Dr Sean Holden

Computer Laboratory, Room FC06
Telephone extension 63725
Email: sbh11@cl.cam.ac.uk
www.cl.cam.ac.uk/~sbh11/

Part III: back to Bayes

Bayesian neural networks

Gaussian processes

Where now?

There are some simple take-home messages from the study of SVMs:
You can get state-of-the-art performance.
You can do this using the kernel trick to obtain a non-linear model.
You can do this without invoking the full machinery of the Bayes-optimal classifier.

BUT:

You don't have anything keeping you honest regarding which assumptions you're making.

As we shall see, by using the full-strength probabilistic framework we gain some useful extras.

In particular, the ability to assign confidences to our predictions.

The Bayesian approach to neural networks

We're now going to see how the idea of the Bayes-optimal classifier can be applied to neural networks.

We have:

- A neural network computing a function $h_{\mathbf{w}}(\mathbf{x})$. (In fact this can be pretty much any parameterized function we like.)
- A training sequence $\mathbf{s}^{T}=\left[\left(\mathbf{x}_{1}, y_{1}\right) \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right]$, split into

$$
\mathbf{y}=\left(\begin{array}{llll}
y_{1} & y_{2} & \cdots & y_{m}
\end{array}\right)
$$

and

$$
\mathbf{X}=\left(\begin{array}{llll}
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{m}
\end{array}\right) .
$$

The Bayesian approach to neural networks

We're only going to consider regression. Classification can also be done this way, but it's a bit more complicated

For classification we derived the Bayes-optimal classifier as the maximizer of:

$$
\operatorname{Pr}(C \mid \mathbf{x}, \mathbf{s})=\int \operatorname{Pr}(C \mid \mathbf{w}, \mathbf{x}) p(\mathbf{w} \mid \mathbf{s}) d \mathbf{w}
$$

For regression the Bayes-optimal classifier ends up having the same expression as we've already seen. We want to compute:

$$
\begin{gathered}
p(Y \mid \mathbf{x}, \mathbf{s})=\int \underbrace{p(Y \mid \mathbf{w}, \mathbf{x})}_{\text {Likelihood }} \underbrace{p(\mathbf{w} \mid \mathbf{s})}_{\text {Posterior }} d \mathbf{w} \\
\mathbf{s} \text { is the training set. } \\
\mathbf{x} \text { is a new example to be classified. } \\
Y \text { is the } \mathrm{RV} \text { representing the prediction for } \mathbf{x} .
\end{gathered}
$$

The Bayesian approach to neural networks

It turns out that if you try to incorporate the density $p(\mathbf{x})$ modelling how feature vectors are generated, things can get complicated. So:

1. We regard all input vectors as fixed: they are not treated as random variables.
2. This means that, strictly speaking, they should no longer appear in expressions like $p(Y \mid \mathbf{w}, \mathbf{x})$.
3. However, this seems to be uniformly disliked-writing $p(Y \mid \mathbf{w})$ for an expression that still depends on x seems confusing.
4. Solution: write $p(Y \mid \mathbf{w} ; \mathbf{x})$ instead. Note the semi-colon!

So we're actually going to look at

$$
p(Y \mid \mathbf{y} ; \mathbf{x}, \mathbf{X})=\int \underbrace{p(Y \mid \mathbf{w} ; \mathbf{x})}_{\text {Likelihood }} \underbrace{p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})}_{\text {Posterior }} d \mathbf{w}
$$

NOTE: this is a notational hack. There's nothing new, just an attempt at clarity. 5

What's going on? Turning prior into posterior

This can be seen very clearly if we use real numbers:

$$
\stackrel{10}{-4}_{w_{2}}^{w_{1}}
$$

What's going on? Turning prior into posterior

Let's make a brief sidetrack into what's going on with the posterior density

$$
p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X}) \propto p(\mathbf{y} \mid \mathbf{w} ; \mathbf{X}) p(\mathbf{w})
$$

Typically, the prior starts wide and as we see more data the posterior narrows

${ }^{W_{\text {MAP }}}$

6

The Bayesian approach to neural networks

So now we have three things to do:

1. STEP 1: remind ourselves what $p(Y \mid \mathbf{w} ; \mathbf{x})$ is.
2. STEP 2: remind ourselves what $p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})$ is.
3. STEP 3: do the integral. (This is the fun bit. . .)

