Part IV

Inference through time

Hidden Markov models (HMMs)
A fundamental idea throughout the AI courses has been that an agent should keep track of the state of the environment:

- The environment’s state changes over time.
- The knowledge of how the state changes may be uncertain.
- The agent’s perception of the state of the environment may be uncertain.
States and evidence

We model the (unobservable) state of the environment as follows:

- We use a sequence
 \[(S_0, S_1, S_2, \ldots)\]
 of sets of random variables (RVs).
- Each \(S_t\) is a set of RVs
 \[S_t = \{S_t^{(1)}, \ldots, S_t^{(n)}\}\]
 denoting the state of the environment at time \(t\), where \(t = 0, 1, 2, \ldots\).

Think of the state as changing over time.
States and evidence

At each time \(t \) there is also an observable set

\[
E_t = \{E_t^{(1)}, \ldots, E_t^{(m)}\}
\]

of random variables denoting the evidence that an agent obtains about the state at time \(t \).

As usual capitals denote RVs and lower case denotes actual values. So actual values for the assorted RVs are denoted

\[
S_t = \{s_t^{(1)}, \ldots, s_t^{(n)}\} = s_t
\]

\[
E_t = \{e_t^{(1)}, \ldots, e_t^{(m)}\} = e_t
\]
Stationary and Markov processes

As t can in principle increase without bound we now need some simplifying assumptions.

1. **Assumption 1**: We deal with stationary processes—probability distributions do not change over time.

2. **Assumption 2**: We deal with Markov processes

$$\Pr (S_t|S_{0:t-1}) = \Pr (S_t|S_{t-1})$$

where $S_{0:t-1} = (S_0, S_1, \ldots, S_{t-1})$.

(Strictly speaking this is a first order Markov Process, and we’ll only consider these.)

$$\Pr (S_t|S_{t-1})$$ is called the transition model.
Assumption 3: We assume that evidence only depends on the current state

\[
\Pr(E_t|S_{0:t}, E_{1:t-1}) = \Pr(E_t|S_t)
\]

Then

\[
\Pr(E_t|S_t)
\]

is called the sensor model.

\[\Pr(S_0)\] is the prior probability of the starting state. We need this as there has to be some way of getting the process started.
The full joint distribution

Given:

1. The prior $\Pr(S_0)$.
2. The transition model $\Pr(S_t|S_{t-1})$.
3. The sensor model $\Pr(E_t|S_t)$.

along with the assumptions of stationarity and the assumptions of independence we have

$$
\Pr(S_0, S_1, \ldots, S_t, E_1, E_2, \ldots, E_t) = \Pr(S_0) \prod_{i=1}^{t} \Pr(S_i|S_{i-1}) \Pr(E_i|S_i).
$$
A friend of mine likes to climb on the roofs of Cambridge. To make a good start to the coming week, he climbs on a Sunday with probability 0.98. Being concerned for his own safety, he is less likely to climb today if he climbed yesterday, so

\[\Pr(\text{climb today}|\text{climb yesterday}) = 0.4. \]

If he did not climb yesterday then he is very unlikely to climb today, so

\[\Pr(\text{climb today}|-\text{climb yesterday}) = 0.1. \]

Unfortunately, he is not a very good climber, and is quite likely to injure himself if he goes climbing, so

\[\Pr(\text{injury}|\text{climb today}) = 0.8 \]

whereas

\[\Pr(\text{injury}|-\text{climb today}) = 0.1. \]
Performing inference

There are four basic inference tasks that we might want to perform.

In each of the following cases, assume that we have observed the evidence $E_{1:t} = e_{1:t}$.

Filtering: Deduce what state we might now be in by computing

$$\Pr(S_t|e_{1:t}) .$$

Prediction: Deduce what state we might be in some time in the future by computing

$$\Pr(S_{t+T}|e_{1:t}) \text{ for some } T > 0.$$

Smoothing: Deduce what state we might have been in at some point in the past by computing

$$\Pr(S_t|e_{1:T}) \text{ for } 0 \leq t < T.$$

Find the most likely explanation: Deduce the most likely sequence of states so far by computing

$$\arg\max_{s_{1:t}} \Pr(s_{1:t}|e_{1:t}) .$$
Filtering

We want to compute $\Pr(S_t|e_{1:t})$. This is often called the *forward message* and denoted

$$f_{1:t} = \Pr(S_t|e_{1:t})$$

for reasons that are about to become clear.

