

\[\Pr (S_{t+T}|e_{1:t}) \text{ for some } T > 0. \]

Smoothing: Deduce what state we might have been in at some point in the past by computing

\[\Pr (S_t|e_{1:T}) \text{ for } 0 \leq t < T. \]

Find the most likely explanation: Deduce the most likely sequence of states so far by computing

\[\arg\max_{s_{1:t}} \Pr (s_{1:t}|e_{1:t}). \]
Filtering

We want to compute $\Pr (S_t | e_{1:t})$. This is often called the forward message and denoted

$$f_{1:t} = \Pr (S_t | e_{1:t})$$

for reasons that are about to become clear.

Remember that S_t is an RV and so $f_{1:t}$ is a probability distribution containing a probability for each possible value of S_t.

It turns out that this can be done in a simple manner with a recursive estimation. Obtain the result at time $t+1$:

1. using the result from time t and...
2. ...incorporating new evidence e_{t+1}.

$$f_{1:t+1} = g(e_{t+1}, f_{1:t})$$

for a suitable function g that we’ll now derive.
Filtering

Step 1:
Project the current state distribution forward

\[
\begin{align*}
\Pr (S_{t+1} | e_{1:t+1}) &= \Pr (S_{t+1} | e_{1:t}, e_{t+1}) \\
&= c \Pr (e_{t+1} | S_{t+1}, e_{1:t}) \Pr (S_{t+1} | e_{1:t}) \\
&= c \Pr (e_{t+1} | S_{t+1}) \Pr (S_{t+1} | e_{1:t}) \\
&= c \underbrace{\Pr (e_{t+1} | S_{t+1})}_{\text{Sensor model}} \underbrace{\Pr (S_{t+1} | e_{1:t})}_{\text{Needs more work}}
\end{align*}
\]

where as usual \(c \) is a constant that normalises the distribution. Here,

- The first line does nothing but split \(e_{1:t+1} \) into \(e_{t+1} \) and \(e_{1:t} \).
- The second line is an application of Bayes’ theorem.
- The third line uses assumption 3 regarding sensor models.
Filtering

Step 2:
To obtain $\Pr(S_{t+1}\mid e_{1:t})$

\[
\Pr(S_{t+1}\mid e_{1:t}) = \sum_{s_t} \Pr(S_{t+1}, s_t \mid e_{1:t})
\]
\[
= \sum_{s_t} \Pr(S_{t+1}\mid s_t, e_{1:t}) \Pr(s_t\mid e_{1:t})
\]
\[
= \sum_{s_t} \Pr(S_{t+1}\mid s_t) \underbrace{\Pr((s_t\mid e_{1:t}))}_{\text{Available from previous step}}.
\]

Here,

- The first line uses marginalisation.
- The second line uses the basic equation $\Pr(A, B) = \Pr(A\mid B) \Pr(B)$.
- The third line uses assumption 2 regarding transition models.
Filtering

Pulling it all together

\[
\Pr(S_{t+1}|e_{1:t+1}) = \frac{c \Pr(e_{t+1}|S_{t+1})}{\Pr(s_t|e_{1:t})} \sum_{S_t} \Pr(S_{t+1}|S_t) \Pr(s_t|e_{1:t}) .
\]

This will be shortened to

\[
f_{1:t+1} = c\text{FORWARD}(e_{t+1}, f_{1:t})
\]

Here

- \(f_{1:t}\) is a shorthand for \(\Pr(S_t|e_{1:t})\).
- \(f_{1:t}\) is often interpreted as a \textit{message} being passed forward.
- The process is started using the \textit{prior}.
Prediction

Prediction is somewhat simpler as

$$\Pr (S_{t+T+1}|e_{1:t}) = \sum_{s_{t+T}} \Pr (S_{t+T+1}, s_{t+T}|e_{1:t})$$

$$= \sum_{s_{t+T}} \Pr (S_{t+T+1}|s_{t+T}, e_{1:t}) \Pr (s_{t+T}|e_{1:t})$$

$$= \sum_{s_{t+T}} \Pr (S_{t+T+1}|s_{t+T}) \Pr (s_{t+T}|e_{1:t}) \Pr (e_{1:t})$$.

