Machine Learning and Bayesian Inference

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/~sbh11/

Part IV

Inference through time Hidden Markov models (HMMs)

Copyright © Sean Holden 2002-17.

1

States and evidence

We model the (unobservable) state of the environment as follows:

• We use a *sequence*

 (S_0,S_1,S_2,\ldots)

of sets of random variables (RVs).

• Each S_t is a *set* of RVs

 $S_t = \{S_t^{(1)}, \dots, S_t^{(n)}\}$

3

denoting the state of the environment at time t, where t = 0, 1, 2, ...

Think of the state as changing over time.

Probabilistic reasoning through time

Probabilistic reasoning *through time*.

A fundamental idea throughout the AI courses has been that an agent should keep track of the *state of the environment*:

- The environment's state *changes over time*.
- The knowledge of *how the state changes* may be *uncertain*.
- The agent's *perception* of the state of the environment *may be uncertain*.

States and evidence

2

At each time t there is also an *observable* set

 $E_t = \{E_t^{(1)}, \dots, E_t^{(m)}\}$

of random variables denoting the *evidence that an agent obtains about the state* at time t.

As usual capitals denote RVs and lower case denotes actual values. So actual values for the assorted RVs are denoted $% \left({{\rm A}} \right) = {\rm A} \left({{\rm A}}$

 $S_t = \{s_t^{(1)}, \dots, s_t^{(n)}\} = s_t$ $E_t = \{e_t^{(1)}, \dots, e_t^{(m)}\} = e_t$

Stationary and Markov processes

As t can in principle increase without bound we now need some simplifying assumptions.

- 1. *Assumption 1*: We deal with *stationary processes*—probability distributions do not change over time.
- 2. Assumption 2: We deal with Markov processes

 $\Pr\left(S_t|S_{0:t-1}\right) = \Pr\left(S_t|S_{t-1}\right)$

where $S_{0:t-1} = (S_0, S_1, \dots, S_{t-1})$.

(Strictly speaking this is a *first order Markov Process*, and we'll only consider these.)

$\Pr(S_t|S_{t-1})$ is called the *transition model*.

The full joint distribution

5

Given:

- 1. The prior $\Pr(S_0)$.
- 2. The transition model $\Pr(S_t|S_{t-1})$.
- 3. The sensor model $\Pr(E_t|S_t)$.

along with the assumptions of stationarity and the assumptions of independence we have

 $\Pr(S_0, S_1, \dots, S_t, E_1, E_2, \dots, E_t) = \Pr(S_0) \prod_{i=1}^{t} \Pr(S_i | S_{i-1}) \Pr(E_i | S_i).$

7

 $\Pr(\text{climb today}|\text{climb yesterday}) = 0.4.$

If he did not climb yesterday then he is very unlikely to climb today, so

 $\Pr(\text{climb today}|\neg\text{climb yesterday}) = 0.1.$

Unfortunately, he is not a very good climber, and is quite likely to injure himself if he goes climbing, so

 $\Pr(\text{injury}|\text{climb today}) = 0.8$

whereas

 $\Pr(\text{injury}|\neg\text{climb today}) = 0.1.$

Performing inference

There are *four basic inference tasks* that we might want to perform.

In each of the following cases, assume that we have observed the evidence

 $E_{1:t} = e_{1:t}.$

Filtering: Deduce what state we might now be in by computing

$\Pr\left(S_t|e_{1:t}\right).$

Prediction: Deduce what state we might be in some time in the future by computing

$\Pr(S_{t+T}|e_{1:t})$ for some T > 0.

Smoothing: Deduce what state we might have been in at some point in the past by computing

$\Pr(S_t | e_{1:T}) \text{ for } 0 \le t < T.$

Find the most likely explanation: Deduce the most likely sequence of states so far by computing

 $\operatorname*{argmax}_{s_{1:t}} \Pr\left(s_{1:t} | e_{1:t}\right).$

Filtering

9

Step 1:

Project the current state distribution forward

 $\begin{aligned} \Pr\left(S_{t+1}|e_{1:t+1}\right) &= \Pr\left(S_{t+1}|e_{1:t}, e_{t+1}\right) \\ &= c\Pr\left(e_{t+1}|S_{t+1}, e_{1:t}\right)\Pr\left(S_{t+1}|e_{1:t}\right) \\ &= c\Pr\left(e_{t+1}|S_{t+1}\right)\Pr\left(S_{t+1}|e_{1:t}\right) \\ &\xrightarrow{\text{Sensor model}} \operatorname{Needs more work} \end{aligned}$

where as usual c is a constant that normalises the distribution. Here,

- The first line does nothing but split $e_{1:t+1}$ into e_{t+1} and $e_{1:t}$.
- The second line is an application of *Bayes' theorem*.
- The third line uses *assumption 3* regarding sensor models.

Filtering

We want to compute $\Pr(S_t|e_{1:t})$. This is often called the *forward message* and denoted

 $f_{1:t} = \Pr\left(S_t | e_{1:t}\right)$

for reasons that are about to become clear.

Remember that S_t is an RV and so $f_{1:t}$ is a *probability distribution* containing a probability for each possible value of S_t .