Remember that S_t is an RV and so $f_{1:t}$ is a *probability distribution* containing a probability for each possible value of S_t.

It turns out that this can be done in a simple manner with a *recursive estimation*. Obtain the result at time $t + 1$:

1. using the result from time t and...
2. ...incorporating new evidence e_{t+1}.

$$f_{1:t+1} = g(e_{t+1}, f_{1:t})$$

for a suitable function g that we’ll now derive.
Filtering

Step 1:
Project the current state distribution forward

\[
\Pr (S_{t+1} | e_{1:t+1}) = \Pr (S_{t+1} | e_{1:t}, e_{t+1})
= c \Pr (e_{t+1} | S_{t+1}, e_{1:t}) \Pr (S_{t+1} | e_{1:t})
= c \Pr (e_{t+1} | S_{t+1}) \underbrace{\Pr (S_{t+1} | e_{1:t})}_{\text{Sensor model}} \underbrace{\Pr (S_{t+1} | e_{1:t})}_{\text{Needs more work}}
\]

where as usual \(c \) is a constant that normalises the distribution. Here,

- The first line does nothing but split \(e_{1:t+1} \) into \(e_{t+1} \) and \(e_{1:t} \).
- The second line is an application of Bayes’ theorem.
- The third line uses assumption 3 regarding sensor models.
Step 2:

To obtain $\Pr(S_{t+1}|e_{1:t})$

\[
\Pr(S_{t+1}|e_{1:t}) = \sum_{s_t} \Pr(S_{t+1}, s_t|e_{1:t}) \\
= \sum_{s_t} \Pr(S_{t+1}|s_t, e_{1:t}) \Pr(s_t|e_{1:t}) \\
= \sum_{s_t} \Pr(S_{t+1}|s_t) \Pr((s_t|e_{1:t})) .
\]

Here,

- The first line uses marginalisation.
- The second line uses the basic equation $\Pr(A, B) = \Pr(A|B) \Pr(B)$.
- The third line uses assumption 2 regarding transition models.
Filtering

Pulling it all together

\[
\Pr(S_{t+1}|e_{1:t+1}) = c\Pr(e_{t+1}|S_{t+1}) \sum_{s_t} \Pr(S_{t+1}|s_t) \Pr(s_t|e_{1:t})
\]

Sensor model \quad Transition model \quad From previous step

This will be shortened to

\[f_{1:t+1} = c\text{FORWARD}(e_{t+1}, f_{1:t}) \]

Here

- \(f_{1:t} \) is a shorthand for \(\Pr(S_t|e_{1:t}) \).
- \(f_{1:t} \) is often interpreted as a message being passed forward.
- The process is started using the prior.
Prediction

Prediction is somewhat simpler as

\[
\Pr \left(S_{t+T+1} | e_{1:t} \right) = \sum_{s_{t+T}} \Pr \left(S_{t+T+1}, s_{t+T} | e_{1:t} \right)
\]

\[
= \sum_{s_{t+T}} \Pr \left(S_{t+T+1} | s_{t+T}, e_{1:t} \right) \Pr \left(s_{t+T} | e_{1:t} \right)
\]

\[
= \sum_{s_{t+T}} \Pr \left(S_{t+T+1} | s_{t+T} \right) \Pr \left(s_{t+T} | e_{1:t} \right).
\]

However we do not get to make accurate predictions arbitrarily far into the future!
Smoothing

For smoothing, we want to calculate $\Pr(S_t|e_{1:T})$ for $0 \leq t < T$.

Again, we can do this in two steps.