The first two steps are straightforward as we've already derived them when looking at maximum-likelihood and MAP learning.

The Bayesian approach to neural networks

STEP 1: assuming Gaussian noise is added to the labels so

$$
y=h_{\mathbf{w}}(\mathbf{x})+\epsilon
$$

where $\epsilon \sim \mathcal{N}\left(0, \sigma_{n}^{2}\right)$ we have the usual likelihood

$$
p(Y \mid \mathbf{w} ; \mathbf{x})=\frac{1}{\sqrt{2 \pi \sigma_{n}^{2}}} \exp \left(-\frac{1}{2 \sigma_{n}^{2}}\left(Y-h_{\mathbf{w}}(\mathbf{x})\right)^{2}\right) .
$$

Here, the subscript in σ_{n}^{2} reminds us that it's the variance of the noise.
Traditionally this is re-written using the hyperparameter

$$
\beta=\frac{1}{\sigma_{n}^{2}}
$$

so the likelihood is

$$
p(Y \mid \mathbf{w} ; \mathbf{x}) \propto \exp \left(-\frac{\beta}{2}\left(Y-h_{\mathbf{w}}(\mathbf{x})\right)^{2}\right) .
$$

The Bayesian approach to neural networks

STEP 2: the posterior is also exactly as it was when we derived the MAP learning algorithms.

$$
p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X}) \propto p(\mathbf{y} \mid \mathbf{w} ; \mathbf{X}) p(\mathbf{w})
$$

and as before, the likelihood is

$$
\begin{aligned}
p(\mathbf{y} \mid \mathbf{w} ; \mathbf{X}) & \propto \exp \left(-\frac{\beta}{2} \sum_{i=1}^{m}\left(y_{i}-h_{\mathbf{w}}\left(\mathbf{x}_{i}\right)\right)^{2}\right) \\
& =\exp (-\beta E(\mathbf{w}))
\end{aligned}
$$

and using a Gaussian prior with mean $\mathbf{0}$ and covariance $\boldsymbol{\Sigma}=\sigma^{2} \mathbf{I}$ gives

$$
p(\mathbf{w}) \propto \exp \left(-\frac{\alpha}{2}\|\mathbf{w}\|^{2}\right)
$$

where traditionally the second hyperparameter is $\alpha=1 / \sigma^{2}$. Combining these

$$
p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})=\frac{1}{Z(\alpha, \beta)} \exp \left(-\left(\frac{\alpha\|\mathbf{w}\|^{2}}{2}+\beta E(\mathbf{w})\right)\right)
$$

The Bayesian approach to neural networks

Step 3: putting together steps 1 and 2, the integral we need to evaluate is:

$$
I \propto \int \underbrace{\exp \left(-\frac{\beta}{2}\left(Y-h_{\mathbf{w}}(\mathbf{x})\right)^{2}\right)}_{\text {Likelihood }} \underbrace{\exp \left(-\left(\frac{\alpha\|\mathbf{w}\|^{2}}{2}+\beta E(\mathbf{w})\right)\right)}_{\text {Posterior }} d \mathbf{w}
$$

Obviously this gives us all a sad face because there is no solution.

So what can we do now...?

The Bayesian approach to neural networks

In order to make further progress it's necessary to perform integrals of the general form

$$
\int F(\mathbf{w}) p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X}) d \mathbf{w}
$$

for various functions F and this is generally not possible.
There are two ways to get around this:

1. We can use an approximate form for $p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})$.
2. We can use Monte Carlo methods.

We'll be taking a look at both possibilities.

Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})$

$$
I \propto \int \underbrace{\exp \left(-\frac{\beta}{2}\left(Y-h_{\mathbf{w}}(\mathbf{x})\right)^{2}\right)}_{\text {Likelihood } p(Y \mid \mathbf{w} ; \mathbf{x})} \underbrace{\exp \left(-\left(\frac{\alpha\|\mathbf{w}\|^{2}}{2}+\beta E(\mathbf{w})\right)\right)}_{\text {Posterior } p(\mathbf{w} \mathbf{|} \mathbf{y} ; \mathbf{X})} d \mathbf{w}
$$

The first approach introduces a Gaussian approximation to $p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})$ by using a

Taylor expansion of

$$
S(\mathbf{w})=\frac{\alpha\|\mathbf{w}\|^{2}}{2}+\beta E(\mathbf{w})
$$

at the maximum a posteriori weights $\mathbf{w}_{\text {MAP }}$.
This allows us to use a standard integral.
The result will be approximate but we hope it's good!
Let's recall how Taylor series work...

