
Machine Learning and Bayesian Inference

Dr Sean Holden

Computer Laboratory, Room FC06

Telephone extension 63725

Email: sbh11@cl.cam.ac.uk

www.cl.cam.ac.uk/∼sbh11/

Part III: back to Bayes

Bayesian neural networks

Gaussian processes

Copyright c© Sean Holden 2002-17.

1

Where now?

There are some simple take-home messages from the study of SVMs:

You can get state-of-the-art performance.

You can do this using the kernel trick to obtain a non-linear model.

You can do this without invoking the full machinery of the Bayes-optimal
classifier.

BUT:

You don’t have anything keeping you honest regarding which assumptions
you’re making.

As we shall see, by using the full-strength probabilistic framework we gain
some useful extras.

In particular, the ability to assign confidences to our predictions.

2

The Bayesian approach to neural networks

We’re now going to see how the idea of the Bayes-optimal classifier can be applied
to neural networks.

We have:

• A neural network computing a function hw(x). (In fact this can be pretty much
any parameterized function we like.)

• A training sequence sT =
[
(x1, y1) . . . (xm, ym)

]
, split into

y = (y1 y2 · · · ym)

and
X = (x1 x2 · · · xm).

3

The Bayesian approach to neural networks

We’re only going to consider regression. Classification can also be done this way,
but it’s a bit more complicated.

For classification we derived the Bayes-optimal classifier as the maximizer of:

Pr (C|x, s) =

∫
Pr (C|w,x) p(w|s) dw

For regression the Bayes-optimal classifier ends up having the same expression as
we’ve already seen. We want to compute:

p(Y |x, s) =

∫
p(Y |w,x)︸ ︷︷ ︸

Likelihood

p(w|s)︸ ︷︷ ︸
Posterior

dw

s is the training set.

x is a new example to be classified.

Y is the RV representing the prediction for x.

4

The Bayesian approach to neural networks

It turns out that if you try to incorporate the density p(x) modelling how feature
vectors are generated, things can get complicated. So:

1. We regard all input vectors as fixed: they are not treated as random variables.

2. This means that, strictly speaking, they should no longer appear in expressions
like p(Y |w,x).

3. However, this seems to be uniformly disliked—writing p(Y |w) for an expres-
sion that still depends on x seems confusing.

4. Solution: write p(Y |w; x) instead. Note the semi-colon!

So we’re actually going to look at

p(Y |y; x,X) =

∫
p(Y |w; x)︸ ︷︷ ︸

Likelihood

p(w|y; X)︸ ︷︷ ︸
Posterior

dw

NOTE: this is a notational hack. There’s nothing new, just an attempt at clarity.

5

What’s going on? Turning prior into posterior

Let’s make a brief sidetrack into what’s going on with the posterior density

p(w|y; X) ∝ p(y|w; X)p(w).

Typically, the prior starts wide and as we see more data the posterior narrows

wMAP

0

0.2

0.4

0.6

0.8

1

1.2

1.4

p
(w

|y
;X

)
an

d
p
(w

)

The posterior density p(w|y;X) becomes more localised

Prior

Posterior

6

What’s going on? Turning prior into posterior

This can be seen very clearly if we use real numbers:

-2 0 2

x1

-2

0

2

x
2

Examples

0

10

1

10

×10
-3

Prior density p(w)

w2

0

w1

2

0
-10 -10

0

10

0.05

10

Likelihood p(y|w;X)

w2

0

w1

0.1

0
-10 -10

0

10

0.5

10

×10
-4
Posterior density p(w|y;X)

w2

0

w1

1

0
-10 -10

7

The Bayesian approach to neural networks

So now we have three things to do:

1. STEP 1: remind ourselves what p(Y |w; x) is.

2. STEP 2: remind ourselves what p(w|y; X) is.

3. STEP 3: do the integral. (This is the fun bit. . .)

The first two steps are straightforward as we’ve already derived them when
looking at maximum-likelihood and MAP learning.

8

The Bayesian approach to neural networks

STEP 1: assuming Gaussian noise is added to the labels so

y = hw(x) + ε

where ε ∼ N (0, σ2n) we have the usual likelihood

p(Y |w; x) =
1√

2πσ2n
exp

(
− 1

2σ2n
(Y − hw(x))2

)
.