Step 1:

$$
\Pr(S_t|e_{1:T}) = \Pr(S_t|e_{1:t}, e_{t+1:T}) \\
= c \Pr(S_t|e_{1:t}) \Pr(e_{t+1:T}|S_t, e_{1:t}) \\
= c \Pr(S_t|e_{1:t}) \Pr(e_{t+1:T}|S_t) \\
= cf_{1:t}b_{t+1:T}.
$$

Here

- $f_{1:t}$ is the forward message defined earlier.
- $b_{t+1:T}$ is a shorthand for $\Pr(e_{t+1:T}|S_t)$ to be regarded as a message being passed backward.
Smoothing

Step 2:

\[
\begin{align*}
b_{t+1:T} &= \Pr (e_{t+1:T} | S_t) = \sum_{s_{t+1}} \Pr (e_{t+1:T}, s_{t+1} | S_t) \\
&= \sum_{s_{t+1}} \Pr (e_{t+1:T} | s_{t+1}) \Pr (s_{t+1} | S_t) \\
&= \sum_{s_{t+1}} \Pr (e_{t+1}, e_{t+2:T} | s_{t+1}) \Pr (s_{t+1} | S_t) \\
&= \sum_{s_{t+1}} \Pr (e_{t+1} | s_{t+1}) \Pr (e_{t+2:T} | s_{t+1}) \Pr (s_{t+1} | S_t) \\
&= \text{BACKWARD}(e_{t+1:T}, b_{t+2:T}).
\end{align*}
\]

This process is initialised with

\[
b_{t+1:t} = \Pr (e_{T+1:T} | S_T) = (1, \ldots, 1)
\]
The forward-backward algorithm

So: our original aim of computing \(\Pr(S_t|e_{1:T}) \) can be achieved using:

- A recursive process working from time 1 to time \(t \).
- A recursive process working from time \(T \) to time \(t + 1 \).

This results in a process that is \(O(T) \) given the evidence \(e_{1:T} \) and smooths for a single point at time \(t \).

To smooth at all points \(1 : T \) we can easily repeat the process obtaining \(O(T^2) \).

Alternatively a very simple example of dynamic programming allows us to smooth at all points in \(O(T) \) time.
Computing the most likely sequence: the Viterbi algorithm

In *computing the most likely sequence* the aim is to obtain \(\arg \max_{s_{1:t}} \Pr(s_{1:t}|e_{1:t}) \).

Earlier we derived the joint distribution for all relevant variables

\[
\Pr(S_0, S_1, \ldots, S_t, E_1, E_2, \ldots, E_t) = \Pr(S_0) \prod_{i=1}^{t} \Pr(S_i|S_{i-1}) \Pr(E_i|S_i).
\]

We therefore have

\[
\begin{align*}
\max_{s_{1:t}} \Pr(s_{1:t}, S_{t+1}|e_{1:t+1}) &= c \max_{s_{1:t}} \Pr(e_{t+1}|S_{t+1}) \Pr(S_{t+1}|s_t) \Pr(s_{1:t}|e_{1:t}) \\
&= c \Pr(e_{t+1}|S_{t+1}) \max_{s_t} \left\{ \Pr(S_{t+1}|s_t) \max_{s_{1:t-1}} \Pr(s_{1:t-1}, s_t|e_{1:t}) \right\}.
\end{align*}
\]

This looks a bit fierce.
Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a *dynamic programming* algorithm called the *Viterbi algorithm*.

Step 1: Simplify the notation.

- Assume there are n states s_1, \ldots, s_n and m possible observations e_1, \ldots, e_m at any given time.
- Denote $\Pr(S_t = s_j|S_{t-1} = s_i)$ by $p_{i,j}(t)$.
- Denote $\Pr(e_t|S_t = s_i)$ by $q_i(t)$.

It’s important to remember in what follows that the *observations are known* but that we’re *maximising over all possible state sequences*.
Computing the most likely sequence: the Viterbi algorithm

The equation we’re interested in is now of the form

\[P = \prod_{t=1}^{T} p_{i,j}(t)q_i(t). \]

It is in fact a function of any given sequence of states.

