
Machine Learning and Bayesian Inference

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11/

Part IV

Inference through time

Hidden Markov models (HMMs)

Copyright c© Sean Holden 2002-17.

1

Probabilistic reasoning through time

Probabilistic reasoning through time.

A fundamental idea throughout the AI courses has been that an agent should keep
track of the state of the environment:

• The environment’s state changes over time.

• The knowledge of how the state changes may be uncertain.

• The agent’s perception of the state of the environment may be uncertain.

2

States and evidence

We model the (unobservable) state of the environment as follows:

• We use a sequence
(S0, S1, S2, . . .)

of sets of random variables (RVs).

• Each St is a set of RVs
St = {S(1)

t , . . . , S
(n)
t }

denoting the state of the environment at time t, where t = 0, 1, 2,

Think of the state as changing over time.

S0 S1 S2 · · ·

3

States and evidence

At each time t there is also an observable set

Et = {E(1)
t , . . . , E

(m)
t }

of random variables denoting the evidence that an agent obtains about the state at
time t.

As usual capitals denote RVs and lower case denotes actual values. So actual
values for the assorted RVs are denoted

St = {s(1)t , . . . , s
(n)
t } = st

Et = {e(1)t , . . . , e
(m)
t } = et

4

Stationary and Markov processes

As t can in principle increase without bound we now need some simplifying as-
sumptions.

1. Assumption 1: We deal with stationary processes—probability distribu-
tions do not change over time.

2. Assumption 2: We deal with Markov processes

Pr (St|S0:t−1) = Pr (St|St−1)

where S0:t−1 = (S0, S1, . . . , St−1).

(Strictly speaking this is a first order Markov Process, and we’ll only consider
these.)

Pr (St|St−1) is called the transition model.

5

Stationary and Markov processes

Assumption 3: We assume that evidence only depends on the current state

Pr (Et|S0:t, E1:t−1) = Pr (Et|St)

Then

Pr (Et|St) is called the sensor model.

S0

Prior Pr (S0)

S1 S2 · · · St−1 St · · ·
Pr (St|St−1)

E1 E2 Et−1 Et

Pr (Et|St)

Pr (S0) is the prior probability of the starting state. We need this as there has to be
some way of getting the process started.

6

The full joint distribution

Given:

1. The prior Pr (S0).

2. The transition model Pr (St|St−1).

3. The sensor model Pr (Et|St).

along with the assumptions of stationarity and the assumptions of independence
we have

Pr (S0, S1, . . . , St, E1, E2, . . . , Et) = Pr (S0)

t∏

i=1

Pr (Si|Si−1)Pr (Ei|Si) .

7

Example: 2008, paper 9, question 5

A friend of mine likes to climb on the roofs of Cambridge. To make a good start to
the coming week, he climbs on a Sunday with probability 0.98. Being concerned
for his own safety, he is less likely to climb today if he climbed yesterday, so

Pr (climb today|climb yesterday) = 0.4.

If he did not climb yesterday then he is very unlikely to climb today, so

Pr (climb today|¬climb yesterday) = 0.1.

Unfortunately, he is not a very good climber, and is quite likely to injure himself
if he goes climbing, so

Pr (injury|climb today) = 0.8

whereas
Pr (injury|¬climb today) = 0.1.

8

Performing inference

There are four basic inference tasks that we might want to perform.

In each of the following cases, assume that we have observed the evidence

E1:t = e1:t.

Filtering: Deduce what state we might now be in by computing

Pr (St|e1:t) .

Prediction: Deduce what state we might be in some time in the future by com-
puting

Pr (St+T |e1:t) for some T > 0.

Smoothing: Deduce what state we might have been in at some point in the past
by computing

Pr (St|e1:T) for 0 ≤ t < T.

Find the most likely explanation: Deduce the most likely sequence of states so
far by computing

argmax
s1:t

Pr (s1:t|e1:t) .

9

Filtering

We want to compute Pr (St|e1:t). This is often called the forward message and
denoted

f1:t = Pr (St|e1:t)

for reasons that are about to become clear.

Remember that St is an RV and so f1:t is a probability distribution containing a
probability for each possible value of St.

It turns out that this can be done in a simple manner with a recursive estimation.
Obtain the result at time t + 1:

1. using the result from time t and...

2. ...incorporating new evidence et+1.

f1:t+1 = g(et+1, f1:t)

for a suitable function g that we’ll now derive.