Here, the subscript in σ2n reminds us that it’s the variance of the noise.

Traditionally this is re-written using the hyperparameter

β =
1

σ2n

so the likelihood is

p(Y |w; x) ∝ exp

(
−β

2
(Y − hw(x))2

)
.

9

The Bayesian approach to neural networks

STEP 2: the posterior is also exactly as it was when we derived the MAP learning
algorithms.

p(w|y; X) ∝ p(y|w; X)p(w)

and as before, the likelihood is

p(y|w; X) ∝ exp

(
−β

2

m∑
i=1

(yi − hw(xi))
2

)
= exp (−βE(w))

and using a Gaussian prior with mean 0 and covariance Σ = σ2I gives

p(w) ∝ exp
(
−α

2
||w||2

)
where traditionally the second hyperparameter is α = 1/σ2. Combining these

p(w|y; X) =
1

Z(α, β)
exp

(
−
(
α||w||2

2
+ βE(w)

))
.

10

What’s going on? Turning prior into posterior

Considering the central part of p(w|y; X):

α||w||2

2
+ βE(w).

What happens as the number m of examples increases?

• The first term corresponding to the prior remains fixed.

• The second term corresponding to the likelihood increases.

So for small training sequences the prior dominates, but for large ones wML is a
good approximation to wMAP.

11

The Bayesian approach to neural networks

Step 3: putting together steps 1 and 2, the integral we need to evaluate is:

I ∝
∫

exp

(
−β

2
(Y − hw(x))2

)
︸ ︷︷ ︸

Likelihood

exp

(
−
(
α||w||2

2
+ βE(w)

))
︸ ︷︷ ︸

Posterior

dw.

Obviously this gives us all a sad face because there is no solution.

So what can we do now. . . ?

12

The Bayesian approach to neural networks

In order to make further progress it’s necessary to perform integrals of the general
form

∫
F (w)p(w|y; X) dw

for various functions F and this is generally not possible.

There are two ways to get around this:

1. We can use an approximate form for p(w|y; X).

2. We can use Monte Carlo methods.

We’ll be taking a look at both possibilities.

13

Method 1: approximation to p(w|y; X)

I ∝
∫

exp

(
−β

2
(Y − hw(x))2

)
︸ ︷︷ ︸

Likelihood p(Y |w;x)

exp

(
−
(
α||w||2

2
+ βE(w)

))
︸ ︷︷ ︸

Posterior p(w|y;X)

dw.

The first approach introduces a Gaussian approximation to p(w|y; X) by using a
Taylor expansion of

S(w) =
α||w||2

2
+ βE(w)

at the maximum a posteriori weights wMAP.

This allows us to use a standard integral.

The result will be approximate but we hope it’s good!

Let’s recall how Taylor series work...

14

Reminder: Taylor expansion

In one dimension the Taylor expansion about a point x0 ∈ R for a function f :
R→ R is

f (x) ≈ f (x0) +
1

1!
(x− x0)f ′(x0)

+
1

2!
(x− x0)2f ′′(x0)

+ · · · + 1

k!
(x− x0)kf k(x0).

What does this look like for the kinds of function we’re interested in? As an
example We can try to approximate

exp (−f (x))

where
f (x) = x4 − 1

2
x3 − 7x2 − 5

2
x + 22.

This has a form similar to S(w), but in one dimension.

15

Reminder: Taylor expansion

The functions of interest look like this:

-5 0 5

x

0

100

200

300

400

500

600

f
(x
)

The function f(x)

-5 0 5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

ex
p
(−

f
(x
))

The function exp(−f(x))

By replacing −f (x) with its Taylor expansion about its maximum, which is at

xmax = 2.1437

we can see what the approximation to exp(−f (x)) looks like. Note that the exp
hugely emphasises peaks.

16

Reminder: Taylor expansion

Here are the approximations for k = 1, k = 2 and k = 3.

