# Machine Learning and Bayesian Inference 

## Dr Sean Holden

# Computer Laboratory, Room FC06 

Telephone extension 63725
Email: sbh11@cl.cam.ac.uk
www.cl.cam.ac.uk/~sbh11/

## Part II

Support vector machines
General methodology

The maximum margin classifier
Suggestion: why not drop all this probability nonsense and just do this:


Draw the boundary as far away from the examples as possible.
The distance $\gamma$ is the margin, and this is the maximum margin classifier.

If you completed the exercises for AI I then you'll know that linear classifiers have a very simple geometry. For

$$
f(\mathbf{x})=\mathbf{w}^{T} \mathbf{x}+b
$$


$\longrightarrow$

For $\mathrm{x}^{\prime}$ on one side of the line $f(\mathrm{x})=0$ we have $f\left(\mathrm{x}^{\prime}\right)>0$ and on the other side $f\left(\mathrm{x}^{\prime}\right)<0$.

## Problems:

- Given the usual training data $s$, can we now find a training algorithm for obtaining the weights?
- What happens when the data is not linearly separable?

To derive the necessary training algorithm we need to know something about constrained optimization.

We can address the second issue with a simple modification. This leads to the Support Vector Machine (SVM).

Despite being decidedly "non-Bayesian" the SVM is currently a gold-standard:
Do we need hundreds of classifiers to solve real world classification problems, Fernández-Delgardo at al., Journal of Machine Learning Research 2014.

## Constrained optimization

You are familiar with maximizing and minimizing a function $f(\mathrm{x})$. This is unconstrained optimization.

We want to extend this:

1. Minimize a function $f(\mathbf{x})$ with the constraint that $g(\mathrm{x})=0$.
2. Minimize a function $f(\mathrm{x})$ with the constraints that $g(\mathrm{x})=0$ and $h(\mathrm{x}) \geq 0$.

Ultimately we will need to be able to solve problems of the form: find $\mathrm{x}_{\mathrm{opt}}$ such that
$\mathbf{x}_{\text {opt }}=\operatorname{argmin} f(\mathbf{x})$
under the constraints

$$
\begin{gathered}
g_{i}(\mathrm{x})=0 \text { for } i=1,2, \ldots, n \\
\text { and } \\
h_{j}(\mathrm{x}) \geq 0 \text { for } j=1,2, \ldots, m
\end{gathered}
$$

## Constrained optimization

For example:


Minimize the function

$$
f(x, y)=-\left(2 x+y^{2}+x y\right)
$$

subject to the constraint

$$
g(x, y)=x+2 y-1=0 .
$$

## Constrained optimization

Step 1: introduce the Lagrange multiplier $\lambda$ and form the Langrangian

$$
L(x, y, \lambda)=f(x, y)-\lambda g(x, y)
$$

Necessary condition: it can be shown that if $\left(x^{\prime}, y^{\prime}\right)$ is a solution then $\exists \lambda^{\prime}$ such that


So for our example we need

$$
\begin{aligned}
2+y+\lambda & =0 \\
2 y+x+2 \lambda & =0 \\
x+2 y-1 & =0
\end{aligned}
$$

where the last is just the constraint.

## Constrained optimization

Step 2: solving these equations tells us that the solution is at:


$$
(x, y)=\left(4,-\frac{3}{2}\right)
$$

With multiple constraints we follow the same approach, with a Lagrange multiplier for each constraint.

## $\underline{\text { Constrained optimization }}$

How about the full problem? Find

$$
\begin{aligned}
\mathbf{x}_{\mathrm{opt}}=\underset{\mathbf{x}}{\operatorname{argmin}} f(\mathbf{x}) \text { such that } g_{i}(\mathbf{x}) & =0 \text { for } i=1,2, \ldots, n \\
h_{j}(\mathbf{x}) & \geq 0 \text { for } j=1,2, \ldots, m
\end{aligned}
$$

The Lagrangian is now

$$
L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\alpha})=f(\mathbf{x})-\sum_{i=1}^{n} \lambda_{i} g_{i}(\mathbf{x})-\sum_{j=1}^{m} \alpha_{j} h_{j}(\mathbf{x})
$$

and the relevant necessary conditions are more numerous.

## Constrained optimization

The necessary conditions now require that when $x^{\prime}$ is a solution $\exists \lambda^{\prime}, \alpha^{\prime}$ such that
1.

2. The equality and inequality constraints are satisfied at $\mathrm{x}^{\prime}$.
3. $\alpha^{\prime} \geq 0$.
4. $\alpha_{j}^{\prime} h_{j}\left(\mathrm{x}^{\prime}\right)=0$ for $j=1, \ldots, m$.

These are called the Karush-Kuhn-Tucker (KKT) conditions.
The $K K T$ conditions tell us some important things about the solution.
We will only need to address this problem when the constraints are all inequalities.

## Constrained optimization

What we've seem so far is called the primal problem.
There is also a dual version of the problem. Simplifying a little by dropping the equality constraints.

