
(Computational) Syntax & Semantics for Natural Language,

L95

c©2016, Ted Briscoe
Computer Laboratory

University of Cambridge

October 10, 2016

Abstract

This handout builds on the L95 Intro to Linguistics handout by presenting formal and
computational theories of aspects of language. We mostly focus aspects of the subtasks
of syntactic, semantic and (a bit of) discourse interpretation. It builds on and partially
overlaps with material from L90, so if you are not taking L90 and need more background,
look at the L90 course materials. The handout is not meant to replace textbooks – see
the course syllabus and the last section of this handout for readings, and the references
herein. Please read assigned sections in advance of the sessions, attempt the exercises,
and be prepared to ask and answer questions on the material covered. We won’t cover
everything here in detail but the handout does cover the background that will be assumed
if, e.g. you plan to take R222.

Contents

1 (Context-free) Phrase Structure Grammar 3

1.1 Derivations . 5

1.2 Ambiguity . 6

1.3 Inadequacies of CF PSG . 7

1.4 Unification and Features . 9

2 Goals of Semantics 11

2.1 Semantics and Pragmatics . 12

2.2 Semantic Intuitions/Evidence . 12

2.3 Semantic Productivity/Creativity . 13

2.4 Truth-conditional Semantics . 13

2.5 Sentences and Utterances . 14

2.6 Syntax and Semantics . 14

2.7 Model-theoretic Semantics . 15

2.8 An Example . 15

2.9 Exercises . 18

1

3 The Meaning of Sentence Connectives 18

3.1 Denotation and Truth . 18

3.2 Sense and Reference . 19

3.3 Propositional Logic . 20

3.4 English Fragment 1 . 21

3.4.1 Lexicon for F1 . 22

3.4.2 Grammar for F1 . 22

3.4.3 Some Examples . 22

3.5 A Model for F1 . 23

4 Entailment and Possible Models 24

4.1 Exercises . 25

5 First Order Logic (FOL) 26

5.1 FOL syntax . 26

5.2 FOL semantics . 27

5.3 Proof Theory . 30

5.4 Automated Theorem Proving . 32

6 An extended FOL-like English fragment, F2 33

6.1 Verb Complementation . 34

6.2 Quantifiers and pronouns . 34

6.2.1 Lexicon for F2 . 36

6.2.2 Grammar for F2 . 37

6.3 Logical Form . 38

6.4 Scope Ambiguities . 38

6.5 Exercises . 40

7 Syntax-Directed Compositional Translation 41

7.1 The Typed Lambda Calculus . 41

7.2 Beta Reduction . 43

7.3 Types . 44

7.4 Rule-to-rule Translation . 44

7.5 Types revisited . 47

7.6 English Fragment 2 Redone . 48

7.7 Pronouns and Quantifier Scoping Revisited 49

7.8 Exercises . 50

8 Discourse Processing 51

8.1 Abductive Inference . 51

2

9 Inadequacies of Formal Semantics 52

9.1 Intensionality . 52

9.2 Word Meaning . 54

9.3 Word Meaning References . 56

10 Generalized Categorial Grammars 56

10.1 Categorial Grammar . 56

10.2 Generalized Categorial Grammar . 57

10.3 Exercises . 60

10.4 CCG / GCG References . 60

11 (Neo-)Davidsonian Semantics 61

11.1 Exercises . 62

11.2 References . 62

11.3 Wide-coverage Event-based Semantics for CCG 62

11.4 Boxer . 63

11.5 Boxer References . 64

11.6 Software . 64

11.6.1 Exercise . 64

12 Conclusions / Core Reading 64

1 (Context-free) Phrase Structure Grammar

A generative grammar is a finite set of rules which define the (infinite) set of grammatical
sentences of some language.

Here are some example rules for English:

a) S → NP VP
b) NP → Det N
c) NP → Nname
d) VP → Vt NP

These rules assign the sentence The people love Sandy the same analysis and phrase structure
tree that was proposed in the Intro. to Linguistics handout, repeated below and followed by
the corresponding labelled bracketing.

3

S
PPPP

����
NP
Q
Q

�
�

Det

the

N

people

VP
b
b

"
"

Vt

love

NP

Nname

Sandy

S(NP((Det The) (N people)) VP((Vt love) NP(N Sandy)))

Exercises

Write down the rules needed to generate this sentence from ‘top to bottom’. What’s missing?
(easy)

The aim of a specific generative grammar is to provide a set of rules which generate (or
more abstractly license, predict. etc.) all the phrase structure trees which correspond to
grammatical sentences of, say, English. That is, generate all and only the word sequences
which a linguist would consider correct and complete sentences considered in isolation, along
with a description of their syntactic structure (phrase structure). The rules also incorporate
claims about English constituent structure.

One way to formalise the grammar we have introduced above is to treat it as a context-free
phrase structure grammar (CF PSG) in which each rule conforms to the following format:

Mother → Daughter1 Daughter2 . . . Daughtern

and the syntactic categories in rules are treated as atomic symbols – non-terminal symbols
being clausal and phrasal categories, terminal symbols lexical categories.

CF rules encode (immediate) dominance and (immediate) precedence relations between (non-
) terminal categories of the grammar. All grammars have a designated root or start symbol
(see e.g. Jurafsky and Martin, ch12) for more details on CF PSGs). To make the grammar
complete, we also need a lexicon in which we pair words (preterminals) with their lexical
categories.

If we do formalise such rules this way, we are claiming that CF PSGs provide an appropriate
(meta)theory of grammars for human languages, and thus that (all) syntactic rules for any
human language can be expressed as CF PSGs.

Grammar 1 (G1) illustrates a simple CF PSG for a small fragment of English.

Grammar 1

Rules Lexicon

a. S --> NP VP. Sam : Nname. plays : V.

b. VP --> V. Kim : Nname. chases : V.

c. VP --> V NP. Felix : Nname. sings : V.

d. VP --> V PP. Tweety : Nname. the : Det.

4

e. VP --> V NP NP. cat : N. miaows : V.

f. NP --> Nname. bird : N. a : Det.

g. NP --> Det N. park : N. in : P.

h. PP --> P NP. ball : N. with : P.

Exercises

Find 10 sentences this grammar generates. Is the set of grammatical sentences generated by
G1 finite? Are they all grammatical? Can you make any changes to G1 which would stop
some of the ungrammatical sentences being generated? (easy)

Give a formal definition of a CF grammar (as a quintuple) and the same for a regular
(right/left linear) grammar. State the additional restrictions on the right hand side of regular
grammar rules over CF rules. (Hard, unless you have done formal language theory, or read
some of Jurafsky and Martin (ch12) by now.)

1.1 Derivations

Given a CF PSG and lexicon, we can determine whether a sentence is or is not generated by
attempting to construct a derivation (tree) for it. To construct a leftmost derivation, we start
with the root symbol of the grammar and always rewrite (expand) the leftmost non-terminal
category in the current sentential form (sequence of terminal and non-terminal categories
resulting from each expansion) according to the rules in the grammar. A leftmost derivation
for Sam chases a bird using the grammar and lexicon above is given below, where the words
(preterminal categories) are given in brackets in the sentential forms:

S => NP VP => Nname (Sam) VP => Nname (Sam) V (chases) NP

=> Nname (Sam) V (chases) Det (a) N (bird)

In a rightmost derivation, we start with the root symbol but always rewrite the rightmost
symbol of the sentential form. The corresponding rightmost derivation for Sam chases a bird
is given below:

S => NP VP => NP V (chases) NP => NP V (chases) Det (a) N (bird)

=> Nname (Sam) V (chases) Det (a) N (bird)

Although the sequence of rule applications is different, the same set of rules appears in both
derivations. Furthermore, the derivations are unique in that there are no alternative rewrites
at any point in either which yield a derivation for the example. Constructing the deriva-
tion tree from a left/right-most derivation is straightforward – we simply represent successive
rewrites by drawing lines from the mother (rewritten) symbol to the daughter (expanded)
symbol(s). Both the derivations above correspond to the derivation / phrase structure tree
below:

5

S
PPPP
����

NP

Nname

Sam

VP
HHH

���
V

chases

NP
cc##

Det

a

N

bird

CF PSG is a so-called declarative formalism because it does not matter which order we apply
rules in, we will always assign the same phrase structure tree(s) to any given sentence. Thus
the rules encode the facts about grammar independently of their method of application in
parsing, generation, etc.

1.2 Ambiguity

A sentence is said to be ‘ambiguous’ when it can be assigned two (or more) distinct semantic
interpretations. A distinction is often made between two types of ambiguity, ‘structural’ and
‘lexical’. Broadly speaking, a sentence will be said to be structurally ambiguous if a syntactic
analysis of it results in the assignment of two (or more) distinct constituent structures to it,
where each distinct structure corresponds to one of the possible interpretations. A sentence
will be said to be lexically ambiguous, on the other hand, if it contains some ambiguous
lexical item but all the distinct interpretations receive the same constituent structure. (1a)
is an example of structural ambiguity and (1b) an example of lexical ambiguity.

(1) a Sam thinks that milk is horrible

b All linguists draw trees

In (1a) the word that is ambiguous between a determiner reading and a complementiser
reading. (A complementiser is a word that introduces a subordinate clause, traditionally
called a subordinating conjunction.) The most common complementiser is that, but other
examples include whether and if, as in (2).

(2) a Sam wonders whether Felix is in the garden

b They want to know if Felix is in the garden

As a determiner it forms an NP constituent with the noun milk but as a complementiser it
forms a constituent with the clause milk is horrible. The tree below shows the complementiser
analysis where it is all milk that Sam considers to be horrible.

6

S
PPPPP
�����

NP

Nname

Sam

VP
PPPP

����
V

thinks

S
aaaa

!!!!
Comp

that

S
aaa

!!!
NP

N

milk

VP
b
bb

"
""

Vaux

is

AP

horrible

Another way of saying a sentence is structurally ambiguous (given a grammar) is to say that
it has two or more left/right-most derivations.

Exercises

Can you construct the phrase structure tree for the other reading? With (1b) we will end up
with the same phrase structure tree but different senses of the noun trees. Can you construct
it and add the rules and words to G1 needed to generate these examples, ensuring that (1a)
is assigned two analyses corresponding to the structural ambiguity? (easy)

1.3 Inadequacies of CF PSG

CF PSGs have some strengths as a theory of grammar; for instance, they seem to account
for hierarchical constituency quite well and by using recursion we can capture the syntactic
productivity of human language. There are infinitely many grammatical sentences of English;
consider, for example, the sentence in (3).

(3) Sam saw the man in the park with the telescope on
the monument.

We can introduce the recursive CF rule below

VP → VP PP

which will assign a phrase structure tree to this example which corresponds to the reading
in which Sam saw the man whilst Sam was in the park using the telescope standing on the
monument.