-5 0 5

x

-600

-400

-200

0

Taylor expansion for k = 1

-5 0 5

x

-600

-400

-200

0

Taylor expansion for k = 2

-5 0 5

x

-600

-400

-200

0

Taylor expansion for k = 3

-5 0 5

x

0

0.2

0.4

0.6

exp(−f(x)) exact

-5 0 5

x

0

0.2

0.4

0.6

exp(−f(x)) using Taylor expansion for k = 2

The use of k = 2 looks promising...

17

Reminder: Taylor expansion

In multiple dimensions the Taylor expansion for k = 2 is

f (x) ≈ f (x0) +
1

1!
(x− x0)

T ∇f (x)|x0

+
1

2!
(x− x0)

T ∇2f (x)
∣∣
x0

(x− x0)

where ∇ denotes gradient

∇f (x) =
(

∂f(x)
∂x1

∂f(x)
∂x2
· · · ∂f(x)

∂xn

)
and ∇2f (x) is the matrix with elements

Mij =
∂2f (x)

∂xi∂xj

(Looks complicated, but it’s just the obvious extension of the 1-dimensional case.)

18

Method 1: approximation to p(w|y; X)

Applying this to S(w) and expanding around wMAP

S(w) =
α||w||2

2
+ βE(w) ≈ S(wMAP) +

1

2
(w −wMAP)TA(w −wMAP).

• As wMAP minimises the function the first derivatives are zero and the corre-
sponding term in the Taylor expansion disappears.

• The quantity A = ∇∇S(w)|wMAP
can be simplified.

This is because

A = ∇∇
(
α||w||2

2
+ βE(w)

)∣∣∣∣
wMAP

= αI + β∇∇E(wMAP).

19

Method 1: approximation to p(w|y; X)

We actually already know something about how to get wMAP:

1. A method such as backpropagation can be used to compute∇S(w).

2. The vector wMAP can then be obtained using any standard optimisation
method (such as gradient descent).

It’s also likely to be straightforward to compute∇∇E(w):

The quantity ∇∇E(w) can be evaluated using an extended form of
backpropagation.

20

A useful integral

Dropping for this slide only the special meaning usually given to the vector x,
here is a useful standard integral:

If A ∈ Rn×n is symmetric then for b ∈ Rn and c ∈ R∫
Rn

exp

(
−1

2

(
xTAx + xTb + c

))
dx

= (2π)n/2|A|−1/2 exp

(
−1

2

(
c− bTA−1b

4

))
.

You’re not expected to know how to evaluate this, but see the handout on the
course web page if you’re curious1.

To make this easy to refer to, let’s call it the BIG INTEGRAL.

1No, I won’t ask you to evaluate it in the exam. . .

21

Method 1: approximation to p(w|y; X)

Defining
∆w = w −wMAP

we now have an approximation

p(w|y; X) ≈
1

Z
exp

(
−S(wMAP)− 1

2
∆wTA∆w

)
.

Using the BIG INTEGRAL

Z = (2π)W/2|A|−1/2 exp(−S(wMAP))

where W is the number of weights.

Let’s plug this approximation back into the expression for the Bayes-optimum and
see what we get. . .

22

Method 1: approximation to p(w|y; X)

I ∝
∫

exp

(
−β

2
(Y − hw(x))2

)
︸ ︷︷ ︸

Likelihood p(Y |w;x)

exp

(
−1

2
∆wTA∆w

)
︸ ︷︷ ︸

Approximation to p(w|y;X)

dw.

There is still no solution! We need another approximation...

We can introduce a linear approximation2 of hw(x) at wMAP:

hw(x) ≈ hwMAP(x) + gT∆w

where g = ∇hw(x)|wMAP
.

(By linear approximation we just mean the Taylor expansion for k = 1.)

2We really are making assumptions here—this is OK if we assume that p(w|y;X) is narrow, which depends on A.

23

Method 1: second approximation

This leads to

p(Y |y; x,X) ∝ exp

(
−β

2

(
Y − hwMAP(x)− gT∆w

)2 − 1

2
∆wTA∆w

)
dw.

SUCCESS!!!

This integral can be evaluated (this is an exercise) using the BIG INTEGRAL to
give THE ANSWER...

p(Y |y; x,X) ' 1√
2πσ2Y

exp

(
−

(y − hwMAP(x))2

2σ2Y

)
where

σ2Y =
1

β
+ gTA−1g.