1. The dual objective function is

$$
\tilde{L}(\boldsymbol{\alpha})=\inf _{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\alpha}) .
$$

2. The dual optimization problem is


Sometimes it is easier to work by solving the dual problem and this allows us to obtain actual learning algorithms.

We won't be looking in detail at methods for solving such problems, only the minimum needed to see how SVMs work.

For the full story see Numerical Optimization, Jorge Nocedal and Stephen J. Wright, Second Edition, Springer 2006.

It turns out that with SVMs we get particular benefits when using the kernel trick. So we work, as before, in the extended space, but now with:

$$
\begin{aligned}
& f_{\mathbf{w}, w_{0}}(\mathbf{x})=w_{0}+\mathbf{w}^{T} \mathbf{\Phi}(\mathbf{x}) \\
& h_{\mathbf{w}, w_{0}}(\mathbf{x})=\operatorname{sgn}\left(f_{\mathbf{w}, w_{0}}(\mathbf{x})\right)
\end{aligned}
$$

where

$$
\operatorname{sgn}(z)= \begin{cases}+1 & \text { if } z>0 \\ -1 & \text { otherwise }\end{cases}
$$

Note the following:

1. Things are easier for SVMs if we use labels $\{+1,-1\}$ for the two classes. (Previously we used $\{0,1\}$.)
2. It also turns out to be easier if we keep $w_{0}$ separate rather than rolling it into w.
3. We now classify using a "hard" threshold sgn, rather than the "soft" threshold $\sigma$.

Consider the geometry again. Step 1:


1. We're classifying using the sign of the function

$$
f_{\mathbf{w}, w_{0}}(\mathbf{x})=w_{0}+\mathbf{w}^{T} \mathbf{\Phi}(\mathbf{x})
$$

2. The distance from any point $\Phi\left(x^{\prime}\right)$ in the extended space to the line is


Step 2:


- But we also want the examples to fall on the correct side of the line according to their label.
- Noting that for any labelled example $\left(\mathbf{x}_{i}, y_{i}\right)$ the quantity $y_{i} f_{\mathrm{w}, w_{0}}\left(\mathrm{x}_{i}\right)$ will be positive if the resulting classification is correct. . .
- ... the aim is to solve:
$\left(\mathbf{w}, w_{0}\right)=\underset{\mathbf{w}, w_{0}}{\operatorname{argmax}}\left[\min _{i} \frac{y_{i} f_{\mathbf{w}, w_{0}}\left(\mathbf{x}_{i}\right)}{\|\mathbf{w}\|}\right]$

The maximum margin classifier


The maximum margin classifier
Solution, version 1: convert to a constrained optimization. For any $c \in \mathbb{R}$

$$
\begin{aligned}
f_{\mathbf{w}, w_{0}}(\mathbf{x})=0 & \Longleftrightarrow w_{0}+\mathbf{w}^{T} \Phi(\mathbf{x})=0 \\
& \Longleftrightarrow c w_{0}+c \mathbf{w}^{T} \Phi(\mathbf{x})=0 .
\end{aligned}
$$

That means you can fix $\|\mathrm{w}\|$ to be anything you like! (Actually, fix $\|\mathrm{w}\|^{2}$ to avoid a square root.)


## Version 1:


subject to the constraints

```
yif}\mp@subsup{f}{\textrm{w},\mp@subsup{w}{0}{}}{}(\mp@subsup{\textrm{x}}{i}{})\geq\gamma,i=1,2,\ldots,
|\textrm{w}|\mp@subsup{|}{}{2}=1.
```

The maximum margin classifier
Solution, version 2: still, convert to a constrained optimization, but instead of fixing $\|w\|$ :

Fix $\min \left\{y_{i} f_{w, w_{0}}\left(\mathbf{x}_{i}\right)\right\}$ to be anything you like!

(This works because maximizing $\gamma$ now corresponds to minimizing $\|w\|$.)

The maximum margin classifier
We'll use the second formulation. (You can work through the first as an exercise.)
The constrained optimization problem is:

> Minimize $\frac{1}{2}\|\mathrm{w}\|^{2}$
> such that
> $y_{i} f_{\mathrm{w}, w_{0}}\left(\mathrm{x}_{i}\right) \geq 1$ for $i=1, \ldots, m$

Referring back, this means the Lagrangian is

$$
L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left(y_{i} f_{\mathbf{w}, w_{0}}\left(\mathbf{x}_{i}\right)-1\right)
$$

and a necessary condition for a solution is that

$$
\frac{\partial L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)}{\partial \mathbf{w}}=0
$$

$$
\frac{\partial L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)}{\partial w_{0}}=0 .
$$