Exercises

Draw the tree by adding this rule to G1 along with some appropriate lexical entries. What
rule(s) would we need to add if we wanted to capture the reading in which the telescope is
mounted on a monument to be found in the park where the man is? (medium)

If you have explored G1, you will have realised that it is difficult in some cases to generate
all and only the grammatical sentences. For instance, there is nothing to stop us generating
the examples in (4).

7

(4) a *Sam chases in the park.

b *Sam sings the cat.

c *Sam chases the cat the bird.

We could introduce different types of verb category (eg. Vintrans, Vtrans, Vppwith, etc.)
and specify each VP rule more carefully, as we did with names and common nouns, but this
would lead to many more rules if we are not careful. For example, imagine what will happen
if we attempt to capture person-number agreement between subject and verb in our grammar
to block examples like (5)

(5) a *The cat chase the bird.

b *The cats chases the bird.

c *I is clever.

d *You am clever.

If we add number and person to the categories in G1, we will end up with the much larger
CF PSG, Grammar 2 (G2).

Grammar 2

1. S --> NPsg1 VPsg1

2. S --> NPsg2 VPsg2

3. S --> NPsg3 VPsg3

4. S --> NPpl1 VPpl1

5. S --> NPpl2 VPpl2

6. S --> NPpl3 VPpl3

7. VPsg1 --> Vsg1

...

13. VPsg1 --> Vsg1 NP

...

19. VPsg1 --> Vsg1 PP

...

25. VPsg1 --> Vsg1 NP NP

...

31. NPsg3 --> Nname

32. NPsg3 --> Detsg Nsg

33. NPpl3 --> Detpl Npl

34. PP --> P NPsg1

...

39. PP --> P NPpl3

We appear to be failing to directly capture a simple rule – ‘the N(P) and V(P) in an S agree
in num(ber) and per(son)’.

Exercises

What would happen if we also tried to subcategorise verbs into intransitive, transitive and
ditransitive to avoid generating examples like *I smiled the ball to him and combined this

8

with the approach to agreement outlined above? How big would the new grammar be if you
did this systematically? (medium)

Thinking back to the Intro. to Linguistics handout and the exercise on English auxiliary
verbs, can you see how to formalise your analysis in CF PSG? How successful would this be?
(hard)

1.4 Unification and Features

CFGs utilise atomic symbols which match if they are identical, unification-based phrase struc-
ture grammars (UB PSGs) utilise complex categories which match by unification. They pro-
vide us with a means to express the person-number agreement rule of English and many
others more elegantly and concisely. Assume that syntactic categories are annotated with
sets of feature attribute-value pairs, then we can factor out information about number and
person from information about which type of category we are dealing with:
NP:[num=sg, per=3]
V:[num=pl, per=3]

where the possible values for the attribute num are sg/pl and for per 1/2/3. As well as being
able to specify values for features we will also allow features to take variable values (repre-
sented as capital letters) which can be bound within a unification-based PS rule. The rules
below express per-num agreement:

S → NP:[num=N, per=P] VP:[num=N, per=P]
VP:[num=N, per=P] → V:[num=N, per=P] NP:[]

Mostly, words in the lexicon will have fully specified categories but categories in rules often
contain variable values, so they generalise across subcategories. Unification can be used as the
operation to match categories during the construction of a phrase structure tree; that is, two
categories will match if for any given attribute they do not have distinct values. The resultant
category, if unification succeeds, is the one obtained by taking the union of the attributes,
substituting values for variables and rebinding variables. Some examples are given below;
the first two columns contain the categories to be unified and the third column contains the
result of the unification.

a. | NP:[per=3, num=N] | NP:[per=P, num=pl] | NP:[per=3, num=pl]

b. | NP:[per=2, num=sg] | NP:[per=2, num=N] | NP:[per=2, num=sg]

c. | NP:[per=P, num=N] | NP:[per=3, num=N] | NP:[per=3, num=N]

d. | NP:[per=1, num=sg] | NP:[per=2, num=sg] | FAIL

| | |

e. | N:[] | N:[] | N:[]

| | |

f. | V:[val=intrans, | V:[val=intrans, | V:[val=intrans,

| per=3, num=sg] | per=P, num=N] | per=3, num=sg]

g. | VP:[in=F, out=F] | VP:[in=G, out=H] | VP:[in=I, out=I]

9

h. | NP:[per=1] | NP:[num=pl] | NP:[per=1, num=pl]

A category consists of a category name (the functor, eg. X:) and a set of features enclosed
in square brackets after the functor. Features are made up of attributes (eg. per) and
values/variables (eg. 1 or P) separated by = and delimited from each other by commas.

Unification can be defined in terms of subsumption.

If two categories, A and B, unify, this yields a new category, C, defined as the smallest (most
general) category subsumed by A and B, otherwise fail.

Category A subsumes category B (i.e. B is more specific than A) iff (if and only if):
1) every attribute in A is in B;
2) every attribute=value pair in A is in B;
3) every attribute=variable pair in A is either in B or B has a legal value for this attribute;
4) every attribute sharing a variable value in A, shares a (variable) value in B.

The notation I have used for categories is similar to that used for Prolog terms. However,
Prolog uses fixed-arity term unification in which unifiable categories must explicitly have the
same set of attributes – given this ‘stronger’ definition of unification case h. above would lead
to FAIL because the two argument categories don’t explicitly contain the attributes num or
per with variable values. The advantage of ‘relaxing’ the definition of unification in this way
is that it is notationally less verbose when categories have lots of attributes. (Jurafsky and
Martin, ch15 give a more detailed introduction to unification of ‘feature structures’, using a
slightly extended notation.)

Grammar 3 (G3) is a small UB PSG generative grammar; see if you can work out what
structural descriptions it assigns to some examples and why it fails to assign any to sentences
which violate per-num agreement or verb val(ence) constraints (verb subcategorisation).

Grammar 3

S:[] --> NP:[per=P, num=N] VP:[per=P, num=N]

VP:[per=P, num=N] --> V:[per=P, num=N, val=intrans]

VP:[per=P, num=N] --> V:[per=P, num=N, val=trans] NP:[]

VP:[per=P, num=N] --> V:[per=P, num=N, val=ditrans] NP:[] NP:[]

NP:[per=P, num=N, pronom=yes] --> N:[per=P, num=N, pronom=yes]

NP:[per=P, num=N, pronom=no] --> Det:[num=N] N:[per=P, num=N, pronom=no]

Sam N:[per=3, num=sg, pronom=yes]

I N:[per=1, num=sg, pronom=yes]

you N:[per=2, pronom=yes]

she N:[per=3, num=sg, pronom=yes]

we N:[per=1, num=pl, pronom=yes]

they N:[per=3, num=pl, pronom=yes]

cat N:[per=3, num=sg, pronom=no]

cats N:[per=3, num=pl, pronom=no]

sheep N:[per=3, pronom=no]

laughs V:[per=3, num=sg, val=intrans]

10

laugh V:[per=1, num=sg, val=intrans]

laugh V:[per=2, num=sg, val=intrans]

laugh V:[num=pl, val=intrans]

chases V:[per=3, num=sg, val=trans]

chase V:[per=1, num=sg, val=trans]

chase V:[per=2, num=sg, val=trans]

chase V:[num=pl, val=trans]

gives V:[per=3, num=sg, val=ditrans]

give V:[per=1, num=sg, val=ditrans]

give V:[per=2, num=sg, val=ditrans]

give V:[num=pl, val=ditrans]

the Det:[]

a Det:[num=sg]

those Det:[num=pl]

Exercises

Can you define precisely how to do a left/right-most derivation in UB PSG? Is UB PSG a
declarative formalism? (i.e. does it make any difference whether we choose to do a left- or
right- most derivation to the results) (easy)

Try adding the analogues of some of the other rules and/or lexical entries developed for the CF
PSGs, G1 and G2 and the exercises above (e.g. names, PPs) to the UB PSG, G3. (medium)

How could we add the case=nom/acc distinction to G3 in order to block examples like *Sam
chases we? (easy)

Think again about the analysis of auxiliary verbs – how does UB PSG help make it simpler and
more effective? Can you think of any remaining problems which can’t be handled elegantly
in the UB PSG formalism introduced? How could we make rules even simpler if we labelled
head daughters or had a convention about how to select the head daughter in a rule? (hard)

You can read more about such issues in J&M:chapter 3

2 Goals of Semantics

Early work on semantics in generative grammar is now felt to be misguided. This work
concentrated on specifying translation procedures between syntactic and semantic structures.
However, the meaning of these ‘semantic’ structures was never defined. Several researchers
pointed out that this process just pushed the problem one level further down – rather as
though I translate an English sentence into Tagalog (or some other language you do not
understand) and then tell you that is the meaning of the English sentence. Recent work
on semantics in generative grammar has been based on ‘logical’ truth-conditional semantics.
This approach avoids the above criticism by relating linguistic expressions to actual states
of affairs in the world by means of the concept of truth. Within generative grammar, this
approach is usually called Montague grammar or Montague semantics (after the logician
Richard Montague).

11

2.1 Semantics and Pragmatics

Semantics and Pragmatics are both concerned with ‘meaning’ and a great deal of ink has
been spilt trying to define the boundaries between them. We will adopt the position that
Pragmatics = Meaning – Truth Conditions (roughly!). For the most part we will be concerned
with the meaning of sentences, rather than the meaning of utterances. That is, we will not
be concerned with the use of sentences in actual discourse, the speech acts they can be used
to perform, and so forth. From this perspective, the three sentences in (6) will all have the
same meaning because they all ‘involve’ the same state of affairs.

(6) a Open the window

b The window is open

c Is the window open

The fact that a) is most likely to convey an assertion, b) a command and c) a question is,
according to this approach, a pragmatic fact about the type of speech act language users will
typically associate with the declarative, imperative and interrogative syntactic constructions.
We will say that all the sentences of (6) convey the same proposition – the semantic ‘value’
of a sentence.

2.2 Semantic Intuitions/Evidence

Just as with syntax we used intuitions about ‘grammaticality’ to judge whether syntactic
rules were correct, we will use our semantic intuitions to decide on the correctness of semantic
rules. The closest parallel to ungrammaticality is nonsensicality or semantic anomaly. The
propositions in (7) are all grammatical but nonsensical.

(7) a Colourless green ideas sleep furiously

b Kim frightened sincerity

c Thirteen is very crooked

Other propositions are contradictions, as in (8).

(8) a It is raining and it is not raining

b A bachelor is a married man

c Kim killed Mary but she walked away

The assertion of some propositions implies the truth of other propositions; for example (9a)
implies b) and c) implies d).

(9) a John walked slowly

b John walked

c John sold Mary the book

d Mary bought the book from John

This relation is called entailment and is perhaps the most important of the semantic intuitions
to capture in a semantic theory since it is the basis of the inferences we make in language
comprehension, and many other semantic notions reduce to entailment. For example, two

12

propositions can be synonymous, as in (10), but the notion of synonymy reduces to the
notion of identity of entailments.