10

Filtering

Step 1:

Project the current state distribution forward

Pr (St+1|e1:t+1) = Pr (St+1|e1:t, et+1)

= cPr (et+1|St+1, e1:t)Pr (St+1|e1:t)
= cPr (et+1|St+1)︸ ︷︷ ︸

Sensor model

Pr (St+1|e1:t)︸ ︷︷ ︸
Needs more work

where as usual c is a constant that normalises the distribution. Here,

• The first line does nothing but split e1:t+1 into et+1 and e1:t.

• The second line is an application of Bayes’ theorem.

• The third line uses assumption 3 regarding sensor models.

11

Filtering

Step 2:

To obtain Pr (St+1|e1:t)

Pr (St+1|e1:t) =
∑

st

Pr (St+1, st|e1:t)

=
∑

st

Pr (St+1|st, e1:t)Pr (st|e1:t)

=
∑

st

Pr (St+1|st)︸ ︷︷ ︸
Transition model

Pr ((st|e1:t))︸ ︷︷ ︸
Available from previous step

.

Here,

• The first line uses marginalisation.

• The second line uses the basic equation Pr (A,B) = Pr (A|B)Pr (B).

• The third line uses assumption 2 regarding transition models.

12

Filtering

Pulling it all together

Pr (St+1|e1:t+1) = cPr (et+1|St+1)︸ ︷︷ ︸
Sensor model

∑

st

Pr (St+1|st)︸ ︷︷ ︸
Transition model

Pr (st|e1:t)︸ ︷︷ ︸
From previous step

.

This will be shortened to

f1:t+1 = cFORWARD(et+1, f1:t)

Here

• f1:t is a shorthand for Pr (St|e1:t).
• f1:t is often interpreted as a message being passed forward.

• The process is started using the prior.

13

Prediction

Prediction is somewhat simpler as

Pr (St+T+1|e1:t)︸ ︷︷ ︸
Prediction at t+T+1

=
∑

st+T

Pr (St+T+1, st+T |e1:t)

=
∑

st+T

Pr (St+T+1|st+T , e1:t)Pr (st+T |e1:t)

=
∑

st+T

Pr (St+T+1|st+T)︸ ︷︷ ︸
Transition model

Pr (st+T |e1:t)︸ ︷︷ ︸
Prediction at t+T

.

However we do not get to make accurate predictions arbitrarily far into the future!

14

Smoothing

For smoothing, we want to calculate Pr (St|e1:T) for 0 ≤ t < T .

Again, we can do this in two steps.

Step 1:

Pr (St|e1:T) = Pr (St|e1:t, et+1:T)

= cPr (St|e1:t)Pr (et+1:T |St, e1:t)

= cPr (St|e1:t)Pr (et+1:T |St)

= cf1:tbt+1:T .

Here

• f1:t is the forward message defined earlier.

• bt+1:T is a shorthand for Pr (et+1:T |St) to be regarded as a message being passed
backward.

15

Smoothing

Step 2:

bt+1:T = Pr (et+1:T |St) =
∑

st+1

Pr (et+1:T , st+1|St)

=
∑

st+1

Pr (et+1:T |st+1)Pr (st+1|St)

=
∑

st+1

Pr (et+1, et+2:T |st+1)Pr (st+1|St)

=
∑

st+1

Pr (et+1|st+1)︸ ︷︷ ︸
Sensor model

Pr (et+2:T |st+1)︸ ︷︷ ︸
bt+2:T

Pr (st+1|St)︸ ︷︷ ︸
Transition model

= BACKWARD(et+1:T , bt+2:T).

This process is initialised with

bt+1:t = Pr (eT+1:T |ST) = (1, . . . , 1)

16

The forward-backward algorithm

So: our original aim of computing Pr (St|e1:T) can be achieved using:

• A recursive process working from time 1 to time t.

• A recursive process working from time T to time t + 1.

This results in a process that is O(T) given the evidence e1:T and smooths for a
single point at time t.

To smooth at all points 1 : T we can easily repeat the process obtaining O(T 2).

Alternatively a very simple example of dynamic programming allows us to smooth
at all points in O(T) time.

Recursively compute all values for f1:t and store results

Done

Prior

Recursively compute all values bt+1:T and combine with stored values for f1:t.

17

Computing the most likely sequence: the Viterbi algorithm

In computing the most likely sequence the aim is to obtain argmaxs1:t Pr (s1:t|e1:t).
Earlier we derived the joint distribution for all relevant variables

Pr (S0, S1, . . . , St, E1, E2, . . . , Et) = Pr (S0)

t∏

i=1

Pr (Si|Si−1)Pr (Ei|Si) .