$\underline{\text { The maximum margin classifier }}$
Working these out is easy:

$$
\begin{aligned}
\frac{\partial L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)}{\partial \mathbf{w}} & =\frac{\partial}{\partial \mathbf{w}}\left(\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i=1}^{m} \alpha_{i}\left(y_{i} f_{\mathbf{w}, w_{0}}\left(\mathbf{x}_{i}\right)-1\right)\right) \\
& =\mathbf{w}-\sum_{i=1}^{m} \alpha_{i} y_{i} \frac{\partial}{\partial \mathbf{w}}\left(\mathbf{w}^{T} \boldsymbol{\Phi}\left(\mathbf{x}_{i}\right)+w_{0}\right) \\
& =\mathbf{w}-\sum_{i=1}^{m} \alpha_{i} y_{i} \boldsymbol{\Phi}\left(\mathbf{x}_{i}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)}{\partial w_{0}} & =-\frac{\partial}{\partial w_{0}}\left(\sum_{i=1}^{m} \alpha_{i} y_{i} f_{\mathbf{w}, w_{0}}\left(\mathbf{x}_{i}\right)\right) \\
& =-\frac{\partial}{\partial w_{0}}\left(\sum_{i=1}^{m} \alpha_{i} y_{i}\left(\mathbf{w}^{T} \mathbf{\Phi}\left(\mathbf{x}_{i}\right)+w_{0}\right)\right) \\
& =-\sum_{i=1}^{m} \alpha_{i} y_{i}
\end{aligned}
$$

The maximum margin classifier
Equating those to 0 and adding the $K K T$ conditions tells us several things:

1. The weight vector can be expressed as

$$
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \boldsymbol{\Phi}\left(\mathbf{x}_{i}\right)
$$

with $\alpha \geq 0$. This is important: we'll return to it in a moment.
2. There is a constraint that

$$
\sum_{i=1}^{m} \alpha_{i} y_{i}=0
$$

This will be needed for working out the dual Lagrangian.
3. For each example

$$
\alpha_{i}\left[y_{i} f_{\mathbf{w}, w_{0}}\left(\mathbf{x}_{i}\right)-1\right]=0 .
$$

The maximum margin classifier
The fact that for each example

$$
\alpha_{i}\left[y_{i} f_{\mathrm{w}, w_{0}}\left(\mathbf{x}_{i}\right)-1\right]=0
$$

means that:

$$
\text { Either } y_{i} f_{\mathbf{w}, w_{0}}\left(\mathbf{x}_{i}\right)=1 \text { or } \alpha_{i}=0
$$

This means that examples fall into two groups.

1. Those for which $y_{i} f_{\mathrm{w}, w_{0}}\left(\mathrm{x}_{i}\right)=1$.

As the contraint used to maxmize the margin was $y_{i} f_{\mathrm{w}, w_{0}}\left(\mathrm{x}_{i}\right) \geq 1$ these are the examples that are closest to the boundary.
They are called support vectors and they can have non-zero weights.
2. Those for which $y_{i} f_{\mathrm{w}, w_{0}}\left(\mathrm{x}_{i}\right) \neq 1$.

These are non-support vectors and in this case it must be that $\alpha_{i}=0$.

Support vectors:


1. Circled examples: support vectors with $\alpha_{i}>0$.
2. Other examples: have $\alpha_{i}=0$.

Remember that

$$
\mathbf{w}=\sum_{i=1}^{m} \alpha_{i} y_{i} \boldsymbol{\Phi}\left(\mathbf{x}_{i}\right)
$$

so the weight vector $\mathbf{w}$ only depends on the support vectors.
ALSO: the dual parameters $\alpha$ can be used as an alternative set of weights. The overall classifier is

$$
\begin{aligned}
h_{\mathbf{w}, w_{0}}(\mathbf{x}) & =\operatorname{sgn}\left(w_{0}+\mathbf{w}^{T} \boldsymbol{\Phi}(\mathbf{x})\right) \\
& =\operatorname{sgn}\left(w_{0}+\sum_{i=1}^{m} \alpha_{i} y_{i} \boldsymbol{\Phi}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\Phi}(\mathbf{x})\right) \\
& =\operatorname{sgn}\left(w_{0}+\sum_{i=1}^{m} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)\right)
\end{aligned}
$$

where $K\left(\mathrm{x}_{i}, \mathrm{x}\right)=\Phi^{T}\left(\mathrm{x}_{i}\right) \Phi(\mathrm{x})$ is called the kernel.

The maximum margin classifier
Remember where this process started:



The kernel is computing

$$
\begin{aligned}
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\boldsymbol{\Phi}^{T}(\mathbf{x}) \boldsymbol{\Phi}\left(\mathbf{x}^{\prime}\right) \\
& =\sum_{i=1}^{k} \phi_{i}(\mathbf{x}) \phi_{i}\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

This is generally called an inner product.

If it's a hard problem then you'll probably want lots of basis functions so $k$ is BIG:

$$
\begin{aligned}
h_{\mathbf{w}, w_{0}}(\mathbf{x}) & =\operatorname{sgn}\left(w_{0}+\mathbf{w}^{T} \boldsymbol{\Phi}(\mathbf{x})\right) \\
& =\operatorname{sgn}\left(w_{0}+\sum_{i=1}^{k} w_{i} \phi_{i}(\mathbf{x})\right) \\
& =\operatorname{sgn}\left(w_{0}+\sum_{i=1}^{m} \alpha_{i} y_{i} \boldsymbol{\Phi}^{T}\left(\mathbf{x}_{i}\right) \boldsymbol{\Phi}(\mathbf{x})\right) \\
& =\operatorname{sgn}\left(w_{0}+\sum_{i=1}^{m} \alpha_{i} y_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)\right)
\end{aligned}
$$

What if $K\left(\mathrm{x}, \mathrm{x}^{\prime}\right)$ is easy to compute even if $k$ is $H U G E$ ? (In particular $k \gg m$.)

