Machine Learning and Bayesian Inference

Dr Sean Holden

Computer Laboratory, Room FC06
Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/~sbh11/

Part IV

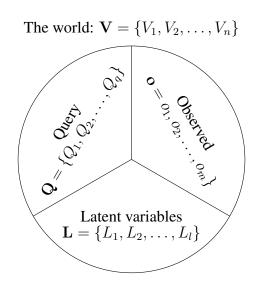
Bayesian networks

Markov random fields

Copyright © Sean Holden 2002-17.

Uncertainty: Probability as Degree of Belief

At the start of the course, I presented a *uniform approach* to *knowledge representation and reasoning* using *probability*.

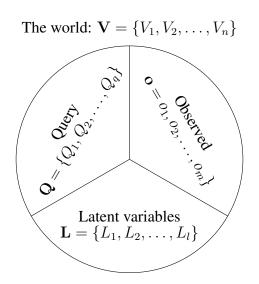


The world is represented by RVs $V = \{V_1, V_2, \dots, V_n\}$. These are partitioned:

- 1. Query variables $Q = \{Q_1, Q_2, \dots, Q_q\}$. We want to *compute a distribution* over these.
- 2. Observed variables $O = \{o_1, o_2, \dots, o_m\}$. We *know the values* of these.
- 3. Latent variables $L = \{L_1, L_2, \dots, L_l\}$. Everything else.

General knowledge representation and inference: the BIG PICTURE

The latent variables L are all the RVs not in the sets Q or O.



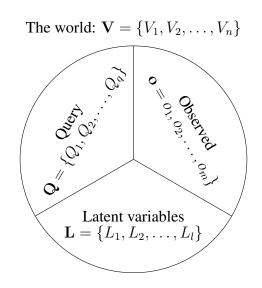
To compute a conditional distribution from a knowledge base Pr(V) we have to sum over the latent variables

$$\Pr\left(\mathbf{Q}|o_{1}, o_{2}, \dots, o_{m}\right) = \sum_{\mathbf{L}} \Pr\left(\mathbf{Q}, \mathbf{L}|o_{1}, o_{2}, \dots, o_{m}\right)$$

$$= \boxed{\frac{1}{Z} \sum_{\mathbf{L}} \Pr\left(\mathbf{Q}, \mathbf{L}, o_{1}, o_{2}, \dots, o_{m}\right)}_{\text{Knowledge base}}$$

General knowledge representation and inference: the BIG PICTURE

Bayes' theorem tells us how to update an inference when *new information* is available.



For example, if we now receive a new observation O' = o' then

$$\underbrace{\Pr\left(\mathbf{Q}|o',o_{1},o_{2},\ldots,o_{m}\right)}_{\text{After }O'\text{ observed}} = \frac{1}{Z}\Pr\left(o'|\mathbf{Q},o_{1},o_{2},\ldots,o_{m}\right)\underbrace{\Pr\left(\mathbf{Q}|o_{1},o_{2},\ldots,o_{m}\right)}_{\text{Before }O'\text{ observed}}$$

General knowledge representation and inference: the BIG PICTURE

Simple eh?

HAH!!! No chance...

Even if all your RVs are just Boolean:

- For n RVs knowing the knowledge base Pr(V) means storing 2^n numbers.
- So it looks as though storage is $O(2^n)$.
- You need to establish 2^n numbers to work with.
- Look at the summations. If there are n latent variables then it appears that time complexity is also $O(2^n)$.
- In reality we might well have n > 1000, and of course it's *even worse* if variables are non-Boolean.

And it *really is this hard*. The problem in general is #*P-complete*.

Even getting an approximate solution is provably intractable.

Having seen that in principle, if not in practice, the full joint distribution alone can be used to perform any inference of interest, we now examine a *practical technique*.

- We introduce the *Bayesian Network (BN)* as a compact representation of the full joint distribution.
- We examine the way in which a BN can be *constructed*.
- We examine the *semantics* of BNs.
- We look briefly at how *inference* can be performed.
- We briefly introduce the *Markov random field (MRF)* as an alternative means of representing a distribution.

Conditional probability—a brief aside...

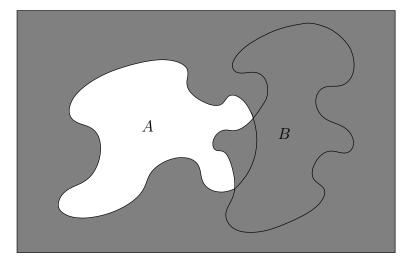
A brief aside on the dangers of interpreting *implication* versus *conditional probability*:

- $\Pr(X = x | Y = y) = 0.1$ does *not* mean that if Y = y is then $\Pr(X = x) = 0.1$.
- ullet Pr (X) is a *prior probability*. It applies when you *haven't seen* the value of Y.
- ullet The notation $\Pr\left(X|Y=y\right)$ is for use when y is the *entire evidence*.
- $\Pr(X|Y=y \land Z=z)$ might be very different.

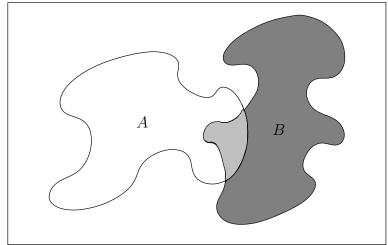
Conditional probability is *not* analogous to *logical implication*.