We therefore have

max
s1:t

Pr (s1:t, St+1|e1:t+1)

= cmax
s1:t

Pr (et+1|St+1)Pr (St+1|st)Pr (s1:t|e1:t)

= cPr (et+1|St+1)max
st



Pr (St+1|st) max

s1:t−1
Pr (s1:t−1, st|e1:t)



 .

This looks a bit fierce.

18

Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a dynamic programming algo-
rithm called the Viterbi algorithm.

Step 1: Simplify the notation.

• Assume there are n states s1, . . . , sn and m possible observations e1, . . . , em
at any given time.

• Denote Pr (St = sj|St−1 = si) by pi,j(t).

• Denote Pr (et|St = si) by qi(t).

It’s important to remember in what follows that the observations are known but
that we’re maximising over all possible state sequences.

19

Computing the most likely sequence: the Viterbi algorithm

The equation we’re interested in is now of the form

P =

T∏

t=1

pi,j(t)qi(t).

It is in fact a function of any given sequence of states.

(The prior Pr (S0) has been dropped out for the sake of clarity, but is easy to put
back in in what follows.)

20

Computing the most likely sequence: the Viterbi algorithm

Step 2: Make a grid: columns denote time and rows denote state.

sn

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

21

Computing the most likely sequence: the Viterbi algorithm

Step 3: Label the nodes:

• Say at time t the actual observation was et. Then label the node for si in
column t with the value qi(t).

• Any sequence of states through time is now a path through the grid. So for
any transition from si at time t − 1 to sj at time t label the transition with
the value pi,j(t).

In the following diagrams we can often just write pi,j and qi because the time is
clear from the diagram.

So for instance...

22

Computing the most likely sequence: the Viterbi algorithm

qn−1(k + 1)

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

q1(2)

p2,1(2)

qn(k)

q2(1)
p1,3(3)

q3(3)

pn,n−1(k + 1)

23

Computing the most likely sequence: the Viterbi algorithm

• The value of P =
∏T

t=1 pi,j(t)qi(t) for any path through the grid is just the
product of the corresponding labels that have been added.

• But we don’t want to find the maximum by looking at all the possible paths
because this would be time-consuming.

• The Viterbi algorithm computes the maximum by moving from one column to
the next updating as it goes.

• Say you’re at column k and for each node m in that column you know the
highest value for the product to this point over any possible path. Call this:

Wm(k) = max
s1:k

k∏

t=1

pi,j(t)qi(t).

24

Computing the most likely sequence: the Viterbi algorithm

Wn(k)

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

pn,n−1(k + 1)

qn−1(k + 1)

W1(k)

W2(k)

W3(k)

Wn−1(k)

25

Computing the most likely sequence: the Viterbi algorithm

Here is the key point: you only need to know

• The values Wi(k) for i = 1, . . . , n at time k.

• The numbers pi,j(k + 1).

• The numbers qi(k + 1).

to compute the values Wi(k + 1) for the next column k + 1.

This is because

Wi(k + 1) = max
j

Wj(k)pj,i(k + 1)qi(k + 1).

26

Computing the most likely sequence: the Viterbi algorithm

Once you get to the column for time t:

• The node with the largest value for Wi(t) tells you the largest possible value
of P .

• Provided you stored the path taken to get there you can work backwards to
find the corresponding sequence of states.

This is the Viterbi algorithm.

27

Computing the most likely sequence: the Viterbi algorithm

W3(t) maximum

...
...

...
...

...
...

...

1 2 3 k k + 1 t· · · · · ·

s1

s2

s3

sn−1

sn

28

Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here we have a single,
discrete state variable Si taking values s1, s2, . . . , sn. For example, with n = 3 we
might have

s1

s2

s3

0.3

0.6

0.1

0.2

0.6

0.2

0.2

0.3

0.5

s3

s2s1

Pr (St+1|St = s1) Pr (St+1|St = s2) Pr (St+1|St = s3)

29

Hidden Markov models

In this simplified case the conditional probabilities Pr (St+1|St) can be represented
using the matrix

Sij = Pr (St+1 = sj|St = si)

or for the example on the previous slide

S =



0.3 0.1 0.6
0.2 0.6 0.2
0.2 0.3 0.5




=




Pr (s1|s1) Pr (s2|s1) · · · Pr (sn|s1)
Pr (s1|s2) Pr (s2|s2) · · · Pr (sn|s2)

...
Pr (s1|sn) Pr (s2|sn) · · · Pr (sn|sn)


 .