1. We get a definite computational advantage by using the dual version with weights $\alpha$.
2. Mercer's theorem tells us exactly when a function $K$ has a corresponding set of basis functions $\left\{\phi_{i}\right\}$.

The maximum margin classifier
Designing good kernels $K$ is a subject in itself.
Luckily for the majority of the time you will tend to see one of the following:

1. Polynomial:

$$
K_{c, d}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(c+\mathbf{x}^{T} \mathbf{x}^{\prime}\right)^{d}
$$

where $c$ and $d$ are parameters.
2. Radial basis function (RBF):

$$
K_{\sigma^{2}}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\frac{1}{2 \sigma^{2}}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)
$$

where $\sigma^{2}$ is a parameter.
The last is particularly prominent. Interestingly, the corresponding set of basis functions is infinite. (So we get an improvement in computational complexity from infinite to linear in the number of examples!)

## $\underline{\text { Maximum margin classifier: the dual version }}$

Collecting together some of the results up to now:

1. The Lagrangian is

$$
L\left(\mathbf{w}, w_{0}, \boldsymbol{\alpha}\right)=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{i} \alpha_{i}\left(y_{i} f_{\mathbf{w}, w_{0}}\left(\mathbf{x}_{i}\right)-1\right) .
$$

2. The weight vector is

$$
\mathbf{w}=\sum_{i} \alpha_{i} y_{i} \Phi\left(\mathbf{x}_{i}\right) .
$$

3. The KKT conditions require

$$
\sum_{i} \alpha_{i} y_{i}=0
$$

It's easy to show (this is an exercise) that the dual optimization problem is to maximize

$$
\tilde{L}(\boldsymbol{\alpha})=\sum_{i} \alpha_{i}-\frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)
$$

such that $\alpha \geq 0$.

## Support Vector Machines

There is one thing still missing:
Problem: so far we've only covered the linearly separable case.
Even though that means linearly separable in the extended space it's still not enough.

By dealing with this we get the Support Vector Machine (SVM).


## Support Vector Machines

Fortunately a small modification allows us to let some examples be misclassified.


We introduce the slack variables $\xi_{i}$, one for each example. Although $f_{\mathrm{w}, w_{0}}\left(\mathrm{x}^{\prime}\right)<0$ we have $f_{\mathrm{w}, w_{0}}\left(\mathrm{x}^{\prime}\right) \geq 1-\xi_{i}$ and we try to force $\xi_{i}$ to be small.

## Support Vector Machines

The constrained optimization problem was:

```
argmin
```

The constrained optimization problem is now modified to:


There is a further new parameter $C$ that controls the trade-off between maximizing the margin and controlling misclassification.

## $\underline{\text { Support Vector Machines }}$

Once again, the theory of constrained optimization can be employed:

1. We get the same insights into the solution of the problem, and the same conclusions.
2. The development is exactly analogous to what we've just seen.

However as is often the case it is not straightforward to move all the way to having a functioning training algorithm.

For this some attention to good numerical computing is required. See:
Fast training of support vector machine using sequential minimal optimization, J. C. Platt, Advances in Kernel Methods, MIT Press 1999.

## Support Vector Machines



RBF kernel, $C=10, \sigma^{2}=0.01$


Polynomial kernel, $C=10$, degree $=5$

$\underline{\text { Supervised learning in practice }}$
We now look at several issues that need to be considered when applying machine learning algorithms in practice:

- We often have more examples from some classes than from others.
- The obvious measure of performance is not always the best.
- Much as we'd love to have an optimal method for finding hyperparameters, we don't have one, and it's unlikely that we ever will.
- We need to exercise care if we want to claim that one approach is superior to another.

This part of the course has an unusually large number of Commandments.
That's because so many people get so much of it wrong!.

As usual, we want to design a classifier.


It should take an attribute vector

$$
\mathbf{x}^{T}=\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right]
$$

and label it.
We now denote a classifier by $h_{\theta}(\mathrm{x})$ where $\theta^{T}=(\mathrm{w} \mathrm{p})$ denotes any weights w and (hyper)parameters p .

To keep the discussion and notation simple we assume a classification problem with two classes labelled +1 (positive examples) and -1 (negative examples).

## $\underline{\text { Supervised learning }}$

Previously, the learning algorithm was a box labelled $L$.


Unfortunately that turns out not to be enough, so a new box has been added.

## Machine Learning Commandments

We've already come across the Commandment:

Thou shalt try a simple method. Preferably many simple methods.

Now we will add:

Thou shalt use an appropriate measure of performance.

## Measuring performance

How do you assess the performance of your classifier?

1. That is, after training, how do you know how well you've done?
2. In general, the only way to do this is to divide your examples into a smaller training set s of $m$ examples and a test set $\mathrm{s}^{\prime}$ of $m^{\prime}$ examples.