Implication and conditional probability

In general, it is difficult to relate *implication* to *conditional probability*.



$$\Pr(A|B) = \frac{\Pr(A \land B)}{\Pr(B)}$$



Imagine that fish are very rare, and most fish can swim.

With implication,

$$\Pr\left(\mathtt{fish} \to \neg\mathtt{swim}\right) = \Pr\left(\neg\mathtt{fish} \vee \neg\mathtt{swim}\right) = LARGE!$$

With conditional probability,

$$\Pr\left(\neg \mathtt{swim} | \mathtt{fish}\right) = \frac{\Pr\left(\neg \mathtt{swim} \land \mathtt{fish}\right)}{\Pr\left(\mathtt{fish}\right)} = \mathtt{SMALL!}$$

Bayesian networks: exploiting independence

One of the key reasons for the introduction of *Bayesian networks* is to let us *exploit independence*.

The initial pay-off is that this *makes it easier to represent* Pr(V).

A further pay-off is that it *introduces structure* that can lead to *more efficient inference*.

Here is a *very simple* example.

If I toss a coin and roll a die, the full joint distribution of outcomes requires $2 \times 6 = 12$ numbers to be specified.

	•	•	••	••	::	••
H	0.014	0.028	0.042	0.057	0.071	0.086
$\mid T \mid$	0.033	0.067	0.1	0.133	0.167	0.2

Here Pr(Coin = H) = 0.3 and the die has probability i/21 for the ith outcome.

Exploiting independence

BUT: if we assume the outcomes are independent then

$$Pr(Coin, Dice) = Pr(Coin) Pr(Dice)$$

Where Pr (Coin) has two numbers and Pr (Dice) has six.

So instead of 12 numbers we only need 8.

Exploiting independence

A slightly more complex example:

	(CP		¬CP
	SB	¬SB	SB	¬SB
HD	0.024	0.006	0.016	0.004
¬HD	0.0019	0.0076	0.1881	0.7524

- HD = Heart disease
- CP = Chest pain
- SB = Shortness of breath

Similarly, say instead of just considering HD, SB and CP we also consider the outcome of the *Oxford versus Cambridge tiddlywinks competition* TC:

$$TC = \{Oxford, Cambridge, Draw\}.$$

Exploiting independence

Now

$$Pr\left(\texttt{HD}, \texttt{SB}, \texttt{CP}, \texttt{TC}\right) = Pr\left(\texttt{TC}|\texttt{HD}, \texttt{SB}, \texttt{CP}\right) Pr\left(\texttt{HD}, \texttt{SB}, \texttt{CP}\right).$$

Assuming that the patient is not an *extraordinarily keen fan of tiddlywinks*, their cardiac health has nothing to do with the outcome, so

$$\Pr\left(\mathsf{TC}\middle|\mathsf{HD},\mathsf{SB},\mathsf{CP}\right)=\Pr\left(\mathsf{TC}\right)$$

and $2 \times 2 \times 2 \times 3 = 24$ numbers has been reduced to 3 + 8 = 11.

Conditional independence

However although in this case we might not be able to exploit independence directly we *can* say that

$$Pr(CP, SB|HD) = Pr(CP|HD) Pr(SB|HD)$$

which simplifies matters.

Conditional independence:
$$A \perp B|C$$

• A is conditionally independent of B given C, written $A \perp B|C$, if $\Pr(A, B|C) = \Pr(A|C) \Pr(B|C)$.

- ullet If we know that C is the case then A and B are independent.
- Equivalently Pr(A|B,C) = Pr(A|C). (Prove this!)

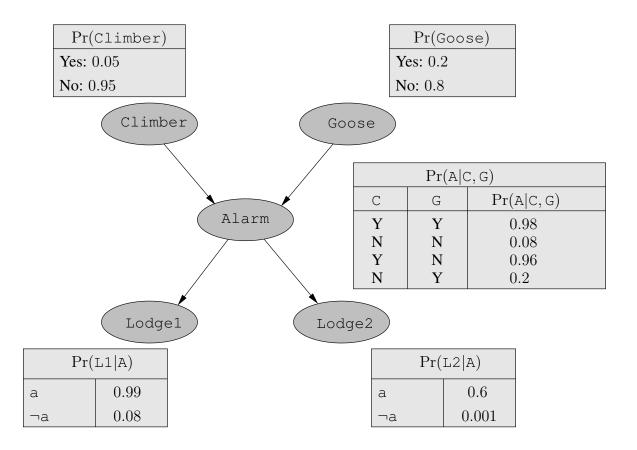
Although CP and SB are *not* independent, they do not directly influence one another *in a patient known to have heart disease*.

This is much nicer!

$$\Pr\left(\texttt{HD}\middle|\texttt{CP},\texttt{SB}\right)\propto\Pr\left(\texttt{CP}\middle|\texttt{HD}\right)\Pr\left(\texttt{SB}\middle|\texttt{HD}\right)\Pr\left(\texttt{HD}\right)$$

After a *regrettable incident* involving an *inflatable gorilla*, a famous College has decided to install an alarm for the detection of roof climbers.