However we do not get to make accurate predictions arbitrarily far into the future!
Smoothing

For smoothing, we want to calculate $\Pr (S_t|e_{1:T})$ for $0 \leq t < T$.

Again, we can do this in two steps.

Step 1:

\[
\Pr (S_t|e_{1:T}) = \Pr (S_t|e_{1:t}, e_{t+1:T}) = c \Pr (S_t|e_{1:t}) \Pr (e_{t+1:T}|S_t, e_{1:t}) = c \Pr (S_t|e_{1:t}) \Pr (e_{t+1:T}|S_t) = cf_{1:t}b_{t+1:T}.
\]

Here

- $f_{1:t}$ is the forward message defined earlier.
- $b_{t+1:T}$ is a shorthand for $\Pr (e_{t+1:T}|S_t)$ to be regarded as a *message being passed backward*.
Smoothing

Step 2:

\[b_{t+1:T} = \Pr(e_{t+1:T}|S_t) = \sum_{s_{t+1}} \Pr(e_{t+1:T}, s_{t+1}|S_t) \]
\[= \sum_{s_{t+1}} \Pr(e_{t+1:T}|s_{t+1}) \Pr(s_{t+1}|S_t) \]
\[= \sum_{s_{t+1}} \Pr(e_{t+1}, e_{t+2:T}|s_{t+1}) \Pr(s_{t+1}|S_t) \]
\[= \sum_{s_{t+1}} \Pr(e_{t+1}|s_{t+1}) \Pr(e_{t+2:T}|s_{t+1}) \Pr(s_{t+1}|S_t) \]
\[= \text{BACKWARD}(e_{t+1:T}, b_{t+2:T}). \]

This process is initialised with

\[b_{t+1:t} = \Pr(e_{T+1:T}|S_T) = (1, \ldots, 1) \]
The forward-backward algorithm

So: our original aim of computing $\Pr(S_t|e_{1:T})$ can be achieved using:

- A recursive process working from time 1 to time t.
- A recursive process working from time T to time $t + 1$.

This results in a process that is $O(T)$ given the evidence $e_{1:T}$ and smooths for a single point at time t.

To smooth at all points $1 : T$ we can easily repeat the process obtaining $O(T^2)$.

Alternatively a very simple example of dynamic programming allows us to smooth at all points in $O(T)$ time.
Computing the most likely sequence: the Viterbi algorithm

In *computing the most likely sequence* the aim is to obtain $\arg\max_{s_{1:t}} \Pr(s_{1:t}|e_{1:t})$.

Earlier we derived the joint distribution for all relevant variables

$$
\Pr(S_0, S_1, \ldots, S_t, E_1, E_2, \ldots, E_t) = \Pr(S_0) \prod_{i=1}^{t} \Pr(S_i|S_{i-1}) \Pr(E_i|S_i).
$$

We therefore have

$$
\begin{align*}
\max_{s_{1:t}} \Pr(s_{1:t}, S_{t+1}|e_{1:t+1}) &= c \max_{s_{1:t}} \Pr(e_{t+1}|S_{t+1}) \Pr(S_{t+1}|s_t) \Pr(s_{1:t}|e_{1:t}) \\
&= c \Pr(e_{t+1}|S_{t+1}) \max_{s_t} \left\{ \Pr(S_{t+1}|s_t) \max_{s_{1:t-1}} \Pr(s_{1:t-1}, s_t|e_{1:t}) \right\}.
\end{align*}
$$

This looks *a bit fierce*.
Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a dynamic programming algorithm called the Viterbi algorithm.

Step 1: Simplify the notation.

- Assume there are n states s_1, \ldots, s_n and m possible observations e_1, \ldots, e_m at any given time.
- Denote $Pr (S_t = s_j|S_{t-1} = s_i)$ by $p_{i,j}(t)$.
- Denote $Pr (e_t|S_t = s_i)$ by $q_i(t)$.