(10) a John is a bachelor

b John is an unmarried man

We also have intuitions about the (semantic) ambiguity of certain sentences; that is they can
convey more than one proposition, for example, those in (11).

(11) a Competent women and men go far

b He fed her dog biscuits

c Everyone knows one language

We would like our semantic theory to predict and explain these intuitions and thus we will
use intuitions of this kind to evaluate semantic theories.

2.3 Semantic Productivity/Creativity

Another important aspect of meaning that we would like our semantic theory to explain is its
productivity. We are able to interpret a potentially infinite number of sentences that convey
different propositions. Therefore, just as in syntactic theory, we will need to specify a finite
set of rules which are able to (recursively) define/interpret an infinite set of propositions.

2.4 Truth-conditional Semantics

There are two aspects to semantics. The first is the inferences that language users make when
they hear linguistic expressions. We are all aware that we do this and may feel that this is
what understanding and meaning are. But there is also the question of how language relates
to the world, because meaning is more than just a mental phenomenon – the inferences that
we make and our understanding of language are (often) about the external world around us
and not just about our inner states. We would like our semantic theory to explain both the
‘internal’ and ‘external’ nature of meaning.

Truth-conditional semantics attempts to do this by taking the external aspect of meaning as
basic. According to this approach, a proposition is true or false depending on the state of
affairs that obtain in the world and the meaning of a proposition is its truth conditions. For
example, John is clever conveys a true proposition if and only if John is clever. Of course, we
are not interested in verifying the truth or falsity of propositions – we would get into trouble
with examples like God exists if we tried to equate meaning with verification. Rather knowing
the meaning of a proposition is to know what the world would need to be like for the sentence
to be true (not knowing what the world actually is like). The idea is that the inferences that
we make or equivalently the entailments between propositions can be made to follow from
such a theory.

Most formal approaches to the semantics of NL are truth-conditional and model-theoretic;
that is, the meaning of a sentence is taken to be a proposition which will be true or false
relative to some model of the world. The meanings of referring expressions are taken to
be entities / individuals in the model and predicates are functions from entities to truth-
values (ie. the meanings of propositions). These functions can also be characterised in an

13

‘external’ way in terms of sets in the model – this extended notion of reference is usually
called denotation. Ultimately, we will focus on doing semantics in a proof-theoretic way
by ‘translating’ sentences into well-formed formulas of predicate / first-order logic (FOL)
and then passing these to a theorem prover since our goal is automated text understanding.
However, it is useful to start off thinking about model theory, as the validity of rules of
inference rests on the model-theoretic intepretation of the logic.

2.5 Sentences and Utterances

An utterance conveys far more than a propositional content. Utterances are social acts by
speakers intended to bring about some effect (on hearers).

Locutionary Act: the utterance of sentence (linguistic expression?) with determinate sense
and reference (propositional content)
Illocutionary Act (Force): the making of an assertion, request, promise, etc., by virtue of
the conventional force associated with it (how associated?)
Perlocutionary Act (Effect): the bringing about of effects on audiences by means of the
locutionary act

Natural languages do not ‘wear their meaning on their sleeve’. Discourse processing is about
recovering/conveying speaker intentions and the context-dependent aspects of propositional
content. We argue that there is a logical truth-conditional substrate to the meaning of
natural language utterances (semantics). Sentences have propositional content, utterances
achieve effects.

Context-dependent aspects of a proposition include reference resolution – which window are
we talking about? – especially with indexicals, such as some uses of personal pronouns, here,
this, time of utterance, speaker etc., so we talk about the propositional content conveyed by a
sentence to indicate that this may underspecify a proposition in many ways. We’ll often use
the term logical form to mean (usually) the proposition / propositional content which can be
determined from the lexical and compositional semantics of a sentence represented in a given
logic.

2.6 Syntax and Semantics

As the ambiguous examples above made clear, syntax affects interpretation because syntactic
ambiguity leads to semantic ambiguity. For this reason semantic rules must be sensitive to
syntactic structure. Most semantic theories pair syntactic and semantic rules so that the
application of a syntactic rule automnatically leads to the application of a semantic rule. So
if two or more syntactic rules can be applied at some point, it follows that a sentence will be
semantically ambiguous.

Pairing syntactic and semantic rules and guiding the application of semantic rules on the basis
of the syntactic analysis of the sentence also leads naturally to an explanation of semantic
productivity, because if the syntactic rule system is recursive and finite, so will the semantic
rule system be too. This organisation of grammar incorporates the principle that the meaning
of a sentence (its propositional content) will be a productive, rule-governed combination of
the meaning of its constituents. So to get the meaning of a sentence we combine words,
syntactically and semantically to form phrases, phrases to form clauses, and so on. This is

14

known as the Principle of Compositionality. If language is not compositional in this way, then
we cannot explain semantic productivity.

2.7 Model-theoretic Semantics

The particular approach to truth-conditional semantics we will study is known as model-
theoretic semantics because it represents the world as a mathematical abstraction made up of
sets and relates linguistic expressions to this model. This is an external theory of meaning par
excellence because every type of linguistic expression must pick out something in the model.
For example, proper nouns refer to objects, so they will pick out entities in the model. (Proof
theory is really derivative on model theory in that the ultimate justification of a syntactic
manipulation of a formula is that it always yields a new formula true in such a model.)

2.8 An Example

Whilst Chomsky’s major achievement was to suggest that the syntax of natural languages
could be treated analogously to the syntax of formal languages, so Montague’s contribution
was to propose that not only the syntax but also the semantics of natural language could be
treated in this way. In his article entitled ‘English as a Formal Language’, Montague made
this very explicit, writing: ‘I reject the contention that an important theoretical difference
exists between formal and natural languages’ (compare Martin Kay’s equally famous remark
about that ‘machine translation is nothing more than high-level compiling’).

As a first introduction to an interpreted language, we will provide a syntax and semantics for
an arithmetical language.

a) Exp --> Int

b) Exp --> Exp Op Exp

c) Stat --> Exp = Exp

d) Int(eger): 1,2,...9,...17...

e) Op(erator): +, -

Notice that this grammar generates a bracket-less language. We can provide a straightforward
interpretation for this language by firstly defining the meaning of each symbol of the language
and secondly stating how these basic ‘meanings’ combine in (syntactically permissable) ex-
pressions and statements. Lets assume that the interpretation of integers is as the familiar
base ten number system, so that 7 is 7, 19, 19, and so on. (Just to make clear the difference
between the symbol and its interpretation we will use bold face for the interpretation of a
symbol and italics for a symbol of some language.) The interpretation of the operators and
equality sign is also the familiar one, but if we are going to characterise the meaning of ex-
pressions and statements in terms of these more basic meanings we will need to define them
in a manner which makes the way they combine with integers and other expressions clear. We
will define them as (mathematical) functions which each take two arguments and give back
a value. By function, we mean a relation between two sets, the domain and range, where the
domain is the set of possible arguments and the range the set of possible values. For some
functions, it is possible to simply list the domain and range and show the mappings between

15

them. We cannot characterise + properly in this fashion because its domain and range will
be infinite (as the set of integers is infinite), but we can show a fragment of + as a table of

this sort.

Domain Range Domain Range
<0, 0> 0 <11, 1> 12

<0, 1> 1 <11, 2> 13

<1 ,0> 1 <11, 3> 14

<1, 1> 2 <11, 4> 15

<1, 2> 3 <11, 5> 16

...

The domain of + is a set of ordered pairs, written between angle brackets, the range the
set of integers. Ordering the arguments for + is not very important, but it is for −. (You
might like to construct a similar table for − to convince yourself of this point.) = is a rather
different kind of function whose range is very small, consisting just of the set {F,T} which we
will interpret as ‘false’ and ‘true’ respectively. The table for = would also be infinite, but we

show a fragment:

Domain Range Domain Range
<0, 0> T <1, 0> F

<1, 1> T <0, 1> F

<2, 2> T <1, 2> F

<3, 3> T <0, 2> F

<4, 4> T <2, 3> F

...

Functions like = which yield truth-values are sometimes called characteristic or Boolean
functions (after the logician George Boole). There is a close relationship between the concept
of a function and sets because we can always represent a function in terms of sets and mappings
between them (although we cannot always exhaustively list the members of these sets).

Now that we have defined the meaning of all the symbols in our language, of its vocabulary,
we can define how they combine semantically. We do this by adding a semantic component
to each of the syntactic rules in the grammar. The result is shown below:

a) Exp → Int : Int′

b) Exp → Exp Op Exp : Op′(Exp′
1, Exp′

2)
c) Stat → Exp = Exp : =′(Exp′

1, Exp′
2)

Each rule now has two parts delimited by a colon. The second is the semantic part. The
primes are used to indicate ‘the semantic value of’ some category, so the category Int has
values in 1,2,.. whilst Int′ has values in 1, 2,.... The semantic operation associated with
rules a) and b) is function-argument application, which is notated F (A1, . . . An). The value
returned by the function applied to the particular arguments which occur in some expression
is the semantic value of that expression. Where the same category labels occur twice on the
right hand side of some rule, we use subscripted numbers to pick them out uniquely, by linear
order, for the semantic part of the rule.

Applying this interpretation of our language to some actual expressions and statements should
make the mechanics of the system clearer. Below we show one of the syntactic structures
assigned to 4 + 5 − 3 = 6 and give the corresponding semantic interpretation where each
symbol has been replaced by its interpretation and each node of the tree by the interpretations

16

derived from applying the semantic rule associated with each syntactic rule to the semantic
values associated with the daughter categories.

Stat =(6 6) T

/ | \ / | \

Exp \ \ -(9 3) 6 | |

/ | \ \ \ / |\ | |

Exp | \ \ \ +(4 5) 9 | \ | |

/ | \ \ \ \ \ / | \ | \ | |

Exp | Exp | Exp \ Exp 4 | 5 | \ | 6

| | | | | | | | | | | | | |

Int | Int | Int | Int 4 | 5 | 3 | 6

| | | | | | | | | | | | | |

4 + 5 - 3 = 6 4 + 5 - 3 = 6

Rule a) just states that an integer can be an expression and that the semantic value of
that expression is the semantic value of the integer. Accordingly, we have substituted the
semantic values of the integers which occur in our example for the corresponding categories
in the syntactic tree diagram. Rule b) is used in to form an expression from 4, + and 5. The
associated semantic operation is function-argument application, so we apply the semantic
value of the operator + to the semantic value of the arguments, 4 and 5. The same syntactic
rule is used again, so we perform another function-argument application using the result of
the previous application as one of the arguments. Finally, c) is used, so we apply = to 6 and
6, yielding ‘T’ or ‘true’. You might like to draw the other tree that can be assigned to this
example according to the grammar and work through its semantic interpretation. Does it
yield a true or false statement?