- The alarm is *very* good at detecting climbers.
- Unfortunately, it is also sometimes triggered when one of the *extremely fat geese* that lives in the College lands on the roof.
- One porter's lodge is near the alarm, and inhabited by a chap with *excellent hearing* and a *pathological hatred* of roof climbers: he *always* reports an alarm. His hearing is so good that he sometimes thinks he hears an alarm, *even when there isn't one*.
- Another porter's lodge is a good distance away and inhabited by an *old chap* with *dodgy hearing* who likes to listen to his collection of *DEATH METAL* with the sound turned up.



Also called *probabilistic/belief/causal networks* or *knowledge maps*.

- Each node is a *random variable (RV)*.
- Each node N_i has a distribution

$$\Pr(N_i|\mathsf{parents}(N_i))$$

- A Bayesian network is a *directed acyclic graph*.
- ullet Roughly speaking, an arrow from N to M means N directly affects M.

Note that:

- In the present example all RVs are *discrete* (in fact Boolean) and so in all cases $\Pr(N_i|\text{parents}(N_i))$ can be represented as a *table of numbers*.
- Climber and Goose have only *prior* probabilities.
- All RVs here are Boolean, so a node with p parents requires 2^p numbers.

A BN with *n* nodes represents the full joint probability distribution for those nodes as

$$\Pr(N_1 = n_1, N_2 = n_2, \dots, N_n = n_n) = \prod_{i=1}^n \Pr(N_i = n_i | \text{parents}(N_i)).$$

For example

$$\Pr\left(\neg \mathsf{C}, \neg \mathsf{G}, \mathsf{A}, \mathsf{L}1, \mathsf{L}2\right) = \Pr\left(\mathsf{L}1|\mathsf{A}\right) \Pr\left(\mathsf{L}2|\mathsf{A}\right) \Pr\left(\mathsf{A}|\neg \mathsf{C}, \neg \mathsf{G}\right) \Pr\left(\neg \mathsf{C}\right)\right) \Pr\left(\neg \mathsf{G}\right)$$
$$= 0.99 \times 0.6 \times 0.08 \times 0.95 \times 0.8.$$

In general Pr(A, B) = Pr(A|B) Pr(B) so

$$\Pr(N_1, ..., N_n) = \Pr(N_n | N_{n-1}, ..., N_1) \Pr(N_{n-1}, ..., N_1)$$
.

Repeating this gives

$$\Pr\left(N_{1},\ldots,N_{n}\right) = \Pr\left(N_{n}|N_{n-1},\ldots,N_{1}\right) \left[\Pr\left(N_{n-1}|N_{n-2},\ldots,N_{1}\right)\cdots\Pr\left(N_{1}\right)\right]$$

$$= \prod_{i=1}^{n} \Pr\left(N_{i}|N_{i-1},\ldots,N_{1}\right).$$

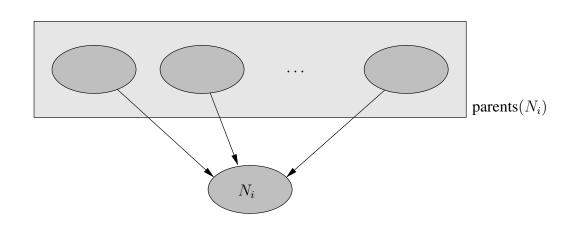
Now compare equations. We see that BNs make the assumption

$$\Pr\left(N_i|N_{i-1},\ldots,N_1\right) = \Pr\left(N_i|\operatorname{parents}(N_i)\right)$$

for each node, assuming that parents $(N_i) \subseteq \{N_{i-1}, \dots, N_1\}$.

Each N_i is conditionally independent of its predecessors given its parents.

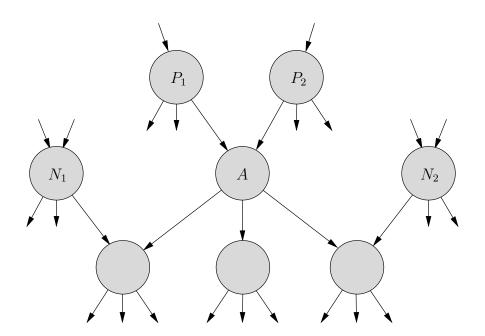
- When constructing a BN we want to make sure the preceding property holds.
- This means we need to take care over *ordering*.
- In general causes should directly precede effects.



Here, parents (N_i) contains all preceding nodes having a *direct influence* on N_i .

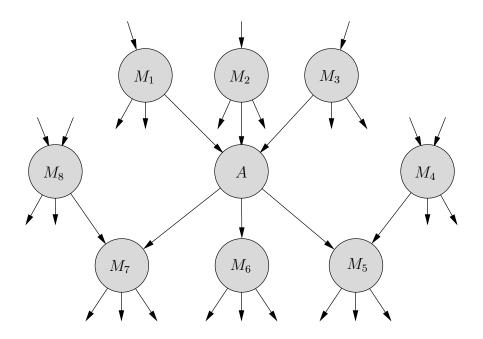
But its not quite that straightforward: what if we want to talk about nodes *other than predecessors and parents*?

For example, it is possible to show:



Any node A is conditionally independent of the N_i —its non-descendants—given the P_i —its parents.

It is also possible to show:



Any node A is conditionally independent of all other nodes given the Markov blanket M_i —that is, its parents, its children and its childrens' parents.