Original s


## The GOLDEN RULE: data used to assess performance must NEVER have been seen during training.

This might seem obvious, but it was a major flaw in a lot of early work.

## Measuring performance

How do we choose $m$ and $m^{\prime}$ ? Trial and error!
Assume the training is complete, and we have a classifier $h_{\theta}$ obtained using only $s$. How do we use $s^{\prime}$ to assess our method's performance?

The obvious way is to see how many examples in $s^{\prime}$ the classifier classifies correctly:

$$
\hat{\mathrm{er}}_{\mathrm{s}^{\prime}}\left(h_{\boldsymbol{\theta}}\right)=\frac{1}{m^{\prime}} \sum_{i=1}^{m^{\prime}} \mathbb{I}\left[h_{\boldsymbol{\theta}}\left(\mathbf{x}_{i}^{\prime}\right) \neq y_{i}^{\prime}\right]
$$

where

$$
\mathbf{s}^{\prime}=\left[\left(\mathbf{x}_{1}^{\prime}, y_{1}^{\prime}\right)\left(\mathbf{x}_{2}^{\prime}, y_{2}^{\prime}\right) \cdots\left(\mathbf{x}_{m^{\prime}}^{\prime}, y_{m^{\prime}}^{\prime}\right)\right]^{T}
$$

and

$$
\mathbb{I}[z]=\left\{\begin{array}{l}
1 \text { if } z=\text { true } \\
0 \text { if } z=\text { false }
\end{array}\right.
$$

This is just an estimate of the probability of error and is often called the accuracy.

## Unbalanced data

Unfortunately it is often the case that we have unbalanced data and this can make such a measure misleading. For example:

If the data is naturally such that almost all examples are negative (medical diagnosis for instance) then simply classifying everything as negative gives a high performance using this measure.

We need more subtle measures.
For a classifier $h$ and any set s of size $m$ containing $m^{+}$positive examples and $m^{-}$ negative examples...

## Unbalanced data

Define

1. The true positives

$$
P^{+}=\{(\mathbf{x},+1) \in \mathbf{s} \mid h(\mathbf{x})=+1\}, \text { and } p^{+}=\left|P^{+}\right|
$$

2. The false positives

$$
P^{-}=\{(\mathbf{x},-1) \in \mathbf{s} \mid h(\mathbf{x})=+1\}, \text { and } p^{-}=\left|P^{-}\right|
$$

3. The true negatives

$$
N^{+}=\{(\mathbf{x},-1) \in \mathbf{s} \mid h(\mathbf{x})=-1\}, \text { and } n^{+}=\left|N^{+}\right|
$$

4. The false negatives

$$
N^{-}=\{(\mathbf{x},+1) \in \mathbf{s} \mid h(\mathbf{x})=-1\}, \text { and } n^{-}=\left|N^{-}\right|
$$

Thus $\hat{e r}_{\mathrm{s}}(h)=\left(p^{+}+n^{+}\right) / m$.
This allows us to define more discriminating measures of performance.

## Performance measures

Some standard performance measures:

1. Precision $\frac{p^{+}}{p^{+}+p^{-}}$.
2. Recall $\frac{p^{+}}{p^{+}+n^{-}}$.
3. Sensitivity $\frac{p^{+}}{p^{+}+n^{-}}$.
4. Specificity $\frac{n^{+}}{n^{+}+p^{-}}$.
5. False positive rate $\frac{p^{-}}{p^{-}+n^{+}}$.
6. Positive predictive value $\frac{p^{+}}{p^{+}+p^{-}}$.
7. Negative predictive value $\frac{n^{+}}{n^{+}+n^{+}}$.
8. False discovery rate $\frac{p^{-}}{p^{-}+p^{+}}$.

In addition, plotting sensitivity (true positive rate) against the false positive rate while a parameter is varied gives the receiver operating characteristic ( $R O C$ ) curve.

## Performance measures

The following specifically take account of unbalanced data:

1. Matthews Correlation Coefficient (MCC)

$$
\mathrm{MCC}=\frac{p^{+} n^{+}-p^{-} n^{-}}{\sqrt{\left(p^{+}+p^{-}\right)\left(n^{+}+n^{-}\right)\left(p^{+}+n^{-}\right)\left(n^{+}+p^{-}\right)}}
$$

2. F1 score

$$
\mathrm{F} 1=\frac{2 \times \text { precision } \times \text { recall }}{\text { precision }+ \text { recall }}
$$

When data is unbalanced these are preferred over the accuracy.

## Machine Learning Commandments

Thou shalt not use default parameters.
Thou shalt not use parameters chosen by an unprincipled formula.
Thou shalt not avoid this issue by clicking on 'Learn' and hoping it works.
Thou shalt either choose them carefully or integrate them out.

Bad hyperparameters give bad performance


Bad hyperparameters give bad performance


## Validation and crossvalidation

The next question: how do we choose hyperparameters?