Reminder: Taylor expansion

The functions of interest look like this:

By replacing $-f(x)$ with its Taylor expansion about its maximum, which is at

$$
x_{\max }=2.1437
$$

we can see what the approximation to $\exp (-f(x))$ looks like. Note that the \exp hugely emphasises peaks.

$$
14
$$

where

$$
f(x)=x^{4}-\frac{1}{2} x^{3}-7 x^{2}-\frac{5}{2} x+22
$$

This has a form similar to $S(\mathbf{w})$, but in one dimension.

$$
\begin{aligned}
f(x) \approx f\left(x_{0}\right) & +\frac{1}{1!}\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right) \\
& +\frac{1}{2!}\left(x-x_{0}\right)^{2} f^{\prime \prime}\left(x_{0}\right) \\
& +\cdots+\frac{1}{k!}\left(x-x_{0}\right)^{k} f^{k}\left(x_{0}\right) .
\end{aligned}
$$

What does this look like for the kinds of function we're interested in? As an example We can try to approximate

$$
\exp (-f(x))
$$

Reminder: Taylor expansion

Here are the approximations for $k=1, k=2$ and $k=3$.

The use of $k=2$ looks promising...

Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})$

Applying this to $S(\mathbf{w})$ and expanding around $\mathbf{w}_{\text {MAP }}$

$$
S(\mathbf{w})=\frac{\alpha\|\mathbf{w}\|^{2}}{2}+\beta E(\mathbf{w}) \approx S\left(\mathbf{w}_{\mathrm{MAP}}\right)+\frac{1}{2}\left(\mathbf{w}-\mathbf{w}_{\mathrm{MAP}}\right)^{T} \mathbf{A}\left(\mathbf{w}-\mathbf{w}_{\mathrm{MAP}}\right)
$$

- As $\mathbf{w}_{\text {MAP }}$ minimises the function the first derivatives are zero and the corresponding term in the Taylor expansion disappears.
- The quantity $\mathbf{A}=\left.\nabla \nabla S(\mathbf{w})\right|_{\mathbf{w}_{\text {MAP }}}$ can be simplified.

This is because

$$
\mathbf{A}=\left.\nabla \nabla\left(\frac{\alpha\|\mathbf{w}\|^{2}}{2}+\beta E(\mathbf{w})\right)\right|_{\mathbf{w}_{\mathrm{MAP}}}=\alpha \mathbf{I}+\beta \nabla \nabla E\left(\mathbf{w}_{\mathrm{MAP}}\right) .
$$

Reminder: Taylor expansion

In multiple dimensions the Taylor expansion for $k=2$ is

$$
\begin{aligned}
f(\mathbf{x}) \approx f\left(\mathbf{x}_{0}\right) & +\left.\frac{1}{1!}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{T} \nabla f(\mathbf{x})\right|_{\mathbf{x}_{0}} \\
& +\left.\frac{1}{2!}\left(\mathbf{x}-\mathbf{x}_{0}\right)^{T} \nabla^{2} f(\mathbf{x})\right|_{\mathbf{x}_{0}}\left(\mathbf{x}-\mathbf{x}_{0}\right)
\end{aligned}
$$

where ∇ denotes gradient

$$
\nabla f(\mathbf{x})=\left(\frac{\partial f(\mathbf{x})}{\partial x_{1}} \frac{\partial f(\mathbf{x})}{\partial x_{2}} \cdots \frac{\partial f(\mathbf{x})}{\partial x_{n}}\right)
$$

and $\nabla^{2} f(\mathbf{x})$ is the matrix with elements

$$
M_{i j}=\frac{\partial^{2} f(\mathbf{x})}{\partial x_{i} \partial x_{j}}
$$

(Looks complicated, but it's just the obvious extension of the 1-dimensional case.)

Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})$

We actually already know something about how to get $\mathbf{w}_{\text {MAP }}$:

1. A method such as backpropagation can be used to compute $\nabla S(\mathbf{w})$.
2. The vector $\mathrm{w}_{\text {MAP }}$ can then be obtained using any standard optimisation method (such as gradient descent).