(The prior \(\Pr(S_0) \) has been dropped out for the sake of clarity, but is easy to put back in in what follows.)
Computing the most likely sequence: the Viterbi algorithm

Step 2: Make a grid: columns denote time and rows denote state.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>...</th>
<th>k</th>
<th>k + 1</th>
<th>...</th>
<th>t</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
</tr>
<tr>
<td>s_2</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
</tr>
<tr>
<td>s_3</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s_{n-1}</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
</tr>
<tr>
<td>s_n</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
<td>⬤</td>
</tr>
</tbody>
</table>
Computing the most likely sequence: the Viterbi algorithm

Step 3: Label the nodes:

- Say at time t the actual observation was e_t. Then label the node for s_i in column t with the value $q_i(t)$.

- Any sequence of states through time is now a path through the grid. So for any transition from s_i at time $t - 1$ to s_j at time t label the transition with the value $p_{i,j}(t)$.

In the following diagrams we can often just write $p_{i,j}$ and q_i because the time is clear from the diagram.

So for instance...
Computing the most likely sequence: the Viterbi algorithm

\[
\begin{array}{cccccccc}
1 & 2 & 3 & \cdots & k & k+1 & \cdots & t \\
\text{s}_1 & & & & & & & \\
\text{s}_2 & \cdot & \cdot & \cdot & q_1(2) & & & \\
\text{s}_3 & \cdot & \cdot & q_2(1) & p_{2,1}(2) & p_{1,3}(3) & & \\
\vdots & \\
\text{s}_{n-1} & & & & & & & \\
\text{s}_n & & & & & q_{n-1}(k+1) & p_{n,n-1}(k+1) & \\
\end{array}
\]

\[q_n(k)\]
Computing the most likely sequence: the Viterbi algorithm

- The value of \(P = \prod_{t=1}^{T} p_{i,j}(t)q_i(t) \) for any path through the grid is just the product of the corresponding labels that have been added.

- But we don’t want to find the maximum by looking at all the possible paths because this would be time-consuming.

- The Viterbi algorithm computes the maximum by moving from one column to the next updating as it goes.

- Say you’re at column \(k \) and for each node \(m \) in that column you know the highest value for the product to this point over any possible path. Call this:

\[
W_m(k) = \max_{s:1:k} \prod_{t=1}^{k} p_{i,j}(t)q_i(t).
\]
Computing the most likely sequence: the Viterbi algorithm

\[
\begin{array}{ccccccc}
 & 1 & 2 & 3 & \cdots & k & k+1 & \cdots & t \\
\hline
s_1 & \bullet & \bullet & \bullet & & W_1(k) & \bullet & \bullet & \bullet \\
s_2 & \bullet & \bullet & \bullet & & W_2(k) & \bullet & \bullet & \bullet \\
s_3 & \bullet & \bullet & \bullet & & W_3(k) & \bullet & \bullet & \bullet \\
\vdots & \vdots & \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\
s_{n-1} & \bullet & \bullet & \bullet & & W_{n-1}(k) & q_{n-1}(k+1) & \bullet & \bullet \\
s_n & \bullet & \bullet & \bullet & & W_n(k) & p_{n,n-1}(k+1) & \bullet & \bullet \\
\end{array}
\]
Computing the most likely sequence: the Viterbi algorithm

Here is the key point: you only need to know

- The values $W_i(k)$ for $i = 1, \ldots, n$ at time k.
- The numbers $p_{i,j}(k + 1)$.
- The numbers $q_i(k + 1)$.

...to compute the values $W_i(k + 1)$ for the next column $k + 1$.

This is because

\[
W_i(k + 1) = \max_j W_j(k) p_{j,i}(k + 1) q_i(k + 1).
\]
Computing the most likely sequence: the Viterbi algorithm

Once you get to the column for time t:

- The node with the largest value for $W_i(t)$ tells you the largest possible value of P.
- Provided you stored the path taken to get there you can work backwards to find the corresponding sequence of states.