24

Method 1: final expression

Hooray! But what does it mean?

This is a Gaussian density, so we can now see that:

p(Y |y; x,X) peaks at hwMAP(x).

That is, the MAP solution.

The variance σ2Y can be interpreted as a measure of certainty:

The first term of σ2Y is 1/β and corresponds to the noise.

The second term of σ2Y is gTA−1g and corresponds to the width of p(w|y; X).

25

Method 1: final expression

Hooray! But what does it mean? Interpreted graphically:

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x

-15

-10

-5

0

5

10

Typical behaviour of the Bayesian solution

Plotting ±2σY around the prediction gives a measure of certainty.

26

Method II: Markov chain Monte Carlo (MCMC) methods

The second solution to the problem of performing integrals

I =

∫
F (w)p(w|y; X)dw

is to use Monte Carlo methods. The basic approach is to make the approximation

I ≈
1

N

N∑
i=1

F (wi)

where the wi have distribution p(w|y; X). Unfortunately, generating wi with a
given distribution can be non-trivial.

27

MCMC methods

A simple technique is to introduce a random walk, so

wi+1 = wi + ε

where ε is zero mean spherical Gaussian and has small variance. Obviously the
sequence wi does not have the required distribution. However, we can use the
Metropolis algorithm, which does not accept all the steps in the random walk:

1. If p(wi+1|y; X) > p(wi|y; X) then accept the step.

2. Else accept the step with probability p(wi+1|y;X)
p(wi|y;X) .

In practice, the Metropolis algorithm has several shortcomings, and a great deal
of research exists on improved methods, see:

R. Neal, “Probabilistic inference using Markov chain Monte Carlo methods,”
University of Toronto, Department of Computer Science Technical Report

CRG-TR-93-1, 1993.

28

A (very) brief introduction to how to learn hyperparameters

So far in our coverage of the Bayesian approach to neural networks, the hyperpa-
rameters α and β were assumed to be known and fixed.

• But this is not a good assumption because...

• ...α corresponds to the width of the prior and β to the noise variance.

• So we really want to learn these from the data as well.

• How can this be done?

We now take a look at one of several ways of addressing this problem.

Note: from now on I’m going to leave out the dependencies on x and X as
leaving them in starts to make everything cluttered.

29

The Bayesian approach to neural networks

The prior and likelihood depend on α and β respectively so we now make this
clear and write

p(w|y, α, β) =
p(y|w, β)p(w|α)

p(y|α, β)
.

Don’t worry about recalling the actual expressions for the prior and likelihood—
we’re not going to delve deep enough to need them.

Let’s write down directly something that might be useful to know:

p(α, β|y) =
p(y|α, β)p(α, β)

p(y)
.

30

Hierarchical Bayes and the evidence

If we know p(α, β|y) then a straightforward approach is to use the values for α
and β that maximise it:

argmax
α,β

p(α, β|y).

Here is a standard trick: assume that the prior p(α, β) is flat, so that we can just
maximise

p(y|α, β).

This is called type II maximum likelihood and is one common way of doing
the job.

31

Hierarchical Bayes and the evidence

The quantity

p(y|α, β)

is called the evidence or marginal likelihood.

When we re-wrote our earlier equation for the posterior density of the weights,
making α and β explicit, we found

p(w|y, α, β) =
p(y|w, β)p(w|α)

p(y|α, β)
.

So the evidence is the denominator in this equation.

This is the common pattern and leads to the idea of hierarchical Bayes: the
evidence for the hyperparameters at one level is the denominator in the

relevant application of Bayes’ theorem.

32

Gaussian processes: inference with functions instead of parameters

There is an alternative approach to Bayesian regression and classification:

The fundamental idea is to not think in terms of weights w that specify
functions.

Instead the idea is to deal with functions directly.

Fundamental to this is the concept of a Gaussian process.

33

Gaussian processes: inference with functions instead of parameters

We will continue to omit the dependencies on x and X to keep the notation simple.