It may seem that we have introduced a large amount of machinery and associated notation to
solve a very simple problem. Nevertheless, this apparently simple and familiar arithmetical
language, for which we have now given a syntax and semantics, shares some similarities with
natural language and serves well to illustrate the approach that we will take. Firstly, there are
an infinite number of expressions and statements in this language, yet for each one our seman-
tic rules provide an interpretation which can be built up unit-by-unit from the interpretation
of each symbol, and each expression in turn. This interpretation proceeds hand-in-hand with
the application of syntactic rules, because each syntactic rule is paired with a corresponding
semantic operation. Therefore, it is guaranteed that every syntactically permissable expres-
sion and statement will receive an interpretation. Furthermore, our grammar consists of only
three rules; yet this, together with a lexicon describing the interpretation of the basic symbols,
is enough to describe completely this infinite language. This expressive power derives from
recursion. Notice that the semantic rules ‘inherit’ this recursive property from their syntactic
counterparts simply by virtue of being paired with them. Secondly, this language is highly
ambiguous – consider the number of different interpretations for 4+5−2+3−1 = 6−4+9−6
– but the grammar captures this ambiguity because for each distinct syntactic tree diagram
which can be generated, the rules of semantic interpretation will yield a distinct analysis often
with different final values.

17

2.9 Exercises

1) Can you think of any arithmetical expressions and statements which cannot be made given
the grammar which do not require further symbols? How would you modify the grammar
syntactically and semantically to accommodate them?

2) What is the relationship between brackets and tree structure? Can you describe informally
a semantic interpretation scheme for a bracketed variant of arithmetical language in section
1.8 which does not require reference to tree diagrams or syntactic rules?

3) The interpretation we have provided for the bracket-less arithmetical language corresponds
to one which we are all familiar with but is not the only possible one. Find an interpretation
which makes the statements in a) true and those in b) false. Define a new grammar and
lexicon which incorporates this interpretation.

a) b)

4 + 1 = 4 3 - 2 = 1

4 - 1 = 4 4 - 6 = 8

5 + 3 = 1 7 + 4 = 10

9 + 2 = 6 5 + 2 = 3

6 - 2 = 5 3 - 4 = 2

5) Provide a grammar for a language compatible with the examples illustrated in below.
Interpret the integers in the usual way, but choose an interpretation for the new symbols
chosen from +, −, and ∗ (multiply). Give the interpretation that your grammar assigns to
each example and demonstrate how it is obtained.

a) @ 2 3

b) # 2 @ 3 4

c) ^ 4 @ 2 # 6 8

d) # @ 4 ^ 3 2 5

e) @ # ^ 2 3 7 9

3 The Meaning of Sentence Connectives

In this section, we will begin developing a truth-conditional theory of sentence semantics in
earnest. We will proceed by trying to capture the meaning of increasingly large fragments of
English. To start with, we will tackle words like conjunctions used to coordinate very simple
sentences consisting of proper names and intransitive verbs. The system we will develop is a
slight extension to Propositional Logic (PL)

3.1 Denotation and Truth

Truth-conditional semantics attempts to capture the notion of meaning by specifying the way
linguistic exressions are ‘linked’ to the world. For example, we argued that the semantic value

18

of a sentence is (ultimately) a proposition which is true or false (of some state of affairs in
some world). What then are the semantic values of other linguistic expressions, such as NPs,
VPs, and so forth? If we are going to account for semantic productivity we must show how
the semantic values of words are combined to produce phrases, which are in turn combined
to produce propositions. It is not enough to just specify the semantic value of sentences.

One obvious place to start is with proper names, like Max or Belinda because the meaning of
a proper name seems to be intimately connected to the entity it picks out in the world (ie.
the entity it refers to, eg. max1, a particular unique entity named Max). So now we have
the semantic values of proper names and propositions but we still need to know the semantic
values of verbs before we can construct the meaning of even the simplest propositions. So
what is the ‘link’ between verbs and the world? Intransitive verbs combine with proper
names to form propositions – intransitive verbs pick out properties of entities. But how can
we describe a ‘property’ in terms of a semantic theory which attempts to reduce all meaning
to the external, referential aspect of meaning? One answer is to say that the semantic value
of an intransitive verb is the set of entities which have that property in a particular world.
For example, the semantic value of snore might be {max1, fido1}. Actually, we will say that
a set like this is the semantic value of a predicate like snore1, a particular sense of snore. Now
we are in a position to say specify the meaning of (12) in a compositional fashion.

(12) Max snores

First find the referent of Max and then check to see whether that entity, say max1, is in the set
of entities denoted by snore1. Now we have specified the truth-conditions of the proposition
conveyed by (12) (ignoring any possible ambiguities concerning the referent of Max and the
sense of snore).

Developing a truth-conditional semantics is a question of working out the appropriate ‘links’
between all the different types of linguistic expression and the world in such a way that they
combine together to build propositions. To distinguish this extended notion of reference from
its more general use, we call this relation denotation. Thus the denotation of an intransitive
verb will be a set of entities and of a proper name, an entity.

At this point we should consider more carefully what sentences denote. So far we have assumed
that the semantic value of a sentence is a proposition and that propositions are true or false.
But what is the link with the world? How is this to be described in external, referential terms?
One answer is to say that sentences denote their truth-value (ie. true or false) in a particular
world, since this is the semantic value of a proposition. So we add the ‘entities’ true and
false to the world and let sentences denote these ‘entities’. However, there is an immediate
problem with this idea – all true sentences will mean the same thing, because truth-conditional
semantics claims in effect that denotation exhausts the non-pragmatic aspects of meaning.
This appears to be a problem because Mr. Cameron is prime minister and Mr. Obama is
president are both true but don’t mean the same thing.

3.2 Sense and Reference

The problem of the denotation of sentences brings us back to the internal and external aspects
of meaning again. What we want to say is that there is more to the meaning of a sentence than
the truth-value it denotes in order to distinguish between different true (or false) sentences.

19

There are other problems to; consider, for example, the sentence in (13)

(13) The morning star is the evening star.

It was a great astronomical discovery when someone worked that a star seen at a certain
position in the sky in the morning and one seen at another position in the evening were both
Venus. Yet according to our theory of semantics this ought to be a tautologous or logically
true statement analogous to (14) because the meaning of a definite description or a proper
name is just the entity (individual or object) it denotes.

(14) Venus is Venus.

Traditionally, linguistic expressions are said to have both a sense and a reference, so the
meaning of the morning star is both its referent (Venus) and the concept it conveys (star seen
in morning).

At this point you might feel that it is time to give up truth-conditional semantics, because
we started out by saying that the whole idea was to explain the internal aspect of meaning in
terms of the external, referential part. In fact things are not so bad because it is possible to
deal with those aspects of meaning that cannot be reduced to reference in model-theoretic,
truth-conditional semantics based on an intensional ‘possible worlds’ logic. The bad news is
though that such logics use higher-order constructs in ways which are difficult to reduce to
first-order terms for the purposes of automated theorem proving. More on this later. For the
moment we will continue to develop a purely ‘extensional’ semantics to see how far we can
get.

3.3 Propositional Logic

Consider a sentence such as (15) made up of two simple sentences conjoined by and.

(15) Max snores and Belinda smiles

Lets assume that Max snores and Belinda smiles convey true propositions – then what is the
truth-value of the proposition conveyed by the complex sentence in (15)?

Propositional logic (PL) addresses the meaning of sentence connectives by ignoring the inter-
nal structure of sentences / propositions entirely. In PL we would represent (15) and many
other English sentences as p ∧ q where p and q stand in for arbitrary propositions. Now we
can characterise the meaning of and in terms of a truth-table for ∧ which exhausts the set of
logical possibilities for the truth-values of the conjoined propositions (p, q) and specifies the
truth of the complex proposition as a function of the truth-values for the simple propositions,
as below:
p q p ∧ q
t t t
t f f
f t f
f f f

Can you write down the truth-tables for ∨, ¬ and⇒? (I use⇒ to denote logical implication.)

The semantics of PL must specify the truth-conditions for the truth or falsity of well-formed

20

formulas in terms of the truth or falsity of the simple unanalysed propositions represented by
sentential variables and the truth-conditions for each connective. We have already seen what
the truth-conditions for and are; we gloss this as below, where α and β are metavariables
standing for any sentential variable:
α ∧ β is true iff both α and β are true.
Notice that is a statement in the meta language we are using to describe the semantics of
PL. We could state the semantics of each sentence connective in this way. This semantic
model-theoretic interpretation licences entailments or rules of valid inference like p, q |= p∧ q
– can you see why? The truth-table characterisations of the logical constants guarantee that
such entailments must hold, given any valid model of a PL language.

Each connective combines with two propositions to form a new complex proposition. There-
fore we can represent the general form of the semantics of a connective as a function which
takes two arguments and yields a result. In the case of sentential connectives this function
will be what is called a truth function because both arguments and result will be truth-values.
The precise function will vary depending on which connective we are discussing. Similarly,
the negation operator can be described as a truth function which takes one argument. Truth-
tables define these functions. However, we still need some way of incorporating these semantic
rules into a grammar. This will ensure that we can interpret any well-formed formula that
the grammar generates. The following CF rules generate a bracketless variant of PL, in which
Var represents any propositional variable (p,q,r) and Scon any 2-place connective (∧,∨, ⇒).
and the semantic rules have the interpretation given in the previous section; that is, primes
denote the ‘semantic value of’ and [F,A1, . . . An] function-argument application:

1) S → Var : Var′

2) S → S Scon S : [Con′,S′,S′]
3) S → Neg S : [Neg′,S′]

We can read the semantic interpretation of a formula of bracketless PL off its structural de-
scription. To see how this works it is probably best to imagine that you are applying the
semantic rules to the syntax tree working from the ‘deepest’ point in the tree up to its root
node. The interpretation of the simple propositions depends on the truth-value that we (ar-
bitrarily) assign them to get the process started. This process is analogous to choosing a
model of the world in which to interpret the formula (ie. assuming some state of affairs).
The interpretation of the connectives, however, remains the same in any model we care to
imagine; for this reason the connectives are often called logical constants.

3.4 English Fragment 1

Our first semantically interpreted fragment of English (F1) is going to consist of the natural
language ‘equivalents’ of the sentential connectives of PL and basic sentences constructed
from proper names and transitive or intransitive verbs; for example (16) is one sentence in
F1.

(16) Max smiles and Belinda likes Fido

We will use the semantics of the connectives developed for PL and then consider how good
this semantics is for the English words and, or, and so forth. We will develop a semantics of

21

simple sentences along the lines sketched above.

3.4.1 Lexicon for F1

The lexicon stores syntactic and semantic information about each word (in that order). The
semantic interpretation of a proper name is the particular entity it refers to. Semantic in-
terpretations are written with numbers to indicate which sense of the predicate or referent
in the model is intended – since we are not dealing with reference or word meaning at the
moment this will always be 1.