To save space, I am abbreviating Pr (St+1 = si|St = sj) to Pr (si|sj).

30

Hidden Markov models

The computations we’re making are always conditional on some actual observa-
tions e1:T .

For each t we can therefore use the sensor model to define a further matrix Et:

• Et is square and diagonal (all off-diagonal elements are 0).

• The ith element of the diagonal is Pr (et|St = si).

So in our present example with 3 states, there will be a matrix

Et =




Pr (et|s1) 0 0
0 Pr (et|s2) 0
0 0 Pr (et|s3)




for each t = 1, . . . , T .

31

Hidden Markov models

In the general case the equation for filtering was

Pr (St+1|e1:t+1) = cPr (et+1|St+1)
∑

st

Pr (St+1|st)Pr (st|e1:t)

and the message f1:t was introduced as a representation of Pr (St|e1:t).
In the present case we can define f1:t to be the vector

f1:t =




Pr (s1|e1:t)
Pr (s2|e1:t)

...
Pr (sn|e1:t)


 .

Key point: the filtering equation now reduces to nothing but matrix multiplication.

32

What does matrix multiplication do?

What does matrix multiplication do? It computes weighted summations:

Ab =




a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
an,1 an,2 · · · an,m







b1
b2
...
bm


 =




∑m
i=1 a1,ibi∑m
i=1 a2,ibi...∑m
i=1 an,ibi


 .

So the point at the end of the last slide shouldn’t come as a big surprise!

33

Hidden Markov models

Now, note that if we have n states

STf1:t =




Pr (s1|s1) · · · Pr (s1|sn)
Pr (s2|s1) · · · Pr (s2|sn)

...
Pr (sn|s1) · · · Pr (sn|sn)







Pr (s1|e1:t)
Pr (s2|e1:t)

...
Pr (sn|e1:t)




=




Pr (s1|s1)Pr (s1|e1:t) + · · · + Pr (s1|sn)Pr (sn|e1:t)
Pr (s2|s1)Pr (s1|e1:t) + · · · + Pr (s2|sn)Pr (sn|e1:t)

...
Pr (sn|s1)Pr (s1|e1:t) + · · · + Pr (sn|sn)Pr (sn|e1:t)




=




∑
s Pr (s1|s)Pr (s|e1:t)∑
s Pr (s2|s)Pr (s|e1:t)

...∑
s Pr (sn|s)Pr (s|e1:t)


 .

34

Hidden Markov models

And taking things one step further

Et+1S
Tf1:t =




Pr (et+1|s1) 0
. . .

0 Pr (et+1|sn)







∑
s Pr (s1|s)Pr ((s|e1:t))∑
s Pr (s2|s)Pr ((s|e1:t))

...∑
s Pr (sn|s))Pr (s|e1:t)




=




Pr (et+1|s1)
∑

s Pr (s1|s)Pr (s|e1:t))
Pr (et+1|s2)

∑
s Pr (s2|s)Pr (s|e1:t)

...
Pr (et+1|sn)

∑
s Pr (sn|s)Pr (s|e1:t)


 .

Compare this with the equation for filtering

Pr (St+1|e1:t+1) = cPr (et+1|St+1)
∑

st

Pr (St+1|st)Pr (st|e1:t) .

35

Hidden Markov models

Comparing the expression for Et+1S
Tf1:t with the equation for filtering we

see that

f1:t+1 = cEt+1S
Tf1:t

and a similar equation can be found for b

bt+1:T = SEt+1bt+2:T .

Exercise: derive this.

The fact that these can be expressed simply using only multiplication of vectors
and matrices allows us to make an improvement to the forward-backward algo-
rithm.

36

Hidden Markov models

The forward-backward algorithm works by:

• Moving up the sequence from 1 to T , computing and storing values for f .

• Moving down the sequence from T to 1 computing values for b and combining
them with the stored values for f using the equation

Pr (St|e1:T) = cf1:tbt+1:T .

Now in our simplified HMM case we have

f1:t+1 = cEt+1S
Tf1:t

or multiplying through by (Et+1S
T)−1 and re-arranging

f1:t =
1

c
(ST)−1(Et+1)

−1f1:t+1.

37

Hidden Markov models

So as long as:

• We know the final value for f .

• ST has an inverse.

• Every observation has non-zero probability in every state.

We don’t have to store T different values for f—we just work through, discarding
intermediate values, to obtain the last value and then work backward.

38