It’s important to remember in what follows that the observations are known but that we’re maximising over all possible state sequences.
Computing the most likely sequence: the Viterbi algorithm

The equation we’re interested in is now of the form

\[P = \prod_{t=1}^{T} p_{i,j}(t)q_i(t). \]

It is in fact a function of any given sequence of states.

(The prior \(\Pr(S_0) \) has been dropped out for the sake of clarity, but is easy to put back in in what follows.)
Computing the most likely sequence: the Viterbi algorithm

Step 2: Make a grid: columns denote time and rows denote state.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>k</th>
<th>k + 1</th>
<th>...</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>s_2</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>s_3</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{n-1}</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>s_n</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
</tr>
</tbody>
</table>
Computing the most likely sequence: the Viterbi algorithm

Step 3: Label the nodes:

- Say at time t the actual observation was e_t. Then label the node for s_i in column t with the value $q_i(t)$.

- Any sequence of states through time is now a path through the grid. So for any transition from s_i at time $t-1$ to s_j at time t label the transition with the value $p_{i,j}(t)$.

In the following diagrams we can often just write $p_{i,j}$ and q_i because the time is clear from the diagram.

So for instance...
Computing the most likely sequence: the Viterbi algorithm
Computing the most likely sequence: the Viterbi algorithm

- The value of $P = \prod_{t=1}^{T} p_{i,j}(t)q_i(t)$ for any path through the grid is just the product of the corresponding labels that have been added.
- But we don’t want to find the maximum by looking at all the possible paths because this would be time-consuming.
- The Viterbi algorithm computes the maximum by moving from one column to the next updating as it goes.
- Say you’re at column k and for each node m in that column you know the highest value for the product to this point over any possible path. Call this:

$$W_m(k) = \max_{s_1:k} \prod_{t=1}^{k} p_{i,j}(t)q_i(t).$$
Computing the most likely sequence: the Viterbi algorithm

\[\begin{array}{cccccccc}
1 & 2 & 3 & \cdots & k & k+1 & \cdots & t \\
\hline
s_1 & & & & W_1(k) & & & \\
\hline
s_2 & & & & W_2(k) & & & \\
\hline
s_3 & & & & W_3(k) & & & \\
\hline
\vdots & \vdots \\
\hline
s_{n-1} & & & & \cdots & W_{n-1}(k) & q_{n-1}(k+1) & \\
\hline
s_n & & & & W_n(k) & p_{n,n-1}(k+1) & & \\
\end{array} \]
Computing the most likely sequence: the Viterbi algorithm

Here is the key point: you only need to know

- The values $W_i(k)$ for $i = 1, \ldots, n$ at time k.
- The numbers $p_{i,j}(k+1)$.
- The numbers $q_i(k+1)$.

to compute the values $W_i(k+1)$ for the next column $k+1$.

This is because

$$W_i(k+1) = \max_j W_j(k)p_{j,i}(k+1)q_i(k+1).$$
Computing the most likely sequence: the Viterbi algorithm

Once you get to the column for time t:

- The node with the largest value for $W_i(t)$ tells you the largest possible value of P.
- Provided you stored *the path taken to get there* you can *work backwards* to find *the corresponding sequence of states*.

This is the *Viterbi algorithm*.
Computing the most likely sequence: the Viterbi algorithm

\[
\begin{array}{cccccccc}
1 & 2 & 3 & \cdots & k & k+1 & \cdots & t \\
\bullet & \bullet \\
\bullet & \bullet \\
\bullet & \bullet \\
\vdots & \vdots \\
\bullet & \bullet \\
\bullet & \bullet \\
\end{array}
\]

\[W_3(t)\text{ maximum}\]
Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here we have a single, discrete state variable S_t taking values s_1, s_2, \ldots, s_n. For example, with $n = 3$ we might have

$$\begin{array}{c|ccc}
 & \Pr(S_{t+1}|S_t = s_1) & \Pr(S_{t+1}|S_t = s_2) & \Pr(S_{t+1}|S_t = s_3) \\
\hline
s_1 & 0.3 & 0.2 & 0.2 \\
s_2 & 0.1 & 0.6 & 0.3 \\
s_3 & 0.6 & 0.2 & 0.5 \\
\end{array}$$
Hidden Markov models