Semantics: what's REALLY going on here?

There is a general method for inferring exactly what conditional independences are implied by a Bayesian network.

Let X, Y and Z be disjoint subsets of the RVs.

Consider a *path* p consisting of directed (in any orientation) edges from some $x \in X$ to some $y \in Y$. For example

The path p is said to be *blocked* by Z if one of *three conditions* holds...

Semantics: what's REALLY going on here?

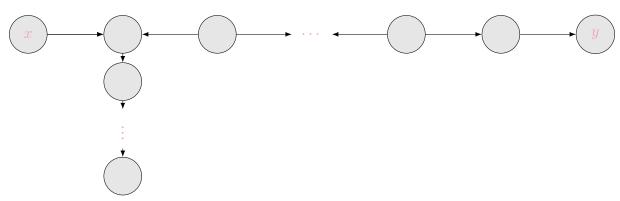
Path p is *blocked* with respect to Z if:

1. p contains a node $z \in Z$ that is *tail-to-tail*:

2. p contains a node $z \in Z$ that is head-to-tail:

(Similarly if the node is *tail-to-head*.)

3. p contains a node N that is head-to-head, $N \notin Z$, and none of N's descendents is in Z:



Semantics: what's REALLY going on here?

Finally:

- 1. X and Y are d-separated by Z if all paths p from some $x \in X$ to some $y \in Y$ are blocked.
- 2. If X and Y are d-separated by Z then $X \perp Y | Z$.

How do we represent

 $Pr(N_i|parents(N_i))$

when nodes can denote *general discrete and/or continuous RVs*?

- BNs containing both kinds of RV are called hybrid BNs.
- Naive *discretisation* of continuous RVs tends to result in both a reduction in accuracy and large tables.
- $O(2^p)$ might still be large enough to be unwieldy.
- We can instead attempt to use *standard and well-understood* distributions, such as the *Gaussian*.
- This will typically require only a small number of parameters to be specified.

Example: a continuous RV with one continuous and one discrete parent.

where SC and TP are continuous and TE is Boolean.

• For a specific setting of ET = true it might be the case that SC increases with TP, but that some uncertainty is involved

$$\Pr(SC|TP, et) = N(g_{et}TP + c_{et}, \sigma_{et}^2).$$

• For an un-tuned engine we might have a similar relationship with a different behaviour

$$\Pr(\mathsf{SC}|\mathsf{TP}, \neg \mathsf{et}) = N(g_{\neg \mathsf{et}}\mathsf{TP} + c_{\neg \mathsf{et}}, \sigma^2_{\neg \mathsf{et}}).$$

There is a set of parameters $\{g, c, \sigma\}$ for each possible value of the discrete RV.

Example: a discrete RV with a continuous parent

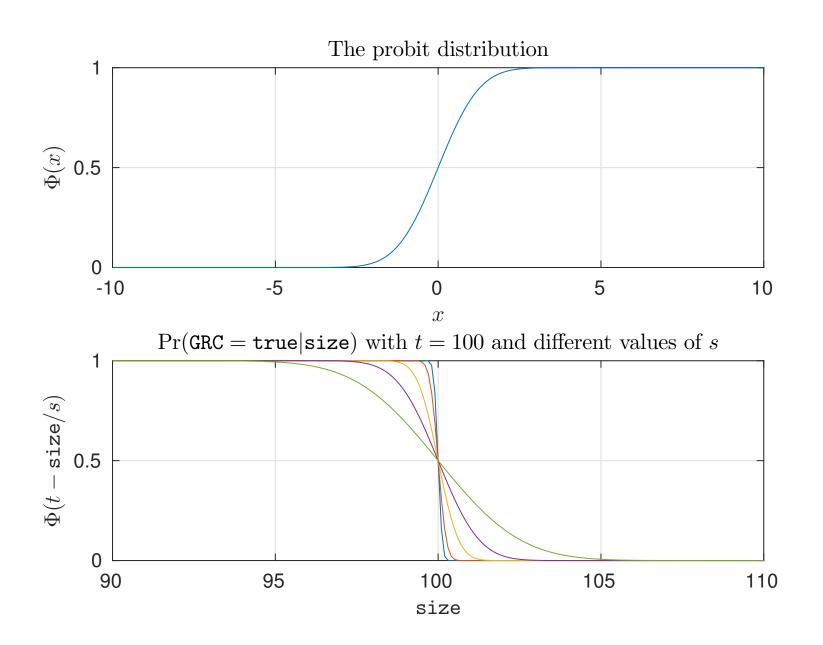
We could for example use the *probit distribution*

$$\Pr\left(\text{Go roofclimbing} = \text{true} \middle| \text{size}\right) = \Phi\left(\frac{t - \text{size}}{s}\right)$$

where

$$\Phi(x) = \int_{-\infty}^{x} N(y)dy$$

and N is the Gaussian density with zero mean and variance 1.



Basic inference

We saw earlier that the full joint distribution can be used to perform *all inference tasks*:

$$\Pr\left(\mathbf{Q}|o_1, o_2, \dots, o_m\right) = \frac{1}{Z} \sum_{\mathbf{L}} \Pr\left(\mathbf{Q}, \mathbf{L}, o_1, o_2, \dots, o_m\right)$$

where

- Q is the query.
- o_1, o_2, \ldots, o_m are the observations.
- L are the latent variables.
- 1/Z normalises the distribution.
- The query, observations and latent variables are a partition of the set $V = \{V_1, V_2, \dots, V_n\}$ of all variables.