It's also likely to be straightforward to compute $\nabla \nabla E(\mathbf{w})$:
The quantity $\nabla \nabla E(\mathbf{w})$ can be evaluated using an extended form of backpropagation.

A useful integral

Method 1: approximation to $p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X}$

Defining

$$
\Delta \mathbf{w}=\mathbf{w}-\mathbf{w}_{\mathrm{MAP}}
$$

we now have an approximation

$$
p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X}) \approx \frac{1}{Z} \exp \left(-S\left(\mathbf{w}_{\mathrm{MAP}}\right)-\frac{1}{2} \Delta \mathbf{w}^{T} \mathbf{A} \Delta \mathbf{w}\right)
$$

Using the BIG INTEGRAL

$$
Z=(2 \pi)^{W / 2}|\mathbf{A}|^{-1 / 2} \exp \left(-S\left(\mathbf{w}_{\mathrm{MAP}}\right)\right)
$$

where W is the number of weights.
Let's plug this approximation back into the expression for the Bayes-optimum and see what we get...
${ }^{\text {'No } \mathrm{I}, \mathrm{I} \text { won't ask you to evaluate it in the exam... }}$

$$
\text { Method 1: approximation to } p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})
$$

$$
I \propto \int \underbrace{\exp \left(-\frac{\beta}{2}\left(Y-h_{\mathbf{w}}(\mathbf{x})\right)^{2}\right)}_{\text {Likelihood } n(Y \mid \mathbf{w}: \mathbf{x})} \underbrace{\exp \left(-\frac{1}{2} \Delta \mathbf{w}^{T} \mathbf{A} \Delta \mathbf{w}\right)}_{\text {Approximation to } n(\mathbf{w} \mid \mathbf{v}: \mathbf{X})} d \mathbf{w}
$$

There is still no solution! We need another approximation...
We can introduce a linear approximation ${ }^{2}$ of $h_{\mathbf{w}}(\mathbf{x})$ at $\mathbf{w}_{\mathrm{MAP}}$:

$$
h_{\mathbf{w}}(\mathbf{x}) \approx h_{\mathrm{w}_{\mathrm{MAP}}}(\mathbf{x})+\mathbf{g}^{T} \Delta \mathbf{w}
$$

where $\mathbf{g}=\left.\nabla h_{\mathrm{w}}(\mathbf{x})\right|_{\mathrm{w}_{\mathrm{MAP}}}$.
(By linear approximation we just mean the Taylor expansion for $k=1$.)

Method 1: final expression

Hooray! But what does it mean?
This is a Gaussian density, so we can now see that:
$p(Y \mid \mathbf{y} ; \mathbf{x}, \mathbf{X})$ peaks at $h_{\mathbf{w}_{\mathrm{MAP}}}(\mathbf{x})$.
That is, the MAP solution.

The variance σ_{Y}^{2} can be interpreted as a measure of certainty:
The first term of σ_{Y}^{2} is $1 / \beta$ and corresponds to the noise.
The second term of σ_{Y}^{2} is $\mathbf{g}^{T} \mathbf{A}^{-1} \mathbf{g}$ and corresponds to the width of $p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})$.

Method II: Markov chain Monte Carlo (MCMC) methods

The second solution to the problem of performing integrals

$$
I=\int F(\mathbf{w}) p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X}) d \mathbf{w}
$$

is to use Monte Carlo methods. The basic approach is to make the approximation

$$
I \approx \frac{1}{N} \sum_{i=1}^{N} F\left(\mathbf{w}_{i}\right)
$$

where the \mathbf{w}_{i} have distribution $p(\mathbf{w} \mid \mathbf{y} ; \mathbf{X})$. Unfortunately, generating \mathbf{w}_{i} with a given distribution can be non-trivial.