## Answer: try different values and see which values give the best (estimated)

 performance.There is however a problem:
If I use my test set s' to find good hyperparameters, then I can't use it to get a
final measure of performance. (See the Golden Rule above.)
Solution 1: make a further division of the complete set of examples to obtain a third, validation set:


## Validation and crossvalidation

Now, to choose the value of a hyperparameter $p$ :
For some range of values $p_{1}, p_{2}, \ldots, p_{n}$

1. Run the training algorithm using training data $s$ and with the hyperparameter set to $p_{i}$.
2. Assess the resulting $h_{\theta}$ by computing a suitable measure (for example accuracy, MCC or F1) using v.

Finally, select the $h_{\theta}$ with maximum estimated performance and assess its actual performance using $s^{\prime}$.

## Validation and crossvalidation

This was originally used in a similar way when deciding the best point at which to stop training a neural network.


The figure shows the typical scenario.

## Crossvalidation

The method of crossvalidation takes this a step further.
We our complete set into training set s and testing set $\mathrm{s}^{\prime}$ as before.
But now instead of further subdividing s just once we divide it into $n$ folds $\mathrm{s}^{(i)}$ each having $m / n$ examples.


Typically $n=10$ although other values are also used, for example if $n=m$ we have leave-one-out cross-validation.

## Crossvalidation

Let $\mathrm{S}_{-i}$ denote the set obtained from s by removing $\mathrm{S}^{(i)}$.
Let $\mathrm{er}_{\mathrm{s}}^{(i)}(h)$ denote any suitable error measure, such as accuracy, MCC or F1, computed for $h$ using fold $i$.

Let $L_{\mathrm{s}_{-i}, \mathrm{p}}$ be the classifier obtained by running learning algorithm $L$ on examples $\mathrm{S}_{-i}$ using hyperparameters $p$.

Then,

$$
\frac{1}{n} \sum_{i=1}^{n} \hat{\mathrm{er}}_{\mathrm{s}^{(i)}}\left(L_{\mathrm{s}_{-i}, \mathbf{p}}\right)
$$

is the $n$-fold crossvalidation error estimate.
So for example, let $\mathrm{s}_{j}^{(i)}$ denote the $j$ th example in the $i$ th fold. Then using accuracy as the error estimate we have

$$
\frac{1}{m} \sum_{i=1}^{n} \sum_{j=1}^{m / n} \mathbb{I}\left[L_{\mathbf{s}_{-i}, \mathbf{p}}\left(\mathbf{x}_{j}^{(i)}\right) \neq y_{j}^{(i)}\right]
$$

## Crossvalidation

Two further points:

1. What if the data are unbalanced? Stratified crossvalidation chooses folds such that the proportion of positive examples in each fold matches that in s .
2. Hyperparameter choice can be done just as above, using a basic search.

What happens however if we have multiple hyperparameters?

1. We can search over all combinations of values for specified ranges of each parameter.
2. This is the standard method in choosing parameters for support vector machines (SVMs).
3. With SVMs it is generally limited to the case of only two hyperparameters.
4. Larger numbers quickly become infeasible.

## Crossvalidation

This is what we get for an SVM applied to the two spirals:

Using crossvalidation to optimize the hyperparameters $C$ and $\sigma^{2}$.


## Machine Learning Commandments

Thou shalt provide evidence before claiming that thy method is the best. The shalt take extra notice of this Commandment if thou considers thyself a True And Pure Bayesian.

Imagine I have compared the Bloggs Classificator 2000 and the CleverCorp Discriminotron and found that:

1. Bloggs Classificator 2000 has estimated accuracy 0.981 on the test set.
2. CleverCorp Discriminotron has estimated accuracy 0.982 on the test set.

Can I claim that the CleverCorp Discriminotron is the better classifier?
Answer:
NO! NO! NO! NO! NO! NO! NO! NO! NO!!!!!!!!!!!!!!

## $\underline{\text { Comparing classifiers }}$

## NO!!!!!!!

Note for next year: include photo of grumpy-looking cat.

## From Mathematical Methods for Computer Science:

The Central Limit Theorem: If we have independent identically distributed (iid) random variables $X_{1}, X_{2}, \ldots, X_{n}$ with mean

$$
\mathbb{E}[X]=\mu
$$

and standard deviation

$$
\mathbb{E}\left[(X-\mu)^{2}\right]=\sigma^{2}
$$

then as $n \rightarrow \infty$

$$
\frac{\hat{X}_{n}-\mu}{\sigma / \sqrt{n}} \rightarrow N(0,1)
$$

where

$$
\hat{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

We have tables of values $z_{p}$ such that if $x \sim N(0,1)$ then

$$
\operatorname{Pr}\left(-z_{p} \leq x \leq z_{p}\right)>p .
$$

Rearranging this using the equation from the previous slide we have that with probability $p$

$$
\mu \in\left[\hat{X}_{n} \pm z_{p} \sqrt{\frac{\sigma^{2}}{n}}\right]
$$

We don't know $\sigma^{2}$ but it can be estimated using

$$
\sigma^{2} \simeq \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\hat{X}_{n}\right)^{2}
$$

Alternatively, when $X$ takes only values 0 or 1

$$
\sigma^{2}=\mathbb{E}\left[(X-\mu)^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mu^{2}=\mu(1-\mu) \simeq \hat{X}_{n}\left(1-\hat{X}_{n}\right) .
$$