We have seen that inference can be performed by:

1. Computing the posterior density p(w|y) of the parameters given the ob-
served labels.

2. Computing the Bayes-optimal prediction

p(Y |y) =

∫
p(Y |w)p(w|y) dw

which is the expected value of the likelihood for a new point x.

3. Choosing any hyperparameters p using the evidence p(y|p).

But shouldn’t we deal with functions directly, not via parameters?

34

Gaussian processes: inference with functions instead of parameters

What happens if we deal directly with functions f , rather than choosing them via
parameters?

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1

0

1

2

3

4

5

f
(x
)

Can we change the equation for prediction to

p(Y |y) =

∫
p(Y |f)p(f |y) df

in any sensible way?

35

Gaussian processes: inference with functions instead of parameters

Can we change the equation for prediction to

p(Y |y) =

∫
p(Y |f)p(f |y) df

in any sensible way?

This obviously requires us to talk about probability densities over functions. That
is probably not something you have ever seen before.

In the diagram: four samples f ∼ p(F)
from a probability density defined on
functions.

-5 0 5

x

-3

-2

-1

0

1

2

3

4

f
(x
)

This is quite straightforward, using the concept of a Gaussian process (GP).

36

Gaussian processes: inference with functions instead of parameters

Definition: say we have a set of RVs. This set forms a Gaussian process if any
finite subset of them is jointly Gaussian distributed.

The same four samples f ∼ p(F),
where F is in fact a GP.

The crosses mark the values of the sam-
pled functions at four different values of
x.

-5 0 5

x

-3

-2

-1

0

1

2

3

4

f
(x
)

Because F is a GP any such finite set of values has a jointly Gaussian
distribution.

37

Gaussian processes: inference with functions instead of parameters

What happens when we randomly select a function that is a GP?

• We are only ever interested in a finite number of its values.

• This is because we only need to deal with the values in the training set and
for any new points we want to predict.

• Consequently we can use a GP as a prior rather than having a prior p(w).

Note again the key point: we are randomly selecting functions and we can say
something about their behaviour for any finite collection of arguments.

And that is enough, as we only ever have finite quantities of data.

38

Gaussian processes: inference with functions instead of parameters

To specify a GP on vectors in Rn, we just need:

1. A mean function m : Rn → R.

2. A covariance function k : Rn × Rn → R.

m(x) = Ef∼F [f (x)]

k(x1,x2) = Ef∼F [(f (x1)−m(x1))(f (x2)−m(x2))]

We then write
F ∼ GP(m, k)

to denote that F is a GP.

By specifying m and k we get different kinds of function when sampling F .

39

GP priors

-5 0 5

x

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

f
(x
)

Squared exponential prior, l = 1/2

-5 0 5

x

-3

-2

-1

0

1

2

3

4

f
(x
)

γ-exponential prior, l = γ = 1/2

-5 0 5

x

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

f
(x
)

Rational quadratic prior, l = α = 3

-5 0 5

x

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

f
(x
)

Neural network prior, σ1 = 15, σ2 = 10

40

Covariance functions

Polynomial;
k(x1,x2) = (c + xT1 x2)

k

Exponential:

k(x1,x2) = exp

(
−|x1 − x2|

l

)
Squared exponential:

k(x1,x2) = exp

(
−|x1 − x2|2

2l2

)
Gamma exponential:

k(x1,x2) = exp

(
−
(
|x1 − x2|

l

)γ)

41

Covariance functions

Rational quadratic;

k(x1,x2) =

(
1 +
|x1 − x2|2

2αl2

)−α
Exponential:

k(x1,x2) = sin−1
(

2(x′1)
TΣx′2

((1 + 2(x′1)
TΣx′1)(1 + 2(x′2)

TΣx′2))
1/2

)
where (x′)T =

[
1 xT

]
.

As usual these have associated hyperparameters.

These have to be dealt with correctly as always.

42

Gaussian processes: generating data

Say we have some data
yi = f (xi)

for i = 1, . . . ,m and f ∼ GP(m, k). (Remember, the xi are fixed, not RVs.)

Any finite set of points must be jointly Gaussian. So

p(y) = N (m,K)

where

mT =
[
m(x1) · · · m(xm)

]
and K is the Gram matrix Kij = k(xi,xj).