Method 1: final expression

Hooray! But what does it mean? Interpreted graphically:

Plotting $\pm 2 \sigma_{Y}$ around the prediction gives a measure of certainty.
${ }^{26}$

MCMC methods

A simple technique is to introduce a random walk, so

$$
\mathbf{w}_{i+1}=\mathbf{w}_{i}+\epsilon
$$

where ϵ is zero mean spherical Gaussian and has small variance. Obviously the sequence \mathbf{w}_{i} does not have the required distribution. However, we can use the Metropolis algorithm, which does not accept all the steps in the random walk:

1. If $p\left(\mathbf{w}_{i+1} \mid \mathbf{y} ; \mathbf{X}\right)>p\left(\mathbf{w}_{i} \mid \mathbf{y} ; \mathbf{X}\right)$ then accept the step.
2. Else accept the step with probability $\frac{p\left(\mathbf{w}_{i+1} \mid \mathbf{y} ; \mathbf{X}\right)}{p\left(\mathbf{w}_{i} \mid \mathbf{X} ; \mathbf{X}\right)}$.

In practice, the Metropolis algorithm has several shortcomings, and a great deal of research exists on improved methods, see:
R. Neal, "Probabilistic inference using Markov chain Monte Carlo methods," University of Toronto, Department of Computer Science Technical Report CRG-TR-93-1, 1993

A (very) brief introduction to how to learn hyperparameters

So far in our coverage of the Bayesian approach to neural networks, the hyperparameters α and β were assumed to be known and fixed.

- But this is not a good assumption because...
- ... α corresponds to the width of the prior and β to the noise variance.
- So we really want to learn these from the data as well.
- How can this be done?

We now take a look at one of several ways of addressing this problem.

Note: from now on I'm going to leave out the dependencies on \mathbf{x} and \mathbf{X} as leaving them in starts to make everything cluttered.

Hierarchical Bayes and the evidence

If we know $p(\alpha, \beta \mid \mathbf{y})$ then a straightforward approach is to use the values for α and β that maximise it:

$$
\operatorname{argmax} p(\alpha, \beta \mid \mathbf{y})
$$

α, β

Here is a standard trick: assume that the prior $p(\alpha, \beta)$ is flat, so that we can just maximise

$$
p(\mathbf{y} \mid \alpha, \beta) .
$$

This is called type II maximum likelihood and is one common way of doing the job.

The Bayesian approach to neural networks

The prior and likelihood depend on α and β respectively so we now make this clear and write

$$
p(\mathbf{w} \mid \mathbf{y}, \alpha, \beta)=\frac{p(\mathbf{y} \mid \mathbf{w}, \beta) p(\mathbf{w} \mid \alpha)}{p(\mathbf{y} \mid \alpha, \beta)} .
$$

Don't worry about recalling the actual expressions for the prior and likelihoodwe're not going to delve deep enough to need them.
Let's write down directly something that might be useful to know:

$$
p(\alpha, \beta \mid \mathbf{y})=\frac{p(\mathbf{y} \mid \alpha, \beta) p(\alpha, \beta)}{p(\mathbf{y})}
$$

Hierarchical Bayes and the evidence

$$
\begin{aligned}
& \text { The quantity } \\
& p(\mathbf{y} \mid \alpha, \beta)
\end{aligned}
$$

is called the evidence or marginal likelihood.

When we re-wrote our earlier equation for the posterior density of the weights, making α and β explicit, we found

$$
p(\mathbf{w} \mid \mathbf{y}, \alpha, \beta)=\frac{p(\mathbf{y} \mid \mathbf{w}, \beta) p(\mathbf{w} \mid \alpha)}{p(\mathbf{y} \mid \alpha, \beta)}
$$

So the evidence is the denominator in this equation.
This is the common pattern and leads to the idea of hierarchical Bayes: the evidence for the hyperparameters at one level is the denominator in the relevant application of Bayes' theorem.

There is an alternative approach to Bayesian regression and classification:
The fundamental idea is to not think in terms of weights \mathbf{w} that specify functions.
Instead the idea is to deal with functions directly.
Fundamental to this is the concept of a Gaussian process.

What happens if we deal directly with functions f, rather than choosing them via parameters?

Can we change the equation for prediction to

$$
\begin{gathered}
p(Y \mid \mathbf{y})=\int p(Y \mid f) p(f \mid \mathbf{y}) d f \\
\text { in any sensible way? }
\end{gathered}
$$

Gaussian processes: inference with functions instead of parameters

We will continue to omit the dependencies on \mathbf{x} and \mathbf{X} to keep the notation simple.