Basic inference

As the BN fully describes the full joint distribution

$$\Pr\left(\mathbf{Q}, \mathbf{L}, o_1, o_2, \dots, o_m\right) = \prod_{i=1}^{n} \Pr(V_i | \mathbf{parents}(V_i))$$

it can be used to perform inference in the *obvious* way

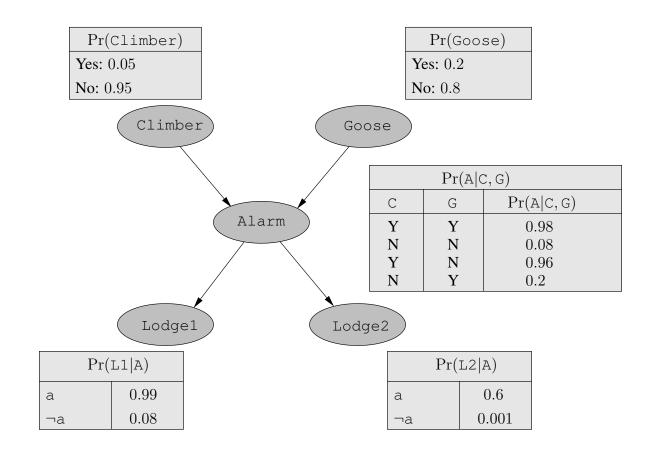
$$\Pr\left(\mathbf{Q}|o_1,o_2,\ldots,o_m
ight) \propto \sum_{\mathbf{L}} \prod_{i=1}^n \Pr(V_i|\mathsf{parents}(V_i))$$

but this is *in practice problematic* for obvious reasons.

- More sophisticated algorithms aim to achieve this *more efficiently*.
- For complex BNs we resort to *approximation techniques*.

Performing exact inference

 $Pr(Q, L, o_1, \dots, o_m)$ has a particular form expressing conditional independences:



 $\Pr\left(C,G,A,L1,L2\right)=\Pr\left(C\right)\Pr\left(G\right)\Pr\left(A|C,G\right)\Pr\left(L1|A\right)\Pr\left(L2|A\right).$

Performing exact inference

Consider the computation of the query Pr(C|l1, l2)

We have

$$\Pr\left(C|l1,l2\right) \propto \sum_{A} \sum_{G} \Pr\left(C\right) \Pr\left(G\right) \Pr\left(A|C,G\right) \Pr\left(l1|A\right) \Pr\left(l2|A\right).$$

Here there are 5 multiplications for each set of values that appears for summation, and there are 4 such values.

In general this gives time complexity $O(n2^n)$ for n Boolean RVs.

The naive implementation of this approach yields the *Enumerate-Joint-Ask* algorithm, which unfortunately requires $O(2^n)$ time and space for n Boolean RVs.

The *enumeration-ask* algorithm improves matters to $O(2^n)$ time and O(n) space by performing the computation *depth-first*.

However matters can be improved further by avoiding *duplication of computations*.

Performing exact inference

Looking more closely we see that

$$\begin{split} \Pr\left(C|l1,l2\right) &\propto \sum_{A} \sum_{G} \Pr\left(C\right) \Pr\left(G\right) \Pr\left(A|C,G\right) \Pr\left(l1|A\right) \Pr\left(l2|A\right) \\ &= \frac{1}{Z} \Pr\left(C\right) \sum_{A} \Pr\left(l1|A\right) \Pr\left(l2|A\right) \sum_{G} \Pr\left(G\right) \Pr\left(A|C,G\right) \\ &= \frac{1}{Z} \Pr\left(C\right) \sum_{A} \Pr\left(G\right) \sum_{A} \Pr\left(A|C,G\right) \Pr\left(l1|A\right) \Pr\left(l2|A\right). \end{split}$$

There is some freedom in terms of how we *factorize* the expression.

This is a result of introducing assumptions about conditional independence.

Performing exact inference: variable elimination

Taking the second possibility:

$$\underbrace{\Pr\left(C\right)}_{C} \underbrace{\sum_{G} \Pr\left(G\right)}_{G} \underbrace{\sum_{A} \Pr\left(A|C,G\right) \Pr\left(l1|A\right) \Pr\left(l2|A\right)}_{A}$$

where C, G, A, L1, L2 denote the relevant factors.

The basic idea is to evaluate this from right to left (or in terms of the tree, bottom up) *storing results* as we progress and *re-using them* when necessary.

 $\Pr(l1|A)$ depends on the value of A. We store it as a table $\mathbb{F}_{L1}(A)$. Similarly for $\Pr(l2|A)$.

$$\mathbf{F}_{L1}(A) = \begin{pmatrix} 0.99 \\ 0.08 \end{pmatrix} \mathbf{F}_{L2}(A) = \begin{pmatrix} 0.6 \\ 0.001 \end{pmatrix}$$

as Pr(l1|a) = 0.99, $Pr(l1|\neg a) = 0.08$ and so on.