Note 1: this is not p(y|f). We can completely remove the need for integration!

Note 2: from now on we will assume m(x) = 0. (It is straightforward to incorpo-
rate a non-zero mean.)

43

Gaussian processes: generating data with noise

Now add noise to the data.

Say we add Gaussian noise so

yi = f (xi) + εi.

Again, i = 1, . . . ,m and f ∼ GP(m, k), but now we also have

εi ∼ N (0, σ2).

As we are adding Gaussian RVs, we have

p(y) = N (0,K + σ2I).

BUT: in order to do prediction we actually need to involve a new point x′, for
which we want to predict the corresponding value y′.

44

Gaussian processes: prediction

SO: we incorporate x′, for which we want to predict the corresponding value y′.

By exactly the same argument

p(y′,y) = N (0,K′)

where

K′ =

[
k kT

k K + σ2I

]
kT =

[
k(x,x1) · · · k(x,xm)

]
k = k(x,x) + σ2.

Note 1: all we’ve done here is to expand the Gram matrix by an extra row and
column to get K′.

Note 2: whether or not you include σ2 in k is a matter of choice. What difference
does it make? (This is an Exercise.)

45

Gaussian density: marginals and conditionals

For a normal RV x ∼ N (µ,Σ)

p(x) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
.

Split x so

x =

[
x1

x2

]
and correspondingly

µ =

[
µ1

µ2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
.

What are p(x1) and p(x1|x2)?

46

Gaussian density: marginals and conditionals

Define the precision matrix

Λ = Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
.

It is possible to show that

p(x1) = N (µ1,Σ11)

p(x1|x2) = N (µ1 −Λ−111 Λ12(x2 − µ2),Λ
−1
11).

47

Inverting a block matrix

In the last slide, we see:

Σ−1 =

[
Λ11 Λ12

Λ21 Λ22

]
.

Re-writing Σ as

Σ =

[
A B
C D

]
it is possible to show (it is an Exercise to do this) that

Λ11 = A′

Λ12 = −A′BD−1

Λ21 = −D−1CA′

Λ22 = D−1 + D−1CA′BD−1

where

A′ = (A−BD−1C)−1.

48

GP regression

To do prediction all that’s left is to compute p(y′|y) .

Because everything is Gaussian this turns out to be easy:

p(y′,y) = N (0,K′)

K′ =

[
k kT

k L

]
L = K + σ2I.

From these we want to know p(y′|y).

Only two things are needed: the inverse formula for a block matrix and the for-
mula for obtaining a conditional from a joint Gaussian. Using these we can show
(it is an Exercise to derive this) that

p(y′|y) = N (kTL−1y︸ ︷︷ ︸
Mean

, k − kTL−1k︸ ︷︷ ︸
Variance

).

49

GP regression

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1

0

1

2

3

4

5

f
(x
)

Squared exponential prior, l = 1/2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-3

-2

-1

0

1

2

3

4

5

f
(x
)

γ-exponential prior, l = γ = 1/2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1

0

1

2

3

4

5

6

f
(x
)

Rational quadratic prior, l = a = 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x

-2

-1

0

1

2

3

4

5

f
(x
)

Neural network prior, σ1 = 15, σ2 = 10

50

Learning the hyperparameters

A nice side-effect of this formulation is that we get a usable expression for the
marginal likelihood.

If we incorporate the hyperparameters p, which in this case are any parameters
associated with k(x1,x2) along with σ2, then we’ve just computed

p(y′|y,p) =
p(y′,y|p)

p(y|p)
.

The denominator is the marginal likelihood, and we computed it above on slide
44:

p(y|p) = N (0,L) =
1√

(2π)m|L|
exp

(
−1

2
yTL−1y

)
.

51

Learning the hyperparameters

As usual this looks nicer if we consider its log

log p(y|p) = −1

2
log |L| − 1

2
yTL−1y − d

2
log 2π.

This is a rare beast:

1. It’s a sensible formula that tells you how good a set p of hyperparameters is.

2. That means you can use it as an alternative to cross-validation to search for
hyperparameters.

3. As a bonus you can generally differentiate it so it’s possible to use gradient-
based search.

52