We have seen that inference can be performed by:

1. Computing the posterior density $p(\mathbf{w} \mid \mathbf{y})$ of the parameters given the observed labels.
2. Computing the Bayes-optimal prediction

$$
p(Y \mid \mathbf{y})=\int p(Y \mid \mathbf{w}) p(\mathbf{w} \mid \mathbf{y}) d \mathbf{w}
$$

which is the expected value of the likelihood for a new point \mathbf{x}.
3. Choosing any hyperparameters \mathbf{p} using the evidence $p(\mathbf{y} \mid \mathbf{p})$.

But shouldn't we deal with functions directly, not via parameters?

Gaussian processes: inference with functions instead of parameters

Can we change the equation for prediction to

$$
p(Y \mid \mathbf{y})=\int p(Y \mid f) p(f \mid \mathbf{y}) d f
$$

in any sensible way?
This obviously requires us to talk about probability densities over functions. That is probably not something you have ever seen before.

In the diagram: four samples $f \sim p(F)$ from a probability density defined on functions.

This is quite straightforward, using the concept of a Gaussian process (GP).

Definition: say we have a set of RVs. This set forms a Gaussian process if any finite subset of them is jointly Gaussian distributed.

The same four samples $f \sim p(F)$, where F is in fact a GP.
The crosses mark the values of the sampled functions at four different values of x.

Because F is a GP any such finite set of values has a jointly Gaussian distribution.

Gaussian processes: inference with functions instead of parameters
To specify a GP on vectors in \mathbb{R}^{n}, we just need:

1. A mean function $m: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
2. A covariance function $k: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$.

$$
\begin{aligned}
m(\mathbf{x}) & =\mathbb{E}_{f \sim F}[f(\mathbf{x})] \\
k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & =\mathbb{E}_{f \sim F}\left[\left(f\left(\mathbf{x}_{1}\right)-m\left(\mathbf{x}_{1}\right)\right)\left(f\left(\mathbf{x}_{2}\right)-m\left(\mathbf{x}_{2}\right)\right)\right]
\end{aligned}
$$

We then write

$$
F \sim \operatorname{GP}(m, k)
$$

to denote that F is a GP.
By specifying m and k we get different kinds of function when sampling F.

Gaussian processes: inference with functions instead of parameters

What happens when we randomly select a function that is a GP?

- We are only ever interested in a finite number of its values.
- This is because we only need to deal with the values in the training set and for any new points we want to predict.
- Consequently we can use a GP as a prior rather than having a prior $p(\mathbf{w})$.

Note again the key point: we are randomly selecting functions and we can say something about their behaviour for any finite collection of arguments.
And that is enough, as we only ever have finite quantities of data.

38

GP priors

Polynomial;

$$
k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(c+\mathbf{x}_{1}^{T} \mathbf{x}_{2}\right)^{k}
$$

Exponential:

$$
k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(-\frac{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|}{l}\right)
$$

Squared exponential:

$$
k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(-\frac{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{2}}{2 l^{2}}\right)
$$

Gamma exponential:

$$
k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\exp \left(-\left(\frac{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|}{l}\right)^{\gamma}\right)
$$

Rational quadratic;

$$
k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\left(1+\frac{\left|\mathbf{x}_{1}-\mathbf{x}_{2}\right|^{2}}{2 \alpha l^{2}}\right)^{-\alpha}
$$

Exponential:

$$
k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)=\sin ^{-1}\left(\frac{2\left(\mathbf{x}_{1}^{\prime}\right)^{T} \boldsymbol{\Sigma} \mathbf{x}_{2}^{\prime}}{\left(\left(1+2\left(\mathbf{x}_{1}^{\prime}\right)^{T} \boldsymbol{\Sigma} \mathbf{x}_{1}^{\prime}\right)\left(1+2\left(\mathbf{x}_{2}^{\prime}\right)^{T} \boldsymbol{\Sigma} \mathbf{x}_{2}^{\prime}\right)\right)^{1 / 2}}\right)
$$

where $\left(\mathbf{x}^{\prime}\right)^{T}=\left[\begin{array}{ll}1 & \mathbf{x}^{T}\end{array}\right]$.
As usual these have associated hyperparameters.
These have to be dealt with correctly as always.