Max : Name : max1

Belinda : Name : belinda1

Fido : Name : fido1

Felix : Name : felix1

and : Conj : and

or : Conj : or

it-is-not-the-case-that : Neg : not

snores : Vintrans : snore1

smiles : Vintrans : smile1

likes : Vtrans : like1

loves : Vtrans : love1

3.4.2 Grammar for F1

The syntactic rules are only marginally more complex than those for PL. The interpretation
of the semantic part of the rules is identical to that described for PL:

1) S → NP VP : [VP′,NP′]
2) S → S Conj S : [Conj′,S′,S′]
3) S → Neg S : [Neg′,S′]
4) VP → Vtrans NP : [V′,NP′]
5) VP → Vintrans : V′

6) NP → Name : Name′

3.4.3 Some Examples

Unless we construct a model in which to interpret F1 we cannot illustrate the workings of
the semantic rules directly in terms of truth-values. But we can also think of the rules as
a specification of how to build up a ‘logical form’ for a sentence. The logical form of the
sentences in F1 look rather like formulas in PL except that we are using prefix notation and
using ‘and’, ‘or’ and ‘not’ instead of the less computer friendly ∧, ∨ and ¬. The example

22

below shows how the logical form is built up in tandem with the construction of the syntax
tree:

a)

S S

/ \ / \

NP VP NP VP

| | | |

Name Vintrans Conj Name Vintrans

| | | | |

Max snores and Belinda smiles

[snore1,max1] [smile1,belinda1]

b)

S

/ | \

S | S

/ \ | / \

NP VP | NP VP

| | | | |

Name Vintrans Conj Name Vintrans

| | | | |

Max snores and Belinda smiles

[and,[snore1,max1],[smile1,belinda1]]

One difference between the sentences of PL, the logical forms of F1 and F1 itself is the absence
of brackets in F1. This means that many of the (infinite) grammatical sentences of F1 are
ambiguous; for example, the sentence in (17a) has the two logical forms shown in b) and c).

(17) a It-is-not-the-case-that Max snores and Belinda
smiles

not,[and,[snore1,max1 ,[smile1,belinda1]]]

and,[not,[snore1,max1],[smile1,belinda1]]

The interpretation in b) means that neither Max snores nor Belinda smiles, whilst that in
c) means that Max doesn’t snore but Belinda does smile. The different interpretations are a
direct consequence of the syntactic ambiguity and the corresponding different order in which
the semantic rules are applied. (Incidentally it-is-not-the-case-that is not a word of English,
but not is rather different from the sentential connective of PL – so I’m cheating for now)

3.5 A Model for F1

Model-theoretic, truth-conditional semantics interprets linguistic expressions with respect
to some model. Thus the truth or falsity of a proposition is calculated with respect to a

23

particular model and a truth-conditional semantics consists of a set of general procedures for
calculating the truth or falsity of any proposition in any model (ie. the truth-conditions for
the proposition).

A model is represented in terms of sets. It is defined as a domain of entities (abbreviated E)
and a function (F) which supplies the denotations of the vocabulary of the language being
interpreted in that model. Here is one model in which we can interpret sentences of F1:

E {max1, belinda1, fido1, felix1}

F (snore1) {max1, fido1}

F (smile1) {belinda1, felix1}

F (like1) {<max1, belinda1> <belinda1, felix1>}

F (love1) {<fido1, belinda1> <fido1, max1>}

In this model, Max and Fido snore, Belinda and Felix smile, Max likes Belinda and Belinda
likes Felix, and Fido loves Belinda and Max. Now we are in a position to interpret a sentence
relative to this model:

[and,[snore1,max1],[smile1,belinda1]]

t t t

I illustrate the interpretation by indicating the truth-values which result from each function-
argument application under the logical form for the sentence. We can now see more clearly
what it means to say that snore1 is a function which we apply to the argument max1 (anal-
ogous to the description of and (∧) as a truth function above). snore1 is a function from
entities to truth-values – a characteristic function. We can define it by exhaustively listing
its range of inputs and corresponding outputs in this model:

max1 --> t

fido1 --> t

belinda1 --> f

felix1 --> f

The set-theoretic operation used to compute this function is just to check whether the argu-
ment is a member of the denotation of the relevant intransitive verb and return T if it is and
F if it isn’t.

4 Entailment and Possible Models

We can define entailment, contradiction, synonymy, and so forth in terms of the notion of
possible models for a language. Lets start with contradictory propositions. The proposition

24

conveyed by (18) is a contradiction in F1, because it is impossible to construct a model for
F1 which would make it true.

(18) a Max snores and it-is-not-the-case-that Max snores

and,[snore1,max1 ,[not,[snore1,max1]]]

The reason for this is that whatever model you construct for F1, Max snores must either come
out true or false. Now from the truth-tables for it-is-not-the-case-that and and the truth-value
for (18) will always be false, because a proposition containing and is only ever true if both
the coordinated simple propositions are true. However, this can never be the case when we
coordinate a proposition and its negation because of the truth-table for negation. In F1, the
semantic ‘translation’ of the connectives, unlike say the denotation of snores, remains the
same in every possible model. The opposite of a contradictory proposition is one which is
logically true; that is, true in every possible model. An example in F1 is Max snores or it-
is-not-the-case-that Max snores. See if you can explain why using the same kind of reasoning
that I used to explain the contradictoriness of (18).

One proposition A entails another proposition B if and only if in every possible model in which
A is true, B is true as well. For example, in F1 (19a) entails (19b) because it is impossible
to make up a model for F1 in which you can make a) come out true and b) come out false
(unless you change the semantic rules). Try it!

(19) a Max snores and Belinda smiles

b Max snores

Can you think of any other entailment relations in F1?

Finally, two propositions are synonymous, or more accurately logically equivalent, if they are
both true in exactly the same set of models. For example (20a) and b) are logically equivalent
in F1 because it is impossible to make up a model in which one is true and the other false
(unless you change the semantic rules). Try it!

(20) a a) Max snores and Belinda smiles

b b) Belinda smiles and Max snores

Synonymy goes beyond logical equivalence (in PL and F1) because sometimes it involves
equivalence of meaning between words or words and phrases. However, to account for this
we need to say something more about word meaning.

4.1 Exercises

1) Using the grammar for PL above and choosing an assignment of t-values to propositional
variables generate some formulas and calculate their t-values

2) Construct the syntax trees and associated logical forms for the following sentences of F1:

a) It-is-not-the-case-that Fido likes Felix
b) Felix loves Max or Felix loves Belinda
c) Felix loves Max or Max loves Belinda and Felix loves Fido
d) Max snores and Belinda loves Felix or it-is-not-the-case-that Felix smiles

25

3) Construct a different model in which to interpret the sentences of 2) illustrate how the
interpretation proceeds by writing truth-values under the logical forms you have associated
with each sentence.

4) Can you think of any problems with using the PL semantics of sentential connectives to
describe the semantics of and and or in English? Think about the following examples:

a) The lone ranger rode off into the sunset and he mounted his horse
b) Either we’ll go to the pub or we’ll go to the disco or we’ll do both

5) What sort of a function will we need to associate with a transitive verb? Write down the
function for love1 (as I did for snore1). What is the general set-theoretic operation which
underlies this function? (See next section if in doubt.)

5 First Order Logic (FOL)

In this section, we will describe FOL, also often called (First-order) Predicate Logic / Calculus
(FOPC) in more detail.

FOL extends PL by incorporating an analysis of propositions and of the existential and uni-
versal quantifiers. We have already informally introduced the analysis of one-place predicates
like snores in the fragment F1. The semantics of FOL is just the semantics of F1 augmented
with an account of the meaning of quantifiers, and free and bound variables. The interpreta-
tion of the connectives and of predicates and their arguments will remain the same, though
we will now consider predicates with more than one argument.

5.1 FOL syntax

The FOL lexicon contains symbols of the following types:

Individual Constants such as a,b, max1, cat10, etc, indicated by lower case early letters
of the alphabet, and possibly a number

Individual Variables such as w,x,y,z, indicated by lowercase late usually single letters of
the alphabet (or uppercase letters in Prolog-like implementations)

Predicates such as snore1, love1, P,Q,R,S indicated by usually non-singular letters possiby
ending with a number, or a single italicised capital

Connectives ∧, ∨, ⇒, ⇔, (and, or, if, iff in implementations)

Negation ¬, not in implementations

Quantifiers ∃, ∀ (exists, forall in implementations)

Functions such as F1, F2, mother1-of, etc, indicated by pred-of or Fn

Brackets ()

26

We will describe the syntax of FOL using a CFG to generate well-formed formulas:

1) S → Pred(Term)
2) S → Pred(Term,Term)
3) S → Pred(Term,Term,Term)
4) S → (S Conn S)
5) S → Quan Var S
6) S → Neg S
7) Term → Const
8) Term → Var
9) Term → Fun(Term)

(Note that we only allow 1/2/3-place predicates, although this could be generalised by re-
placing rules 1,2,and 3 with a rule schema using Kleene plus: S → Pred(Term+).) Can you
write a variant grammar replacing infix connectives with prefix connectives and using square
brackets around quantifiers, the hat operator etc to generate Prolog-style list syntax (see egs.
in (21e,g))? – the point is there can be more than one syntax for FOL.

5.2 FOL semantics

A model for FOL consists of entities, denoted by entity constants, and properties or relations,
denoted by predicate or function symbols. One-place predicates denote properties and others
denote relations. Functions denote relations which yield an entity rather than a truth-value.
Terms denote entities. Sentences or well-formed formulas denote truth-values. Some examples
of well-formed formulas and terms are given in (21). See if you can say which is which and
also name the atomic components of each one. It might help to draw the derivations.

(21) a mother1(belinda1)

b (mother1(belinda1) ∧ snore1(max1))

c mother1-of(max1)

d ∃ x(P (x)⇒ Q(x))

e [exists,x^[and,[snore1,x],[smile1,x]]]

f ∀ x ∃ y (mother1(x) ⇒ equal(mother1-of(y),x))

g [exists,y^[forall,x^[if[snore1,x],[love1,x,y]]]]

To model relations set-theoretically we need to introduce a notation for ordered pairs, triples
and ultimately n-ary relations. <belinda1 max1> is an ordered pair which might be in the
set denoted by love1. Notice that the two-place predicate love1 is not a symmetric relation so
it does not follow (unfortunately) that <max1 belinda1> will also be a member of this set.
So a formula P (t1, t2, tn) will be true in a model M iff the valuation function, F(P) yields a
set containing the ordered entities denoted by terms, t1, t2, tn. Otherwise a model for FOL
is identical to the model we developed for F1.