It turns out that this can be done in a simple manner with a *recursive estimation*. Obtain the result at time t + 1:

- 1. using the result from time t and...
- 2. ... incorporating new evidence e_{t+1} .

$$f_{1:t+1} = g(e_{t+1}, f_{1:t})$$

for a suitable function g that we'll now derive.

10

Filtering

Step 2:

To obtain $\Pr(S_{t+1}|e_{1:t})$

$$\begin{aligned} \Pr\left(S_{t+1}|e_{1:t}\right) &= \sum_{s_t} \Pr\left(S_{t+1}, s_t|e_{1:t}\right) \\ &= \sum_{s_t} \Pr\left(S_{t+1}|s_t, e_{1:t}\right) \Pr\left(s_t|e_{1:t}\right) \\ &= \sum_{s_t} \underbrace{\Pr\left(S_{t+1}|s_t\right)}_{\text{Transition model}} \underbrace{\Pr\left(\left(s_t|e_{1:t}\right)\right)}_{\text{Available from previous step}}.\end{aligned}$$

Here,

- The first line uses marginalisation.
- The second line uses the basic equation $\Pr(A, B) = \Pr(A|B)\Pr(B)$.
- The third line uses *assumption 2* regarding transition models.

The forward-backward algorithm

<u>So:</u> our original aim of computing $\Pr(S_t|e_{1:T})$ can be achieved using:

- A recursive process working from time 1 to time t.
- A recursive process working from time T to time t + 1.

This results in a process that is O(T) given the evidence $e_{1:T}$ and smooths for a *single* point at time t.

To smooth at *all* points 1: T we can easily repeat the process obtaining $O(T^2)$.

Alternatively a very simple example of *dynamic programming* allows us to smooth at all points in O(T) time.

Recursively compute all values for $f_{1:t}$ and store results

Recursively compute all values $b_{t+1:T}$ and combine with stored values for $f_{1:t}$.

17

Computing the most likely sequence: the Viterbi algorithm

There is however a way to visualise it that leads to a *dynamic programming* algorithm called the *Viterbi algorithm*.

Step 1: Simplify the notation.

- Assume there are *n* states s_1, \ldots, s_n and *m* possible observations e_1, \ldots, e_m at any given time.
- Denote $\Pr(S_t = s_j | S_{t-1} = s_i)$ by $p_{i,j}(t)$.
- Denote $\Pr(e_t | S_t = s_i)$ by $q_i(t)$.

It's important to remember in what follows that the *observations are known* but that we're *maximising over all possible state sequences*.

Computing the most likely sequence: the Viterbi algorithm

In computing the most likely sequence the aim is to obtain $\operatorname{argmax}_{s_{1:t}} \Pr(s_{1:t}|e_{1:t})$. Earlier we derived the joint distribution for all relevant variables

$$\Pr(S_0, S_1, \dots, S_t, E_1, E_2, \dots, E_t) = \Pr(S_0) \prod_{i=1}^{t} \Pr(S_i | S_{i-1}) \Pr(E_i | S_i)$$

We therefore have

This looks *a bit fierce*.

Computing the most likely sequence: the Viterbi algorithm

18

The equation we're interested in is now of the form

It is in fact a *function* of *any given sequence of states*.

(The prior $\Pr(S_0)$ has been dropped out for the sake of clarity, but is easy to put back in in what follows.)

Hidden Markov models

Now for a specific case: hidden Markov models (HMMs). Here we have a *single*, *discrete* state variable S_i taking values s_1, s_2, \ldots, s_n . For example, with n = 3 we might have

Key point: the filtering equation now reduces to nothing but matrix multiplication.

for each t = 1, ..., T.

Hidden Markov models

In this simplified case the conditional probabilities $\Pr(S_{t+1}|S_t)$ can be represented using the matrix

$$S_{ij} = \Pr\left(S_{t+1} = s_j | S_t = s_i\right)$$

or for the example on the previous slide

30

 $\mathbf{E}_{t} = \begin{bmatrix} \Pr\left(e_{t}|s_{1}\right) & 0 & 0\\ 0 & \Pr\left(e_{t}|s_{2}\right) & 0\\ 0 & 0 & \Pr\left(e_{t}|s_{3}\right) \end{bmatrix}$

Hidden Markov models

Hidden Markov models

The *forward-backward* algorithm works by:

- Moving up the sequence from 1 to T, computing and storing values for f.
- Moving down the sequence from T to 1 computing values for b and *combining* them with the stored values for f using the equation

$$\Pr(S_t|e_{1:T}) = cf_{1:t}b_{t+1:T}.$$

Now in our simplified HMM case we have

$$f_{1:t+1} = c\mathbf{E}_{t+1}\mathbf{S}^T f_1$$

or multiplying through by $(\mathbf{E}_{t+1}\mathbf{S}^T)^{-1}$ and re-arranging

$$f_{1:t} = \frac{1}{c} (\mathbf{S}^T)^{-1} (\mathbf{E}_{t+1})^{-1} f_{1:t+1}.$$

37

So as long as:

- We know the *final* value for f.
- \mathbf{S}^T has an inverse.
- Every observation has non-zero probability in every state.

We *don't* have to store T different values for f—we just work through, discarding intermediate values, to obtain the last value and then work backward.