In this simplified case the conditional probabilities $\Pr(S_{t+1}|S_t)$ can be represented using the matrix

$$S_{ij} = \Pr(S_{t+1} = s_j|S_t = s_i)$$

or for the example on the previous slide

$$S = \begin{bmatrix}
0.3 & 0.1 & 0.6 \\
0.2 & 0.6 & 0.2 \\
0.2 & 0.3 & 0.5
\end{bmatrix}$$

$$= \begin{bmatrix}
\Pr(s_1|s_1) & \Pr(s_2|s_1) & \cdots & \Pr(s_n|s_1) \\
\Pr(s_1|s_2) & \Pr(s_2|s_2) & \cdots & \Pr(s_n|s_2) \\
\vdots & \vdots & \ddots & \vdots \\
\Pr(s_1|s_n) & \Pr(s_2|s_n) & \cdots & \Pr(s_n|s_n)
\end{bmatrix}.$$

To save space, I am abbreviating $\Pr(S_{t+1} = s_i|S_t = s_j)$ to $\Pr(s_i|s_j)$.
Hidden Markov models

The computations we’re making are always conditional on some actual observations $e_{1:T}$.

For each t we can therefore use the sensor model to define a further matrix E_t:

- E_t is square and diagonal (all off-diagonal elements are 0).
- The ith element of the diagonal is $\Pr(e_t|S_t = s_i)$.

So in our present example with 3 states, there will be a matrix

$$E_t = \begin{bmatrix}
\Pr(e_t|s_1) & 0 & 0 \\
0 & \Pr(e_t|s_2) & 0 \\
0 & 0 & \Pr(e_t|s_3)
\end{bmatrix}$$

for each $t = 1, \ldots, T$.
Hidden Markov models

In the general case the equation for filtering was

\[
Pr(S_{t+1}|e_{1:t+1}) = cPr(e_{t+1}|S_{t+1}) \sum_{s_t} Pr(S_{t+1}|s_t) Pr(s_t|e_{1:t})
\]

and the message \(f_{1:t} \) was introduced as a representation of \(Pr(S_t|e_{1:t}) \).

In the present case we can define \(f_{1:t} \) to be the vector

\[
f_{1:t} = \begin{bmatrix} Pr(s_1|e_{1:t}) \\ Pr(s_2|e_{1:t}) \\ \vdots \\ Pr(s_n|e_{1:t}) \end{bmatrix}.
\]

Key point: the filtering equation now reduces to nothing but matrix multiplication.
What does matrix multiplication do? It computes weighted summations:

\[Ab = \begin{bmatrix}
 a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\
 a_{2,1} & a_{2,2} & \cdots & a_{2,m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n,1} & a_{n,2} & \cdots & a_{n,m}
\end{bmatrix}
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix} = \begin{bmatrix}
 \sum_{i=1}^{m} a_{1,i}b_i \\
 \sum_{i=1}^{m} a_{2,i}b_i \\
 \vdots \\
 \sum_{i=1}^{m} a_{n,i}b_i
\end{bmatrix}. \]

So the point at the end of the last slide shouldn’t come as a big surprise!
Hidden Markov models