FOL allows us to make general statements about entities using quantifiers. The interpretation
of the existential quantifier is that there must be at least one entity (in the model) which
can be substituted for the bound variable ‘x’ in e.g. (21d) to produce a true proposition.
The interpretation of the universal quantifier (∀) is that every entity (in the model) can

27

be substituted for the variable bound by the quantifier (eg. ‘x’ in (21f)) to yield a true
proposition. A variable is free in a formula if it is not bound by a quantifier. Vacuous
quantifiers can also be generated whose variables do not occur inside the formula within their
scope. Can you derive formulas with free variables and vacuous quantifiers using the grammar
above?

To interpret a formula containing a variable bound by a quantifier (in a model) we need a
value assignment function which assigns values to variables in formulas. For FOL, we
want a function which assigns an entity to variables over entities. Now we can talk about the
truth of a proposition in a model given some value assignment to its variables. For example,
if we assume the model below (where F (A) {m b} just specifies the members of the domain
of A which yield a value of t(rue) so implicitly F(A(g)) → f):

E {m b g} F (A) {m b} F (B) {<b g>}

then the value assignment function will assign one of the entities from the model to a variable.
Thus the set of possible assignments to ‘x’ in (22a) are shown in b,c,d).

(22) a B(x g)

b B(m g)

c B(b g)

d B(g g)

Of these, only c) will yield a true proposition in this model. When variables are bound by an
existential or universal quantifier, this imposes extra conditions on the interpretation of the
formula, which are given below:

Existential Quantifier: The formula ∃ α is true iff for some value assignment to the variable
bound by ∃ in α, the resulting variable free formula is true.

Universal Quantifier: The formula ∀ α is true iff for every value assignment to the variable
bound by ∀ in α, the resulting variable free formula is true.

Thus the process of computing the truth-value of a formula with a variable bound by an
existential quantifier is a question of mechanically substituting each entity (in the model)
for the variable until you find one which makes the formula true, whilst in the case of one
bound by a universal quantifier, every possible substitution must come out true. So the pro-
cess of interpreting the following formula in the model given above, can be illustrated as below:

∀ x B(x g)

B(m g) --> f

B(b g) --> t --> f

B(f g) --> f

28

A well-formed formula may contain more than one quantifier in which case the interpretation
of the formula will vary depending on the relative scope of the quantifiers (just as we saw
that the interpretation of sentences of F1 varied depending on the relative scope of and.
For example, if we are interpreting the formula in (23a), then we must first choose a value
assignment for the variable ‘x’ bound by the existential quantifier and calculate the truth
of the universally quantified sub-formula with respect to this value assignment, because the
universal quantifier binding ‘y’ is ‘inside’ (ie. in the scope of) the existential.

(23) a ∃ x ∀ y B(x y)

b ∀ y ∃ x B(x y)

On the other hand, in b), we must first choose an assignment for ‘y’ and then calculate the
truth of the existentially quantified sub-formula with respect to each possible value assignment
to ‘y’. The interpretation of a) in the model above proceeds as illustrated below:

x/b x/g x/m

B(b b) --> f B(g b) --> f B(m b) --> f

B(b g) --> t B(g g) --> f B(m g) --> f

B(b m) --> f B(g m) --> f B(m m) --> f

We try to find one assignment to ‘x’ such that that one entity stands in the B relation to
every entity in the model. None of the three possible assignments to ‘x’ yield a complete set
of true propositions when we try all possible value assignments to ‘y’; therefore, a) is false
in the model above. However, when we compute b) we fix the assignment to the universally
quantified variable first and then vary the assignment to the existentially quantified one:

y/b

B(b b) --> f

B(g b) --> f

B(m b) --> f

For a universally quantified formula to be true in a model it must be true for every possible
value assignment. For an existentially quantified formula to be true in a model it must be
true for one value assignment. We have assigned ‘b’ to ‘y’, but this fails to yield a true
formula under any assignment of a value to ‘x’ so the formula must be false in this model. On
the other hand if one of these formulas had been true, then we would need to continue and
compute all the other possible assignments to ‘y’ until we found another value which did not
yield a true formula under any assignment to ‘x’. Thus the relative scope of the quantifiers
affects which assignment is made first and therefore which is fixed with respect to the other
assignment.

We can think of a quantifier as a function which is applied to the result of applying the
variable it binds to the sub-formula in its scope. Applying the variable to the sub-formula

29

means performing all the possible substitutions of entities for the variable licensed by the
model and computing the truth-value of the resulting propositions. This will yield a set of
truth-values. Quantifiers are then, functions from sets of truth-values to a truth-value. For
example, applying the variable function to a term such as B(x f) might yield truth-values for
the propositions B(f f), B(m f) and B(b f), say {t t f}. Now applying the quantifier function
to {t t f} will yield a truth-value for the whole formula – ‘t’ if the quantifier is existential, ‘f’
if it is universal.

(This is a fairly informal account of the model-theoretic semantics of FOL. Cann Formal
Semantics and the other textbooks go into more detail.)

5.3 Proof Theory

So far, we have been developing a model-theoretic version of truth-conditional semantics in
which we interpret linguistic expressions ‘with respect to’ or ‘relative to’ or just ‘in’ an abstract
set-theoretically defined model of the world. We have seen that it is possible to characterise
judgements of synonymy, contradictoriness, relations of entailment, and so forth, in terms of
the possible models for a language. However, this only works if each model is complete, in
the sense that it represents every state of affairs, and we have access to every possible and
complete model. (If you can’t see why, read the definition of entailment again in section 1.)

We would like our semantic theory to not only characterise the semantics of a language
correctly (competence) but also to shed light on the process of language comprehension (per-
formance). However, if language users do inference in a model-theoretic fashion, they would
need to carry around the ‘whole actual world’ (and all the other possible variations on it)
‘inside their heads’. This sounds unlikely, because most of us are aware that there are big gaps
in our knowledge. One answer to this is to say the competence theory characterises the ideal
(omnipotent) language user and that we all operate with partial information and therefore
make wrong inferences occasionally. Clearly, doing semantics by machine we cannot hope
to model the whole world so we will in practice make inferences (i.e. generate useful entail-
ments) by applying proof-theoretic rules in a goal-directed fashion (i.e. by doing something
analogous to automated theorem proving).

Logics, such as PL and FOL, were invented by philosophers to study the form of valid
argumentation, independently of its content. So philosophers have looked for rules which
define valid ways of reasoning in terms of the syntax of logical expressions (regardless of their
semantic content). For example, two such rules for PL are shown in (24).

(24) a And-elimination: p ∧ q ` p

b Modus Ponens: p⇒ q, p ` q

Each of these rules has some premises and a conclusion (written after the (`) entails meta-
symbol). These rules are valid because if the premises are true, the conclusion is guaranteed
to be true as well, regardless of the semantic content of the propositional variables p and
q. The rules work because of the semantics of the connectives, but given this it is possible
to perform inferences using proof-theory ‘mechanically’. Proof theory may well be a better
way to approach the psychology of inference (and is often a better way to perform inferences
mechanically by computer). For now, it is important to recognise how such rules are justified
as rules of valid entailment in terms of reasoning about possible models for the logics and

30

English fragments we are looking at.

Here is an outline of an axiomatic proof theory for FOL. For any well-formed formulas, ψ, φ, ϕ,
the following rules of inference hold:

Modus Ponens: ψ,ψ ⇒ φ ` φ
And-introduction: ψ, φ ` ψ ∧ φ
And-elimination: ψ ∧ φ ` ψ
Or-introduction: ψ ` ψ ∨ φ
Or-elimination: ψ ∨ φ,¬φ ` ψ
Universal-introduction: ψ(x) ` ∀x ψ(x)
(any free variable is implicitly universally quantified)
Universal-elimination: ∀x ψ(x) ` ψ(t/x)
(where ‘t’ is any term substituted for all occurrences of ‘x’ in ψ)

and the following logical equivalences:

De Morgan: ¬(ψ ∧ φ)⇔ ¬ψ ∨ ¬φ
De Morgan: ¬(ψ ∨ φ)⇔ ¬ψ ∧ ¬φ
De Morgan: ∀x ¬ψ ⇔ ¬∃x ψ
De Morgan: ¬∀x ψ ⇔ ∃x ¬ψ
Distributivity: ψ ∧ (φ ∨ ϕ)⇔ (ψ ∧ φ) ∨ (ψ ∧ ϕ)
Distributivity: ψ ∨ (φ ∧ ϕ)⇔ (ψ ∨ φ) ∧ (ψ ∨ ϕ)
Contraposition: ψ ⇒ φ ⇔ ¬φ⇒ ¬ψ
Contraposition: ψ ⇔ φ ⇔ ψ ⇒ φ ∧ φ ⇒ ψ

Rules of inference and logical equivalences allow purely syntactic manipulation of formulas to
derive valid conclusions (proofs).

Can you reformulate the syllogism in (25) in FOL and show that it is valid?

(25) a All men are mortal

b Socrates is a man

c Socrates is mortal

Soundness: if Γ ` ψ then Γ |= ψ

Completeness: if Γ |= ψ then Γ ` ψ

Decidability: no for FOL
That is, FOL proof theory is sound because every proposition which is entailed by a FOL
language is also in any model of that language, and it is complete because every fact in any
model of a FOL language is also an entailment (see e.g. Ramsay, A. Formal Methods in
Artificial Intelligence, CUP, 1988 for proofs and further discussion)

From proof theory to theorem proving involves control principles to avoid non-termination,
‘irrelevant’ inferences etc. How can one of the rules of inference given above lead to non-
termination?

31

5.4 Automated Theorem Proving

So far, we have not considered the computational implementation of a truth-conditional ap-
proach to semantics. We cannot transport model theory (or proof theory) onto a machine
directly, because of the problems connected with completeness of the model and with obtain-
ing just those inferences we want (as opposed to an infinite number of mostly useless ones).
For example, in model-theoretic semantics we can characterise the truth of Kim doesn’t love
Sandy relative to some model on the basis of the denotation of love1 not containing the or-
dered pair <Kim1 Sandy1>. However, this only works if the model is complete in the sense
that it represents every fact (and non-fact) about the world. It is not practical to implement
complete, closed models. For this reason, automated theorem proving takes place in the con-
text of a database of known facts represented as formulas in some logic (ie. a partial model).
Furthermore, it is not possible to apply proof-theoretic rules in an unconstrained way to such
a database.

Exercises

What would happen if you freely applied the rule of ∧-Introduction (p, q |= p ∧ q). (easy)

The techniques of automated theorem proving provide ways of applying a subset of proof-
theoretic rules in a constrained and goal-directed way. Mostly, such techniques are restricted
to a subset of FOL, so it follows that a computational implementation of NL semantics will
need to (at least) restrict itself to FOL analyses.

Our approach will look something like this: NL Semantics → [Lambda-reduction] → FOL →
[Skolemisation, etc.] → Clausal Form → Query/Assert in Database.