The actual probability of error for a classifier $h$ is

$$
\operatorname{er}(h)=\mathbb{E}[\mathbb{I}[h(\mathbf{x}) \neq y]]
$$

and we are estimating er $(h)$ using the accuracy

$$
\hat{\mathrm{er}}_{\mathbf{s}}(h)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left[h\left(\mathbf{x}_{i}\right) \neq y_{i}\right]
$$

for a test set s .
We can find a confidence interval for this estimate using precisely the derivation above, simply by noting that the $X_{i}$ are the random variables

$$
X_{i}=\mathbb{I}\left[h\left(\mathbf{x}_{i}\right) \neq y_{i}\right] .
$$

Typically we are interested in a $95 \%$ confidence interval, for which $z_{p}=1.96$.
Thus, when $m>30$ (so that the central limit theorem applies) we know that, with probability 0.95

$$
\operatorname{er}(h)=\hat{e r}_{\mathbf{s}}(h) \pm 1.96 \sqrt{\frac{\left.\hat{e}_{\mathbf{s}}(h)\left(1-\hat{e r}_{\mathbf{s}}(h)\right)\right)}{m}}
$$

Example: I have 100 test examples and my classifier makes 18 errors. With probability 0.95 I know that

$$
\begin{aligned}
\operatorname{er}(h) & =0.18 \pm 1.96 \sqrt{\frac{0.18(1-0.18)}{100}} \\
& =0.18 \pm 0.075
\end{aligned}
$$

This should perhaps raise an alarm regarding our suggested comparison of classifiers above.

There is an important distinction to be made here:

1. The mean of $X$ is $\mu$ and the variance of $X$ is $\sigma^{2}$.
2. We can also ask about the mean and variance of $\hat{X}_{n}$.
3. The mean of $\hat{X}_{n}$ is

$$
\begin{aligned}
\mathbb{E}\left[\hat{X}_{n}\right] & =\mathbb{E}\left[\frac{1}{n} \sum_{i=1}^{n} X_{i}\right] \\
& =\frac{1}{n} \sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\mu
\end{aligned}
$$

4. It is left as an exercise to show that the variance of $\hat{X}_{n}$ is

$$
\sigma_{\hat{X}_{n}}^{2}=\frac{\sigma^{2}}{n} .
$$

## Comparing classifiers

We are using the values $z_{p}$ such that if $x \sim N(0,1)$ then

$$
\operatorname{Pr}\left(-z_{p} \leq x \leq z_{p}\right)>p .
$$

There is an alternative way to think about this.

1. Say we have a random variable $Y$ with variance $\sigma_{Y}^{2}$ and mean $\mu_{Y}$.
2. The random variable $Y-\mu_{Y}$ has variance $\sigma_{Y}^{2}$ and mean 0 .
3. It is a straightforward exercise to show that dividing a random variable having variance $\sigma^{2}$ by $\sigma$ gives us a new random variable with variance 1 .
4. Thus the random variable $\frac{Y-\mu_{Y}}{\sigma_{Y}}$ has mean 0 and variance 1 .

So: with probability $p$

$$
\begin{gathered}
Y=\mu_{Y} \pm z_{p} \sigma_{Y} \\
\mu_{Y}=Y \pm z_{p} \sigma_{Y} .
\end{gathered}
$$

Compare this with what we saw earlier. You need to be careful to keep track of whether you are considering the mean and variance of a single $R V$ or a sum of $R V s$.

## Comparing classifiers

Now say I have classifiers $h_{1}$ (Bloggs Classificator 2000) and $h_{2}$ (CleverCorp Discriminotron) and I want to know something about the quantity

$$
d=\operatorname{er}\left(h_{1}\right)-\operatorname{er}\left(h_{2}\right) .
$$

I estimate $d$ using

$$
\hat{d}=\hat{\mathrm{er}}_{\mathrm{s}_{1}}\left(h_{1}\right)-\hat{\mathrm{er}}_{\mathrm{s}_{2}}\left(h_{2}\right)
$$

where $s_{1}$ and $s_{2}$ are two independent test sets.

## Notice:

1. The estimate of $d$ is a sum of random variables, and we can apply the central limit theorem.
2. The estimate is unbiased

$$
\mathbb{E}\left[\hat{\mathrm{e}}_{\mathrm{s}_{1}}\left(h_{1}\right)-\hat{\mathrm{e}}_{\mathrm{s}_{2}}\left(h_{2}\right)\right]=d .
$$

## Comparing classifiers

## Also notice:

1. The two parts of the estimate $\hat{e r}_{\mathrm{S}_{1}}\left(h_{1}\right)$ and $\hat{e r}_{\mathrm{S}_{2}}\left(h_{2}\right)$ are each sums of random variables and we can apply the central limit theorem to each.
2. The variance of the estimate is the sum of the variances of $\hat{e r}_{\mathrm{S}_{1}}\left(h_{1}\right)$ and $\hat{e r}_{\mathrm{S}_{2}}\left(h_{2}\right)$.
3. Adding Gaussians gives another Gaussian.
4. We can calculate a confidence interval for our estimate.