Now, note that if we have n states

$$S^T f_{1:t} = \begin{bmatrix}
\Pr(s_1|s_1) & \cdots & \Pr(s_1|s_n) \\
\Pr(s_2|s_1) & \cdots & \Pr(s_2|s_n) \\
\vdots & \ddots & \vdots \\
\Pr(s_n|s_1) & \cdots & \Pr(s_n|s_n)
\end{bmatrix} \begin{bmatrix}
\Pr(s_1|e_{1:t}) \\
\Pr(s_2|e_{1:t}) \\
\vdots \\
\Pr(s_n|e_{1:t})
\end{bmatrix}$$

$$= \begin{bmatrix}
\Pr(s_1|s_1)\Pr(s_1|e_{1:t}) + \cdots + \Pr(s_1|s_n)\Pr(s_n|e_{1:t}) \\
\Pr(s_2|s_1)\Pr(s_1|e_{1:t}) + \cdots + \Pr(s_2|s_n)\Pr(s_n|e_{1:t}) \\
\vdots \\
\Pr(s_n|s_1)\Pr(s_1|e_{1:t}) + \cdots + \Pr(s_n|s_n)\Pr(s_n|e_{1:t})
\end{bmatrix}$$

$$= \begin{bmatrix}
\sum_s \Pr(s_1|s)\Pr(s|e_{1:t}) \\
\sum_s \Pr(s_2|s)\Pr(s|e_{1:t}) \\
\vdots \\
\sum_s \Pr(s_n|s)\Pr(s|e_{1:t})
\end{bmatrix}.$$
Hidden Markov models

And taking things one step further

\[
E_{t+1}S^T f_{1:t} = \begin{bmatrix}
Pr(e_{t+1}|s_1) & 0 \\
\vdots & \ddots & \ddots \\
0 & \cdots & Pr(e_{t+1}|s_n)
\end{bmatrix} \begin{bmatrix}
\sum_s Pr(s_1|s) Pr((s|e_{1:t})) \\
\sum_s Pr(s_2|s) Pr((s|e_{1:t})) \\
\vdots \\
\sum_s Pr(s_n|s) Pr((s|e_{1:t}))
\end{bmatrix}
\]

\[
= \begin{bmatrix}
Pr(e_{t+1}|s_1) \sum_s Pr(s_1|s) Pr((s|e_{1:t})) \\
Pr(e_{t+1}|s_2) \sum_s Pr(s_2|s) Pr((s|e_{1:t})) \\
\vdots \\
Pr(e_{t+1}|s_n) \sum_s Pr(s_n|s) Pr((s|e_{1:t}))
\end{bmatrix}
\]

Compare this with the equation for filtering

\[
Pr(S_{t+1}|e_{1:t+1}) = c Pr(e_{t+1}|S_{t+1}) \sum_{s_t} Pr(S_{t+1}|s_t) Pr(s_t|e_{1:t})
\]
Hidden Markov models

Comparing the expression for $\mathbf{E}_{t+1} \mathbf{S}^T f_{1:t}$ with the equation for filtering we see that

$$f_{1:t+1} = c \mathbf{E}_{t+1} \mathbf{S}^T f_{1:t}$$

and a similar equation can be found for b

$$b_{t+1:T} = \mathbf{S} \mathbf{E}_{t+1} b_{t+2:T}.$$

Exercise: derive this.

The fact that these can be expressed simply using only multiplication of vectors and matrices allows us to make an improvement to the forward-backward algorithm.
Hidden Markov models

The *forward-backward* algorithm works by:

- Moving up the sequence from 1 to T, computing and storing values for f.
- Moving down the sequence from T to 1 computing values for b and *combining* them with the stored values for f using the equation

$$\Pr(S_t|e_{1:T}) = cf_{1:t}b_{t+1:T}. $$

Now in our simplified HMM case we have

$$f_{1:t+1} = cE_{t+1}S^T f_{1:t}$$

or multiplying through by $(E_{t+1}S^T)^{-1}$ and re-arranging

$$f_{1:t} = \frac{1}{c}(S^T)^{-1}(E_{t+1})^{-1}f_{1:t+1}. $$
Hidden Markov models

So as long as:

- We know the final value for f.
- S^T has an inverse.
- Every observation has non-zero probability in every state.

We don’t have to store T different values for f—we just work through, discarding intermediate values, to obtain the last value and then work backward.