Forward chaining is a technique for doing goal-directed inference. It is a technique for imple-
menting Modus (Ponendo) Ponens (MPP) or implication elimination (p → q, p |= q) which
doesn’t result in making many ‘unnecessary’ inferences. For example, if we store (26a) in
our database and apply MPP and Universal Elimination, we will infer as many formulas like
(26b) as there are men in the database and instantiate (26a) to as many useless formulas like
c) as there are individuals (who are not men) in the database.

(26) a (all (x) (if (man1 x) (snore1 x)))

b (snore1 Kim1)

c (if (man1 felix1) (snore1 felix1))

d (man1 Kim1)

Forward chaining is a technique which dispenses with the step of Universal Elimination and
inferring formulas like c). Instead, formulas like a) have no effect until an assertion like d)
is added to the database and only then is b) inferred. To do this formulas like a) must be
represented in implicit-quantifier form:

(if (man1 X) (snore1 X))

Now we replace UE with unification (i.e. term matching, see section 1.4 and J&M, ch15 and
ch18) and state the forward chaining rule as follows: from p′ and p → q infer q′ where p′

unifies with p and q′ is the result of making the same substitution(s) in q. Thus we have
converted UE + MPP into unification and search in a database of formulas expressed in a
notational variant of FOL.

32

Most of the time forward chaining is still too undirected to be efficient. The effect of adding
any universally quantified statement to the database will be to also add all the valid inferences
which follow from it (by UE + MPP) in the database. Backward chaining is an alternative
technique which performs these inferences at ‘query time’ rather than ‘assertion time’. That
is, inferences are only performed when they are needed.

For example, if we query the database with (27a) and the database contains b) and c), then
backward chaining will attempt to unify a) with all the variable-free, ground propositions in
the database and, if this fails, with all the consequents of implications like b). The latter will
succeed, but before we can answer ‘yes’, it is necessary to prove the truth of the antecedent
with identical variable substitutions. This can be done by unifying the resulting variable-free
proposition with the identical formula c).

(27) a (snore1 Kim1)

b (if (man1 X) (snore1 X)

c (man1 Kim1)

We need to distinguish queries from assertions because the variables in the implicitly-quantified
queries behave more like existential than universal variables. So the alternative query (28)
means ‘is there a value for X which results in a true proposition?’

(28) (snore1 Y)

In this case backward chaining will produce the sub-query (man1 Y) which will unify with
the ground proposition, again signifying success with Y=Kim1. Intuitively, querying with
a variable-free formula is like a yes/no-question, whilst one containing variables is like a
wh-question.

We can describe backward chaining more precisely now as follows: Given Query: q′ where p
→ q is in the database and q′ and q unify with substitutions t, then Query: pt (ie. the result
of making the same substitutions in p) and if this unifies with p′′ with substitutions t′ then t
u t′ is the answer.

There is much more to theorem proving than this; eg. negation as failure, skolemisation, etc
(see e.g. J&M and references therein or Blackburn and Bos, 2005).

6 An extended FOL-like English fragment, F2

Our second fragment (F2) extends and builds on F1 to include sentences such as those in
(29).

(29) a Every man smiles

b Every man likes some woman

c No man smiles

d Every mani loves himselfi

e He loves Belinda

f A mani likes Fido and hei likes Belinda (too)

g Belinda gives Max a dog

33

6.1 Verb Complementation

We have already seen how to represent intransitive verbs / one-place predicates in F1. Now we
can add transitive, ditransitive etc. (30) and capture (some of) the semantics of an extended
fragment of English, F2, in terms of FOL.

(30) a Kim loves Sandy

b love1(kim1, sandy1)

c Kim gave Sandy Fido

d give1(kim1, sandy1, fido1)

(Note that we are ignoring tense/aspect.) Can you construct models which will make (30b,d)
true? Can you ‘translate’ the examples in (31) into FOL formulas?

(31) a Fido is on Sandy

b Sandy needs a computer

c Sandy thinks Kim owns a computer

Can you construct models again? What problems do these examples raise? The extensional
semantics of complementation commits us to the existence of ‘a computer’ in order to assign
a logical form to (31b) – can you see why? Verbs like need are often called intensional
verbs because they require an account of sense/intension to capture their truth-conditions
and entailments properly. (31c) raises similar but even more difficult problems concerning
so-called propositional attitude verbs (see section 9.1).

6.2 Quantifiers and pronouns

We will also try to extend our truth-conditional semantics of English to cover English quan-
tifers, such as every and some, and pronouns, such as he/him and she/her.

We will treat the English quantifiers every and some as analogous to the universal and existen-
tial quantifiers of FOL, respectively. The meaning of other English ‘quantifiers’, such as no,
a, the, and so forth, will hopefully be reducible to the meaning of these two ‘basic’ quantifiers.
Pronouns will be treated analogously to bound variables in FOL. F2 also includes nouns, such
as man, woman, and so forth. Unlike proper names, nouns do not denote entities but rather
properties of entities. Therefore, their meaning is the same as that of an intransitive verb,
such as snore.

If we consider the meaning of the two sentences in (32a) and c), it should be clear that
we can’t capture their meaning by translating them into the FOL expressions in b) and d)
respectively.

(32) a Every man snores

b ∀ x snore1(x)

c Some woman smiles

d ∃ x smile1(x)

The problem is that the FOL expressions will be true of any entity in the model who snores
or smiles. They aren’t restricted in the way the English sentences are to apply to just men or

34

just women, respectively. Obviously, we have failed to include the meaning of the nouns in
our translation. The question is how to combine the noun denotations and verb denotations
correctly to arrive at the correct truth-conditions for sentences of this type? a) has the logical
form of an if-then conditional statement. It says that for any entity if that entity is a man
then that entity snores. On the other hand, c) says that there exists at least one entity
who is both a woman and smiles, so it has the logical form of a conjunction of propositions.
Therefore, the correct translations of these two sentences are given in (33a,b) and (33c,d),
respectively.

(33) a ∀ x man1(x) ⇒ snore1(x)

b [forall,X^[if,[man1,X],[snore1,X]]]

c ∃ x woman1(x) ∧ smile1(x)

d [exists,X^[and,[woman1,X],[smile1,X]]]

We want our grammar of F2 to associate these logical forms with these sentences. To achieve
this in a compositional fashion we will need to associate a ‘template’ logical form for the
entire sentence with each of the different quantifiers – otherwise we won’t be able to capture
the different ways in which the NP and VP are combined semantically, depending on which
quantifier is chosen. In (34) I give a ‘translation’ of every.

(34) a ∀ x P(x) ⇒ Q(x)

b [forall,X^[if,[P,X],[Q,X]]]

‘P’ and ‘Q’ are to be interpreted as (one-place) predicate variables. The process of combining
the meaning of the quantifier with that of the noun and then that of VP is now one of
substituting the meaning of the noun for ‘P’ and the meaning of the VP for ‘Q’. The templates
for the other quantifiers are shown in the lexicon for F2 below. However, note that FOL does
not include predicate variables, so I am cheating in order to try to construct a compositional
FOL-like treatment of F2. (We’ll return to this problem in section 6.)

Many pronouns in English sentences pick out (at least) one entity in the universe of discourse,
so one way to treat them semantically is to translate them into existentially-quantified vari-
ables ranging over the entities in the model with appropriate gender constraints, etc. For
example, (35a) might translate as b).

(35) a He loves belinda

b ∃ x male1(x) ∧ love1(x belinda1)

But this analysis ignores the fact that the referent of a pronoun is normally determined
anaphorically or indexically; that is, from the linguistic or extralinguistic context, respectively.
However, it provides a reasonable first approximation of the semantic part of the meaning of
a pronoun (ie. the part which is independent of the context of utterance). In other examples,
such as (36a), it seems more appropriate to have the variable translating the pronoun bound
by the universal quantifier, as in b).

(36) a Every mani thinks that hei snores

b ∀ x man1(x) ⇒ think1(x snore1(x)))

c [forall,X^[if,[man1,X],[think1,X,[snore1,X]]]]

35

This is not the only possible interpretation of examples like (36a), but when the pronoun
is interpreted as being anaphorically linked with the subject NP, it does not pick out one
entity but rather the set of entities who are men. This is exactly what the translation as
a universally-quantified bound variable predicts. We’ll leave examples like (36a) out of F2
because of the problems with propositional attitude verbs, but examples like (37a) are in F2,
and here translating the pronoun as a bound variable in the scope of the existential quantifier
seems to capture their truth-conditions correctly.

(37) a A mani likes Belinda and hei likes felix (too)

b ∃ x man1(x) ⇒ like1(x belinda1) ∧ like1(x felix1)

c [exists,X^[and,[and,[man1,X],[like1,X,belinda1]],[like1,X,felix1]]]

However, we still have a problem because the scope of the quantifier can only be determined
when we have decided whether the pronoun is anaphoric and coreferential with a quantified
NP antecedent, so the ‘translation’ of a pronoun as an ‘externally’ bound variable only works
for F2 with subscripts indicating coreference, as in (37a). Note also the nested prefix ‘and’s
in (37c) – can you see how these get produced given the lexicon and grammar for F2 given
in the next sections?

6.2.1 Lexicon for F2

The lexicon for F2 is the same as F1 with the addition of some determiners, nouns and
pronouns, and a ditransitive verb (so that we have one three-place predicate). The complete
lexicon is given below:

Max : Name : max1

Fred : Name : fred1

Belinda : Name : belinda1

Fido : Name : fido1

Felix : Name : felix1

he_x : PN : X

he : PN : [exists,X^[and,[male1,X],[P,X]]]

her_x : PN : X

her : PN : [exists,X^[and,[female1,X],[P,X]]]

himself_x : PN : X

herself_x : PN : X

and : Conj : and

or : Conj : or

it-is-not-the-case-that : Neg : not

snores : Vintrans : snore1

smiles : Vintrans : smile1

likes : Vtrans : like1

loves : Vtrans : love1

36

gives : Vditrans : give1

a : Det : [exists,X^[and,[P,X],[Q,X]]]

no : Det : [not,[exists,X^[and,[P,X],[Q,X]]]]

some : Det : [exists,X^[and,[P,X],[Q,X]]]

every : Det : [forall,X^[if,[P,X],[Q,X]]]

man : N : man1

woman : N : woman1

dog : N : dog1

cat : N : cat1

6.2.2 Grammar for F2

The syntactic rules of F2 are the same as those for F1 with the addition of three further rules,
shown below:

7) VP → Vditrans NP NP : [V′,NP′,NP′]
8) NP → Det N : [Det′,N′]
9) NP → PN : PN′

Rule 7) allows us to cover sentences containing ditransitive verbs, and says that semantically
the denotation of the verb represents a function which takes the denotations of both NP
objects as arguments. Rule 8) introduces NPs containing a determiner and a noun and rule
9) pronouns. The semantics of 9) is straightforward and identical to that for the rule which
introduces proper names. Determiners are treated semantically as functions which take nouns
as arguments. The complete new grammar is shown below:

1) S → NP VP : [NP′,VP′]
2) S → S Conj S : [Conj′,S′,S′]
3) S → Neg S : [Neg′,S′]
4) VP → Vtrans NP : [V′,NP′]
5) VP → Vintrns : V′

6) NP → Name : Name′

7) VP → Vditrans NP NP : [V′,NP′,NP′]
8) NP → Det N : [Det′,N′]
9) NP → PN : PN′

There is one other change to this grammar involving rule 1). The subject NP is now treated
as a function which takes the denotation of the VP as its argument. This is because we are
treating the semantics of quantifiers as the semantic template into which the meaning of the
rest of the sentence slots. (In fact, this means that there is a problem with treating non-
subject NPs as arguments of verbs. However, we will ignore this until later when we consider
the process building up a logical form through a series of function-argument applications in
more detail.)