Gaussian processes: generating data

Say we have some data

$$
y_{i}=f\left(\mathbf{x}_{i}\right)
$$

for $i=1, \ldots, m$ and $f \sim \operatorname{GP}(m, k)$. (Remember, the \mathbf{x}_{i} are fixed, not RVs.)
Any finite set of points must be jointly Gaussian. So

$$
\begin{aligned}
p(\mathbf{y}) & =\mathcal{N}(\mathbf{m}, \mathbf{K}) \\
& \text { where }
\end{aligned}
$$

$$
\mathbf{m}^{T}=\left[\begin{array}{lll}
m\left(\mathbf{x}_{1}\right) & \cdots & m\left(\mathbf{x}_{m}\right)
\end{array}\right]
$$

$$
\text { and } \mathbf{K} \text { is the Gram matrix } \mathbf{K}_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) .
$$

Note 1: this is not $p(\mathbf{y} \mid f)$. We can completely remove the need for integration! Note 2: from now on we will assume $m(\mathbf{x})=0$. (It is straightforward to incorporate a non-zero mean.)

Gaussian processes: generating data with noise

Now add noise to the data.
Say we add Gaussian noise so

$$
y_{i}=f\left(\mathbf{x}_{i}\right)+\epsilon_{i}
$$

Again, $i=1, \ldots, m$ and $f \sim \operatorname{GP}(m, k)$, but now we also have

$$
\epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

As we are adding Gaussian $R V s$, we have

$$
p(\mathbf{y})=\mathcal{N}\left(\mathbf{0}, \mathbf{K}+\sigma^{2} \mathbf{I}\right)
$$

BUT: in order to do prediction we actually need to involve a new point \mathbf{x}^{\prime}, for which we want to predict the corresponding value y^{\prime}.
$S O$: we incorporate \mathbf{x}^{\prime}, for which we want to predict the corresponding value y^{\prime}.

$$
\left.\begin{array}{l}
\text { By exactly the same argument } \\
\qquad p\left(y^{\prime}, \mathbf{y}\right)=\mathcal{N}\left(\mathbf{0}, \mathbf{K}^{\prime}\right) \\
\text { where } \\
\mathbf{K}^{\prime}=\left[\begin{array}{cc}
k & \mathbf{k}^{T} \\
\mathbf{k} & \mathbf{K}+\sigma^{2} \mathbf{I}
\end{array}\right] \\
\mathbf{k}^{T}=\left[\begin{array}{ll}
k\left(\mathbf{x}, \mathbf{x}_{1}\right) & \cdots
\end{array} \quad k\left(\mathbf{x}, \mathbf{x}_{m}\right)\right.
\end{array}\right] \begin{aligned}
& k=k(\mathbf{x}, \mathbf{x})+\sigma^{2}
\end{aligned}
$$

Note 1: all we've done here is to expand the Gram matrix by an extra row and column to get \mathbf{K}^{\prime}.
Note 2: whether or not you include σ^{2} in k is a matter of choice. What difference does it make? (This is an Exercise.)

For a normal RV $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$

$$
p(\mathbf{x})=\frac{1}{\sqrt{(2 \pi)^{d}|\boldsymbol{\Sigma}|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

Split x so

$$
\mathbf{x}=\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]
$$

and correspondingly

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
\boldsymbol{\mu}_{1} \\
\boldsymbol{\mu}_{2}
\end{array}\right] \quad \boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

What are $p\left(\mathbf{x}_{1}\right)$ and $p\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right)$?

Gaussian density: marginals and conditionals

Define the precision matrix

$$
\boldsymbol{\Lambda}=\boldsymbol{\Sigma}^{-1}=\left[\begin{array}{ll}
\boldsymbol{\Lambda}_{11} & \boldsymbol{\Lambda}_{12} \\
\boldsymbol{\Lambda}_{21} & \boldsymbol{\Lambda}_{22}
\end{array}\right]
$$

It is possible to show that
$p\left(\mathbf{x}_{1}\right)=\mathcal{N}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{11}\right)$
$p\left(\mathbf{x}_{1} \mid \mathbf{x}_{2}\right)=\mathcal{N}\left(\boldsymbol{\mu}_{1}-\boldsymbol{\Lambda}_{11}^{-1} \boldsymbol{\Lambda}_{12}\left(\mathbf{x}_{2}-\boldsymbol{\mu}_{2}\right), \boldsymbol{\Lambda}_{11}^{-1}\right)$.