Performing exact inference: variable elimination

Similarly for Pr(A|C,G), which is dependent on A, C and G

$$\mathbf{F}_{A}(A,C,G) = \begin{vmatrix} A & C & G & \mathbf{F}_{A}(A,C,G) \\ T & T & T & 0.98 \\ T & T & T & 0.96 \\ T & T & T & 0.2 \end{vmatrix}$$

$$\mathbf{F}_{A}(A,C,G) = \begin{vmatrix} T & T & T & 0.08 \\ T & T & T & 0.02 \\ T & T & T & 0.02 \\ T & T & T & 0.04 \\ T & T & T & 0.8 \\ T & T & T & 0.92 \end{vmatrix}$$

Can we write
$$\Pr\left(A|C,G\right)\Pr\left(l1|A\right)\Pr\left(l2|A\right)$$
 as
$$\mathbf{F}_A(A,C,G)\mathbf{F}_{L1}(A)\mathbf{F}_{L2}(A)$$

in a reasonable way?

Performing exact inference: variable elimination

Yes, provided *multiplication of factors* is defined correctly. Looking at

$$\Pr\left(C\right)\sum_{G}\Pr\left(G\right)\sum_{A}\Pr\left(A|C,G\right)\Pr\left(l1|A\right)\Pr\left(l2|A\right)$$

note that:

1. The values of the product

in the summation over A depend on the values of C and G external to it, and the values of A.

2. So

$$\mathbf{F}_A(A,C,G)\mathbf{F}_{L1}(A)\mathbf{F}_{L2}(A)$$

should be a table collecting values where correspondences between RVs are maintained.

This leads to a definition for *multiplication of factors* best given by example.

$$\mathbf{F}(A,B)\mathbf{F}(B,C) = \mathbf{F}(A,B,C)$$

where

A	B	$\mathbf{F}(A,B)$	B	C	$\mathbf{F}(B,C)$	A	B	C	$\mathbf{F}(A, B, C)$
T	T	0.3	T	T	0.1	T	T	T	0.3×0.1
T	\perp	0.9	T	\perp	0.8	T	T	\perp	0.3×0.8
	\top	0.4		\top	0.8	\top		\top	0.9×0.8
1	\perp	0.1	1	\perp	0.3	\top	\perp	\perp	0.9×0.3
							\top	\top	0.4×0.1
							\top	\perp	0.4×0.8
							\perp	\top	0.1×0.8
							\perp	\perp	0.1×0.3

This process gives us

$$\mathbf{F}_{A}(A,C,G)\mathbf{F}_{L1}(A)\mathbf{F}_{L2}(A) = \begin{bmatrix} A & C & G \\ T & T & T & 0.98 \times 0.99 \times 0.6 \\ T & T & \bot & 0.96 \times 0.99 \times 0.6 \\ T & \bot & T & 0.2 \times 0.99 \times 0.6 \\ \bot & T & \bot & \bot & 0.08 \times 0.99 \times 0.6 \\ \bot & T & T & 0.02 \times 0.08 \times 0.001 \\ \bot & T & \bot & 0.04 \times 0.08 \times 0.001 \\ \bot & \bot & T & 0.8 \times 0.08 \times 0.001 \\ \bot & \bot & \bot & \bot & 0.92 \times 0.08 \times 0.001 \end{bmatrix}$$

How about

$$\mathbf{F}_{\overline{A},L1,L2}(C,G) = \sum_{A} \mathbf{F}_{A}(A,C,G)\mathbf{F}_{L1}(A)\mathbf{F}_{L2}(A)$$

To denote the fact that A has been summed out we place a bar over it in the notation.

$$\sum_{A} \mathbf{F}_{A}(A, C, G) \mathbf{F}_{L1}(A) \mathbf{F}_{L2}(A) = \mathbf{F}_{A}(a, C, G) \mathbf{F}_{L1}(a) \mathbf{F}_{L2}(a)$$
$$+ \mathbf{F}_{A}(\neg a, C, G) \mathbf{F}_{L1}(\neg a) \mathbf{F}_{L2}(\neg a)$$

where

$$\mathbf{F}_{A}(a, C, G) = \begin{bmatrix} C & G \\ \top & \top & 0.98 \\ \top & \bot & 0.96 \\ \bot & \top & 0.2 \\ \bot & \bot & 0.08 \end{bmatrix} \mathbf{F}_{L1}(a) = 0.99 \ \mathbf{F}_{L2}(a) = 0.6$$

and similarly for $\mathbf{F}_A(\neg a, C, G)$, $\mathbf{F}_{L1}(\neg a)$ and $\mathbf{F}_{L2}(\neg a)$.