This is the Viterbi algorithm.
Computing the most likely sequence: the Viterbi algorithm

\[W_3(t) \text{ maximum} \]
Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here we have a *single, discrete* state variable S_t taking values s_1, s_2, \ldots, s_n. For example, with $n = 3$ we might have

\[
\begin{array}{c|ccc}
 & \Pr(S_{t+1}|S_t = s_1) & \Pr(S_{t+1}|S_t = s_2) & \Pr(S_{t+1}|S_t = s_3) \\
\hline
s_1 & 0.3 & 0.2 & 0.2 \\
s_2 & 0.1 & 0.6 & 0.3 \\
s_3 & 0.6 & 0.2 & 0.5 \\
\end{array}
\]
Hidden Markov models

In this simplified case the conditional probabilities \(\Pr(S_{t+1}|S_t) \) can be represented using the matrix

\[
S_{ij} = \Pr(S_{t+1} = s_j|S_t = s_i)
\]

or for the example on the previous slide

\[
S = \begin{bmatrix}
0.3 & 0.1 & 0.6 \\
0.2 & 0.6 & 0.2 \\
0.2 & 0.3 & 0.5
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\Pr(s_1|s_1) & \Pr(s_2|s_1) & \cdots & \Pr(s_n|s_1) \\
\Pr(s_1|s_2) & \Pr(s_2|s_2) & \cdots & \Pr(s_n|s_2) \\
\vdots & \vdots & \ddots & \vdots \\
\Pr(s_1|s_n) & \Pr(s_2|s_n) & \cdots & \Pr(s_n|s_n)
\end{bmatrix}
\]

To save space, I am abbreviating \(\Pr(S_{t+1} = s_i|S_t = s_j) \) to \(\Pr(s_i|s_j) \).
Hidden Markov models

The computations we’re making are always conditional on some actual observations $e_{1:T}$.

For each t we can therefore use the sensor model to define a further matrix E_t:

- E_t is square and diagonal (all off-diagonal elements are 0).
- The ith element of the diagonal is $\Pr (e_t | S_t = s_i)$.

So in our present example with 3 states, there will be a matrix

$$E_t = \begin{bmatrix}
\Pr (e_t | s_1) & 0 & 0 \\
0 & \Pr (e_t | s_2) & 0 \\
0 & 0 & \Pr (e_t | s_3)
\end{bmatrix}$$

for each $t = 1, \ldots, T$.

Hidden Markov models

In the general case the equation for filtering was

$$\Pr(S_{t+1}|e_{1:t+1}) = c \Pr(e_{t+1}|S_{t+1}) \sum_{s_t} \Pr(S_{t+1}|s_t) \Pr(s_t|e_{1:t})$$

and the message $f_{1:t}$ was introduced as a representation of $\Pr(S_t|e_{1:t})$.

In the present case we can define $f_{1:t}$ to be the vector

$$f_{1:t} = \begin{bmatrix} \Pr(s_1|e_{1:t}) \\ \Pr(s_2|e_{1:t}) \\ \vdots \\ \Pr(s_n|e_{1:t}) \end{bmatrix}.$$

Key point: the filtering equation now reduces to nothing but matrix multiplication.
What does matrix multiplication do? It computes weighted summations:

\[
\mathbf{A}\mathbf{b} = \begin{bmatrix}
 a_{1,1} & a_{1,2} & \cdots & a_{1,m} \\
 a_{2,1} & a_{2,2} & \cdots & a_{2,m} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n,1} & a_{n,2} & \cdots & a_{n,m}
\end{bmatrix}
\begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
\end{bmatrix} = \begin{bmatrix}
 \sum_{i=1}^{m} a_{1,i}b_i \\
 \sum_{i=1}^{m} a_{2,i}b_i \\
 \vdots \\
 \sum_{i=1}^{m} a_{n,i}b_i
\end{bmatrix}.
\]

So the point at the end of the last slide shouldn’t come as a big surprise!
Hidden Markov models