With probability 0.95

$$
d=\hat{d} \pm 1.96 \sqrt{\left.\frac{\hat{e r}_{\mathrm{s}_{1}}\left(h_{1}\right)(1-\hat{\mathrm{er}}}{\mathrm{s}_{1}}\left(h_{1}\right)\right)} m_{1} \quad+\frac{\mathrm{er}_{\mathrm{s}_{2}}\left(h_{2}\right)\left(1-\mathrm{er}_{\mathrm{s}_{2}}\left(h_{2}\right)\right)}{m_{2}}
$$

In fact, if we are using a split into training set $s$ and test set $s^{\prime}$ we can generally obtain $h_{1}$ and $h_{2}$ using s and use the estimate

$$
\hat{d}=\hat{e r}_{\mathrm{s}^{\prime}}\left(h_{1}\right)-\hat{e r}_{\mathrm{s}^{\prime}}\left(h_{2}\right) .
$$

## Comparing classifiers-hypothesis testing

This still doesn't tell us directly about whether one classifier is better than an-other-whether $h_{1}$ is better than $h_{2}$.

What we actually want to know is whether

$$
d=\operatorname{er}\left(h_{1}\right)-\operatorname{er}\left(h_{2}\right)>0
$$

Say we've measured $\hat{D}=\hat{d}$. Then:

- Imagine the actual value of $d$ is 0 .
- Recall that the mean of $\hat{D}$ is $d$.
- So larger measured values $\hat{d}$ are less likely, even though some random variation is inevitable.
- If it is highly unlikely that when $d=0$ a measured value of $\hat{d}$ would be observed, then we can be confident that $d>0$.
- Thus we are interested in

$$
\operatorname{Pr}(\hat{D}>d+\hat{d})
$$

This is known as a one-sided bound.

## One-sided bounds

Given the two-sided bound

$$
\operatorname{Pr}\left(-z_{\epsilon} \leq x \leq z_{\epsilon}\right)=1-\epsilon
$$

we actually need to know the one-sided bound

$$
\operatorname{Pr}\left(x \leq z_{\epsilon}\right) .
$$




Clearly, if our random variable is Gaussian then $\operatorname{Pr}\left(x \leq z_{\epsilon}\right)=1-\epsilon / 2$.
$\underline{\text { Comparing algorithms: paired t-tests }}$
We now know how to compare hypotheses $h_{1}$ and $h_{2}$.
But we still haven't properly addressed the comparison of algorithms.

- Remember, a learning algorithm $L$ maps training data s to hypothesis $h$.
- So we really want to know about the quantity

$$
d=\mathbb{E}_{\mathbf{s} \in S^{m}}\left[\operatorname{er}\left(L_{1}(\mathbf{s})\right)-\operatorname{er}\left(L_{2}(\mathbf{s})\right)\right] .
$$

- This is the expected difference between the actual errors of the two different algorithms $L_{1}$ and $L_{2}$.

Unfortunately, we have only one set of data s available and we can only estimate errors er $(h)$-we don't have access to the actual quantities.

We can however use the idea of crossvalidation.

Comparing algorithms: paired t-tests
Recall, we subdivide $s$ into $n$ folds $\mathrm{s}^{(i)}$ each having $m / n$ examples


S
and denote by $\mathrm{s}_{-i}$ the set obtained from s by removing $\mathrm{s}^{(i)}$. Then

$$
\frac{1}{n} \sum_{i=1}^{n} \hat{e r}_{\mathbf{s}^{(i)}}\left(L\left(\mathbf{s}_{-i}\right)\right)
$$

is the $n$-fold crossvalidation error estimate. Now we estimate $d$ using

$$
\hat{d}=\frac{1}{n} \sum_{i=1}^{n}\left[\hat{\mathrm{er}}_{\mathbf{s}^{(i)}}\left(L_{1}\left(\mathbf{s}_{-i}\right)\right)-\hat{\mathrm{er}}_{\mathbf{s}^{(i)}}\left(L_{2}\left(\mathbf{s}_{-i}\right)\right)\right]
$$

As usual, there is a statistical test allowing us to assess how likely this estimate is to mislead us.

We will not consider the derivation in detail. With probability $p$

$$
d \in\left[\hat{d} \pm t_{p, n-1} \sigma_{\hat{d}}\right] .
$$

This is analogous to the equations seen above, however:

- The parameter $t_{p, n-1}$ is analogous to $z_{p}$.
- The parameter $t_{p, n-1}$ is related to the area under the Student's $t$-distribution whereas $z_{p}$ is related to the area under the normal distribution.
- The relevant estimate of standard deviation is

$$
\sigma_{\hat{d}}=\sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n}\left(d_{i}-\hat{d}\right)^{2}}
$$

where

$$
d_{i}=\hat{\mathrm{e}}_{\mathbf{s}^{(i)}}\left(L_{1}\left(\mathbf{s}_{-i}\right)\right)-\hat{\mathrm{er}}_{\mathbf{s}^{(i)}}\left(L_{2}\left(\mathbf{s}_{-i}\right)\right) .
$$