$$\mathbf{F}_{A}(a, C, G)\mathbf{F}_{L1}(a)\mathbf{F}_{L2}(a) = \begin{bmatrix} C & G \\ \top & \top & 0.98 \times 0.99 \times 0.6 \\ \bot & \top & 0.2 \times 0.99 \times 0.6 \\ \bot & \bot & 0.08 \times 0.99 \times 0.6 \end{bmatrix}$$

$$\mathbf{F}_{A}(\neg a, C, G)\mathbf{F}_{L1}(\neg a)\mathbf{F}_{L2}(\neg a) = \begin{bmatrix} C & G \\ \top & \top & 0.02 \times 0.08 \times 0.001 \\ \bot & \bot & 0.04 \times 0.08 \times 0.001 \\ \bot & \bot & 0.92 \times 0.08 \times 0.001 \end{bmatrix}$$

$$\mathbf{F}_{\overline{A}, L1, L2}(C, G) = \begin{bmatrix} C & G \\ \top & \top & (0.98 \times 0.99 \times 0.6) + (0.02 \times 0.08 \times 0.001) \\ \bot & \bot & (0.96 \times 0.99 \times 0.6) + (0.04 \times 0.08 \times 0.001) \\ \bot & \top & (0.2 \times 0.99 \times 0.6) + (0.08 \times 0.08 \times 0.001) \end{bmatrix}$$

 $\perp \perp | (0.08 \times 0.99 \times 0.6) + (0.92 \times 0.08 \times 0.001) |$

Now, say for example we have $\neg c$, g. Then doing the calculation explicitly would give

$$\sum_{A} \Pr(A|\neg c, g) \Pr(l1|A)) \Pr(l2|A)$$

$$= \Pr(a|\neg c, g) \Pr(l1|a) \Pr(l2|a) + \Pr(\neg a|\neg c, g) \Pr(l1|\neg a) \Pr(l2|\neg a)$$

$$= (0.2 \times 0.99 \times 0.6) + (0.8 \times 0.08 \times 0.001)$$

which matches!

Continuing in this manner form

$$\mathbf{F}_{G,\overline{A},L1,L2}(C,G) = \mathbf{F}_G(G)\mathbf{F}_{\overline{A},L1,L2}(C,G)$$

sum out G to obtain $\mathbf{F}_{\overline{G},\overline{A},L1,L2}(C) = \sum_{G} \mathbf{F}_{G}(G) \mathbf{F}_{\overline{A},L1,L2}(C,G)$, form

$$\mathbf{F}_{C,\overline{G},\overline{A},L1,L2} = \mathbf{F}_{C}(C)\mathbf{F}_{\overline{G},\overline{A},L1,L2}(C)$$

and normalise.

What's the computational complexity now?

- For Bayesian networks with *suitable structure* we can perform inference in *linear time and space*.
- However in the worst case it is still #P-hard.

Consequently, we may need to resort to approximate inference.

Markov chain Monte Carlo (MCMC) methods also provide a method for performing approximate inference in Bayesian networks.

Say a system can be in a state S and moves from state to state in discrete time steps according to a probabilistic transition

$$\Pr\left(\mathbf{S} \to \mathbf{S}'\right)$$
.

Let $\pi_t(S)$ be the probability distribution for the state after t steps, so

$$\pi_{t+1}(\mathbf{S}') = \sum_{\mathbf{s}} \Pr(\mathbf{s} \to \mathbf{S}') \, \pi_t(\mathbf{s}).$$

If at some point we obtain $\pi_{t+1}(\mathbf{s}) = \pi_t(\mathbf{s})$ for all \mathbf{s} then we have reached a *stationary distribution* π . In this case

$$\forall \mathbf{s}' \pi(\mathbf{s}') = \sum_{\mathbf{s}} \Pr(\mathbf{s} \to \mathbf{s}') \pi(\mathbf{s}).$$

There is exactly one stationary distribution for a given $Pr(S \to S')$ provided the latter obeys some simple conditions.

The condition of *detailed balance*

$$\forall \mathbf{s}, \mathbf{s}' \pi(\mathbf{s}) \Pr(\mathbf{s} \to \mathbf{s}') = \pi(\mathbf{s}') \Pr(\mathbf{s}' \to \mathbf{s})$$

is sufficient to provide a π that is a stationary distribution. To see this simply sum:

$$\sum_{\mathbf{s}} \pi(\mathbf{s}) \Pr(\mathbf{s} \to \mathbf{s}') = \sum_{\mathbf{s}} \pi(\mathbf{s}') \Pr(\mathbf{s}' \to \mathbf{s})$$
$$= \pi(\mathbf{s}') \sum_{\mathbf{s}} \Pr(\mathbf{s}' \to \mathbf{s})$$
$$= \pi(\mathbf{s}')$$

If all this is looking a little familiar, it's because we now have another excellent application for the material in *Mathematical Methods for Computer Science*.

That course used the alternative term *local balance*.

Recalling once again the basic equation for performing probabilistic inference

$$\Pr\left(\mathbf{Q}|o_1,o_2,\ldots,o_m\right)\propto\sum_{\mathbf{L}}\Pr\left(\mathbf{Q},\mathbf{L},o_1,o_2,\ldots,o_m\right)$$

where

- Q is the query.
- o_1, o_2, \ldots, o_m are the observations.
- L are the latent variables.
- 1/Z normalises the distribution.
- The query, observations and latent variables are a partition of the set $V = \{V_1, V_2, \dots, V_n\}$ of all variables.