Now, note that if we have \(n \) states

\[
S^T f_{1:t} = \begin{bmatrix}
\Pr(s_1|s_1) & \cdots & \Pr(s_1|s_n) \\
\Pr(s_2|s_1) & \cdots & \Pr(s_2|s_n) \\
\vdots & \ddots & \vdots \\
\Pr(s_n|s_1) & \cdots & \Pr(s_n|s_n)
\end{bmatrix}
\begin{bmatrix}
\Pr(s_1|e_{1:t}) \\
\Pr(s_2|e_{1:t}) \\
\vdots \\
\Pr(s_n|e_{1:t})
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\Pr(s_1|s_1) \Pr(s_1|e_{1:t}) + \cdots + \Pr(s_1|s_n) \Pr(s_n|e_{1:t}) \\
\Pr(s_2|s_1) \Pr(s_1|e_{1:t}) + \cdots + \Pr(s_2|s_n) \Pr(s_n|e_{1:t}) \\
\vdots \\
\Pr(s_n|s_1) \Pr(s_1|e_{1:t}) + \cdots + \Pr(s_n|s_n) \Pr(s_n|e_{1:t})
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\sum_s \Pr(s_1|s) \Pr(s|e_{1:t}) \\
\sum_s \Pr(s_2|s) \Pr(s|e_{1:t}) \\
\vdots \\
\sum_s \Pr(s_n|s) \Pr(s|e_{1:t})
\end{bmatrix}
\]
Hidden Markov models

And taking things one step further

\[
E_{t+1}S^T f_{1:t} = \begin{bmatrix}
\Pr(e_{t+1}|s_1) & 0 \\
\vdots & \ddots \\
0 & \Pr(e_{t+1}|s_n)
\end{bmatrix} \begin{bmatrix}
\sum_s \Pr(s_1|s) \Pr((s|e_{1:t})) \\
\sum_s \Pr(s_2|s) \Pr((s|e_{1:t})) \\
\vdots \\
\sum_s \Pr(s_n|s) \Pr((s|e_{1:t}))
\end{bmatrix}
\]

\[
= \begin{bmatrix}
\Pr(e_{t+1}|s_1) \sum_s \Pr(s_1|s) \Pr(s|e_{1:t}) \\
\Pr(e_{t+1}|s_2) \sum_s \Pr(s_2|s) \Pr(s|e_{1:t}) \\
\vdots \\
\Pr(e_{t+1}|s_n) \sum_s \Pr(s_n|s) \Pr(s|e_{1:t})
\end{bmatrix}
\]

Compare this with the equation for filtering

\[
\Pr(S_{t+1}|e_{1:t+1}) = c \Pr(e_{t+1}|S_{t+1}) \sum_{s_t} \Pr(S_{t+1}|s_t) \Pr(s_t|e_{1:t})
\]
Comparing the expression for $E_{t+1}S^Tf_{1:t}$ with the equation for filtering we see that

$$f_{1:t+1} = cE_{t+1}S^Tf_{1:t}$$

and a similar equation can be found for b

$$b_{t+1:T} = SE_{t+1}b_{t+2:T}.$$

Exercise: derive this.

The fact that these can be expressed simply using only multiplication of vectors and matrices allows us to make an improvement to the forward-backward algorithm.
Hidden Markov models

The forward-backward algorithm works by:

- Moving up the sequence from 1 to T, computing and storing values for \(f \).
- Moving down the sequence from T to 1 computing values for \(b \) and combining them with the stored values for \(f \) using the equation

\[
\Pr(S_t | e_{1:T}) = cf_{1:t}b_{t+1:T}.
\]

Now in our simplified HMM case we have

\[
f_{1:t+1} = c E_{t+1} S^T f_{1:t}
\]

or multiplying through by \((E_{t+1} S^T)^{-1}\) and re-arranging

\[
f_{1:t} = \frac{1}{c} (S^T)^{-1} (E_{t+1})^{-1} f_{1:t+1}.
\]
Hidden Markov models

So as long as:

- We know the final value for f.
- S^T has an inverse.
- Every observation has non-zero probability in every state.

We don’t have to store T different values for f—we just work through, discarding intermediate values, to obtain the last value and then work backward.