Inverting a block matrix

In the last slide, we see:

$$
\boldsymbol{\Sigma}^{-1}=\left[\begin{array}{ll}
\boldsymbol{\Lambda}_{11} & \boldsymbol{\Lambda}_{12} \\
\boldsymbol{\Lambda}_{21} & \boldsymbol{\Lambda}_{22}
\end{array}\right]
$$

Re-writing $\boldsymbol{\Sigma}$ as

$$
\Sigma=\left[\begin{array}{ll}
\mathrm{A} & \mathrm{~B} \\
\mathrm{C} & \mathrm{D}
\end{array}\right]
$$

it is possible to show (it is an Exercise to do this) that

$$
\begin{aligned}
& \boldsymbol{\Lambda}_{11}=\mathbf{A}^{\prime} \\
& \boldsymbol{\Lambda}_{12}=-\mathbf{A}^{\prime} \mathbf{B D} \mathbf{D}^{-1} \\
& \boldsymbol{\Lambda}_{21}=-\mathbf{D}^{-1} \mathbf{C A}^{\prime} \\
& \boldsymbol{\Lambda}_{22}= \mathbf{D}^{-1}+\mathbf{D}^{-1} \mathbf{C A}^{\prime} \mathbf{B D}^{-1} \\
& \quad \text { where } \\
& \mathbf{A}^{\prime}=\left(\mathbf{A}-\mathbf{B D}^{-1} \mathbf{C}\right)^{-1}
\end{aligned}
$$

To do prediction all that's left is to compute $p\left(y^{\prime} \mid \mathbf{y}\right)$.
Because everything is Gaussian this turns out to be easy:

$$
\begin{aligned}
p\left(y^{\prime}, \mathbf{y}\right) & =\mathcal{N}\left(\mathbf{0}, \mathbf{K}^{\prime}\right) \\
\mathbf{K}^{\prime} & =\left[\begin{array}{ll}
k & \mathbf{k}^{T} \\
\mathbf{k} & \mathbf{L}
\end{array}\right] \\
\mathbf{L} & =\mathbf{K}+\sigma^{2} \mathbf{I}
\end{aligned}
$$

From these we want to know $p\left(y^{\prime} \mid \mathbf{y}\right)$.

Only two things are needed: the inverse formula for a block matrix and the formula for obtaining a conditional from a joint Gaussian. Using these we can show (it is an Exercise to derive this) that

$$
p\left(y^{\prime} \mid \mathbf{y}\right)=\mathcal{N}(\underbrace{\mathbf{k}^{T} \mathbf{L}^{-1} \mathbf{y}}_{\text {Mean }}, \underbrace{k-\mathbf{k}^{T} \mathbf{L}^{-1} \mathbf{k}}_{\text {Variance }})
$$

50

Learning the hyperparameters

A nice side-effect of this formulation is that we get a usable expression for the marginal likelihood.

If we incorporate the hyperparameters \mathbf{p}, which in this case are any parameters associated with $k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ along with σ^{2}, then we've just computed

$$
p\left(y^{\prime} \mid \mathbf{y}, \mathbf{p}\right)=\frac{p\left(y^{\prime}, \mathbf{y} \mid \mathbf{p}\right)}{p(\mathbf{y} \mid \mathbf{p})}
$$

The denominator is the marginal likelihood, and we computed it above on slide 44:

$$
p(\mathbf{y} \mid \mathbf{p})=\mathcal{N}(\mathbf{0}, \mathbf{L})=\frac{1}{\sqrt{(2 \pi)^{m}|L|}} \exp \left(-\frac{1}{2} \mathbf{y}^{T} \mathbf{L}^{-1} \mathbf{y}\right)
$$

Learning the hyperparameters

As usual this looks nicer if we consider its \log

$$
\log p(\mathbf{y} \mid \mathbf{p})=-\frac{1}{2} \log |\mathbf{L}|-\frac{1}{2} \mathbf{y}^{T} \mathbf{L}^{-1} \mathbf{y}-\frac{d}{2} \log 2 \pi
$$

This is a rare beast:

1. It's a sensible formula that tells you how good a set \mathbf{p} of hyperparameters is.
2. That means you can use it as an alternative to cross-validation to search for hyperparameters.
3. As a bonus you can generally differentiate it so it's possible to use gradientbased search.