We are going to consider obtaining samples from the distribution

$$\Pr(\mathbf{Q}, \mathbf{L} | o_1, o_2, \dots, o_m).$$

The observations are fixed. Let the *state* of our system be a specific set of values for *a query variable and the latent variables*

$$\mathbf{S} = (S_1, S_2, \dots, S_{l+1}) = (Q, L_1, L_2, \dots, L_l)$$

and define \overline{S}_i to be the state vector with S_i removed

$$\overline{\mathbf{S}}_i = (S_1, \dots, S_{i-1}, S_{i+1}, \dots, S_{n+1}).$$

To move from s to s' we replace one of its elements, say s_i , with a new value s'_i sampled according to

$$s_i' \sim \Pr\left(S_i|\overline{\mathbf{s}}_i, o_1, \dots, o_m\right)$$

This has detailed balance, and has $Pr(Q, L|o_1, ..., o_m)$ as its stationary distribution.

It is known as Gibbs sampling.

To see that $Pr(Q, \mathbf{L}|\mathbf{o})$ is the stationary distribution we just demonstrate *detailed* balance:

$$\pi(\mathbf{s})\operatorname{Pr}(\mathbf{s} \to \mathbf{s}') = \operatorname{Pr}(\mathbf{s}|\mathbf{o})\operatorname{Pr}(s_i'|\overline{\mathbf{s}}_i,\mathbf{o})$$

$$= \operatorname{Pr}(s_i,\overline{\mathbf{s}}_i|\mathbf{o})\operatorname{Pr}(s_i'|\overline{\mathbf{s}}_i,\mathbf{o})$$

$$= \operatorname{Pr}(s_i|\overline{\mathbf{s}}_i,\mathbf{o})\operatorname{Pr}(\overline{\mathbf{s}}_i|\mathbf{o})\operatorname{Pr}(s_i'|\overline{\mathbf{s}}_i,\mathbf{o})$$

$$= \operatorname{Pr}(s_i|\overline{\mathbf{s}}_i,\mathbf{o})\operatorname{Pr}(s_i',\overline{\mathbf{s}}_i|\mathbf{o})$$

$$= \operatorname{Pr}(\mathbf{s}' \to \mathbf{s})\pi(\mathbf{s}').$$

As a further simplification we can exploit *conditional independence*.

For example, sampling from $\Pr(S_i|\bar{\mathbf{s}}_i,\mathbf{o})$ may be equivalent to sampling S_i conditional on some smaller set.

So:

- We successively sample the query variable and the unobserved variables, conditional on the remaining variables.
- This gives us a sequence s_1, s_2, \ldots sampled according to Pr(Q, L|o).

Finally, note that as

$$\Pr\left(Q|\mathbf{o}\right) = \sum_{\mathbf{l}} \Pr\left(Q, \mathbf{l}|\mathbf{o}\right)$$

we can just ignore the values obtained for the unobserved variables. This gives us q_1, q_2, \ldots with

$$q_i \sim \Pr\left(Q|\mathbf{o}\right)$$
.

To see that the final step works, consider what happens when we estimate the expected value of some function of Q.

$$\mathbb{E}[f(Q)|\mathbf{o}] = \sum_{q} f(q) \Pr(q|\mathbf{o})$$

$$= \sum_{q} f(q) \sum_{\mathbf{l}} \Pr(q, \mathbf{l}|\mathbf{o})$$

$$= \sum_{q} \sum_{\mathbf{l}} f(q) \Pr(q, \mathbf{l}|\mathbf{o})$$

so sampling using $Pr(q, \mathbf{l} | \mathbf{o})$ and ignoring the values for \mathbf{l} obtained works exactly as required.

Markov random fields

Markov random fields (MRFs) (sometimes called undirected graphical models or Markov networks) provide an alternative approach to representing a probability distribution while expressing conditional independence assumptions.

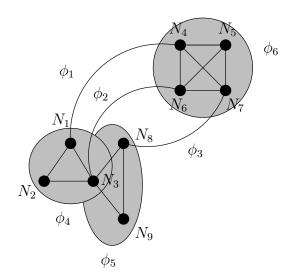
We now have:

- 1. An undirected graph G = (N, E).
- 2. G has a node N_i for each RV.
- 3. For each *maximal clique* c in G there is a *clique potential* $\phi_c(N_c) > 0$ where N_c is the set of nodes in c.
- 4. The probability distribution expressed by *G* is

$$\Pr\left(N
ight) \propto \prod_{c} \phi_{c}(N_{c}).$$

Markov random fields

Example: 3 maximal cliques of size 2, 2 of size 3 and 1 of size 4.



$$\Pr(N_1, \dots, N_9) \propto \phi_1(N_1, N_4) \times \phi_2(N_3, N_6) \times \phi_3(N_7, N_8) \times \phi_4(N_1, N_2, N_3) \times \phi_5(N_3, N_8, N_9) \times \phi_6(N_4, N_5, N_6, N_7).$$

Markov random fields—conditional independence

The *test for conditional independence* is now simple: if X, Y and Z are disjoint subsets of the RVs then:

- 1. *Remove* the nodes in *Z* and any attached edges from the graph.
- 2. If there are *no paths from any variable in* X to *any variable in* Y then $X \perp Y \mid Z$.

Final things to note:

- 1. MRFs have their own algorithms for inference.
- 2. They are an *alternative* to *BNs* for representing a probability distribution.
- 3. There are *trade-offs* that might make a BN or MRF *more or less favourable*.
- 4. For example: potentials offer flexibility because they don't have to represent conditional distributions...
- 5. ... BUT you have to *normalize* the distribution you're representing.