37

6.3 Logical Form

There is a difference between the way we have treated the semantics of the two artificial
languages (logics) PL and FOL and the way we have treated the semantics of our two English
fragments F1 and F2. For the former, we have given semantic rules which work out the
truth of formulas relative to some model directly because the semantic rules are interpreted
as instructions to check the model in various ways. For example, applying the predicate
snore1 to the entity max1 is defined in FOL as a semantic operation which reduces to seeing
whether max1 is a member of the set denoted by snore1. On the other hand, in specifying
the semantics of F1 and F2 we have translated sentences of F1 and F2 into formulas which
we have called logical forms or function-argument structures which themselves are equivalent
to (ie. just notational variants of) formulas in FOL.

One way to think about this is to imagine that we are giving the semantics of English indi-
rectly by first translating English into logic forms and then interpreting the resulting logical
expressions in some model. The advantage of translating into FOL (or some similar logic) is
firstly, that this representation is unambiguous (because of the brackets and the substitution
of predicates and variables or constants for words) and secondly, that the semantics of, say,
FOL is relatively clear-cut (compared to the semantics of English).

6.4 Scope Ambiguities

We saw that formulas of FOL containing more than one quantifier have different truth-
conditional interpretations depending on the order or relative scope of these quantifiers. How-
ever, our grammar for F2 only produces one of these orderings for analogous sentences of F2.
For example, (38a) only receives the interpretation (38b,c).

(38) a Every man loves some woman

b ∀ x man1(x) ⇒ ∃ y woman1(y) ∧ love1(x y))

c [forall,X^[if,[man1,X],[exists,Y^[and,[woman1,Y],[love1,X,Y]]]]]

can you verify this is the interpretation yielded by the rules above? This is the interpretation
which is true provided for each man there is at least one woman (who may be different in each
case) who he loves. However, to get the ‘every man loves Marilyn Monroe’ sort of reading we
would need to reverse the order of the quantifiers so that the existential has (so-called) wide
scope. Incidentally, if you find this reading a little forced for (38a), there are other examples
where it seems more natural, as (39) illustrates.

(39) a Every man loves a woman

b Every man loves one woman

c One language is spoken by everyone (here)

d A student guide took every prospective candidate
round the lab

In (39a) and b) it is easier to get the wide scope existential reading where there is just one
woman, but most people still feel that this is not the preferred interpretation. In c), where the
existential one occurs before everyone in the surface form of the sentence, the existential wide
scope reading seems more readily available, whilst in d) it is definitely preferred. We adopt

38

the existential wide scope reading of d) very readily because of our general knowledge about
the likely routine for showing prospective new students aound – that one existing student
takes them on a tour.

Further evidence that lexical semantic and general knowledge affects the quantifier scoping
that we choose comes from the examples in (40).

(40) a There was a name tag near every door

b A flag was hanging from every window

In these examples, the existential a precedes the universal every in the surface realisation
of these examples, yet the universal is given wide scope, and we naturally assume there is
more than one flag or name tag. Presumably, we reach these conclusions on the basis of our
knowledge about the relative size of flags and windows, name tags and doors, their function,
and so forth.

Scope ambiguities of this type are not restricted to quantifiers. There are scope ambiguities
in F1 concerning the relative scope of the negation, conjunction and disjunction operators.
These also interact with quantifiers to create further ambiguities. For example, (41a) is
ambiguous between b) and c) depending on the relative scope of not and every.

(41) a Everyone doesn’t snore

b ∀ x ¬ snore1(x)

c ¬∀ x snore1(x)

c) is compatible with some people snoring, whilst b) is not. In addition, there are scope
ambiguities in connection with the interpretation of examples containing pronouns. In (42a)
the preferred reading is the one in which he is treated as co-referential with man, but in (42b)
it seems more natural to assume he does not have an antecedent within the sentence.

(42) a A man likes Belinda and he likes Felix (too)

b Every man likes Belinda and he likes Felix (too)

We can describe this difference in terms of whether the variable which translates he is in the
scope of the quantifier translating a or every. Once again many factors seem to influence the
calculation of pronominal reference. For example, stressing he in a) prevents the otherwise
preferred interpretation, whilst in (43a) lexical semantics and general world knowledge play
a role in calculating the antecedent of their.

(43) a The men allowed the women to join their club

b The men allowed the women to found their club

Unlike the scope ambiguities between connectives and negation in F1, scope ambiguities in-
volving quantifiers are not the result of syntactic ambiguity. There is no syntactic reason
to believe that these examples are syntactically ambiguous, but nevertheless they are se-
mantically ambiguous. This is a problem for the theory we have been developing because
it predicts that sentences should only be semantically ambiguous if they are syntactically or
lexically ambiguous. Thus we can produce two logical forms for (44a) and b) because we can
associate bank with two concepts (financial institution and river side) and because PPs can
function adverbially or adjectivally (attaching to NP or VP).

39

(44) a Max sat by the bank

b Max hit the woman with the umbrella

We have tried to treat pronouns as lexically ambiguous, at the cost of subscripting F2, but
it it is even harder to see how to treat quantifier scope as a lexical ambiguity. A lot of
research has gone into this problem and there are several proposals as to how to produce
sets of logical forms from a lexically and syntactically unambiguous sentence. The technical
details of these proposals don’t matter. What is important is that they weaken the claim
that syntax determines interpretation and undermine our initial proposal that syntactic and
semantic rules are paired one-to-one in the grammar.

6.5 Exercises

1) Interpret the following expressions of FOL in the model given underneath, show the process
of interpretation by displaying the possible substitutions of entities for variables and then the
contribution of each quantifier.

(45) a ∀ x A(x)

b ∃ x (A(x)⇒ B(x b))

c ∀ x (A(x)⇒ C(a x e))

d ∀ x ∃ y (A(x)⇒ B(a x y))

Model:

I {a, b, c, d, e}

F (A) {a, b, c}

F (B) {<a b> <a c>}

F (C) {<a d e> <b d e> <c d e>}

2) Think of English sentences which the formulas in question 1) could be used to represent
or ‘translate’.

3) Say whether the following sentences are part of F2. If they are draw their syntax trees and
give their logical forms. If not change them so that they retain the same meaning but are in
F2 and then do the same. If any examples are ambiguous give all the possibilities:
a) Every woman loves Max and he loves Felix
b) It-is-not-the-case-that a dog snores and every cat smiles
c) Fred gives some woman a dog
d) Fred loves Belinda and likes Felix
e) Every man likes Belinda and Belinda likes her dog
f) No woman loves every man and every dog

40

4) Construct a model for F2 which makes all of the sentences of 3) true under at least one
interpretation. Indicate which interpretation you are assuming by marking the appropriate
logical form with an asterisk in your answer to question 3).

5) Can you find sentences which the grammar for F2 assigns incorrect logical forms or not
enough logical forms as a result of scope ambiguities? Write them down and write down one
other appropriate logical form not produced by the grammar.

7 Syntax-Directed Compositional Translation

In the previous sections, I cheated a bit over the processes involved in building up the logical
form of sentences of F2 in tandem with performing a syntactic analysis. For F1, it was possible
to characterise this process as one of function-argument application for all of the rules of the
grammar. However, this doesn’t work for F2, mainly because we included more complex NPs
involving quantifiers. In this section, we won’t extend the English fragment much, but will
clarify the semantic rules which lie behind F2 in more detail.

7.1 The Typed Lambda Calculus

The Lambda Calculus (LC) is another artificial language like PL and FOL. (For historical
reasons its more often called a calculus rather than a logic – the word ‘calculus’ emphasises the
proof-theoretic aspect of the language, but like FOL it (now) has a complete model-theoretic
semantics). The variety we will look at is typed because variables range over particular
syntactic categories or types of the language; for example one-place predicates or entity
constants.

LC is an extension of FOL to include the lambda (λ) operator. This operator operates
syntactically rather like a quantifier in FOL; for example, (46a) is a well-formed formula of
LC in which the lambda operator binds the variable ‘x’.

(46) a λ x A(x) ∧ B(x a)

b λ x [A(x) ∧ B(x a)](b)

c A(b) ∧ B(b a)

However, the interpretation of lambda expressions is rather different to that of expressions
containing quantifiers. The lambda operator is a function forming device which can be used
to compose existing functions to build one new composite, complex function. So (46a) should
be read as ‘the property of being simultaneously A and being in the B relation to a’. We
can find constants to substitute for ‘x’ and thereby obtain a well-formed formula of FOL
again. The process of doing this is called lambda reduction (or, less obviously but more
conventionally, beta reduction). In b) we have written the same formula but indicating the
scope of the lambda operator with square brackets. The constant in brackets outside the
lambda expression is interpreted as the argument to the function denoted by the lambda
expression, and the process of applying the function to its argument is beta reduction. This
results in the formula in c). The expressions in b) and c) are logically equivalent (truth-
conditionally synonymous) because of the semantics of LC. Another way of saying this in
terms of proof theory is to say that c) can be validly inferred from b).

41

To understand the semantics of beta reduction in model-theoretic terms we need to revise
slightly the way we represent predicates. We have said that a one-place predicate such as
snore1 denotes a set of entities and is a characteristic function from entities (domain) to
truth-values (range). One way of writing this function down is as a lambda expression, as in
(47a).

(47) a λ x [snore1(x)]

b λ x [snore1(x)] (max1)

c snore1(max1)

Now both b) and c) represent the application of that function to the entity max1. However,
in order to be able to extract over n-place predicates to form new ‘n minus 1’-place predicates
we must interpret two and three -place predicates as functions from entities to functions from
entities to truth-values and as functions from entities to functions from entities to functions
from individuals to truth-values. (Got that?!) For example, we have thought of two-place
predicates like love1 as a function which takes two individuals as arguments and yields a truth-
value. However, we can also break it down into two functions, the first of which takes one
entity as an argument and yields a new function which is exactly like the function associated
with a one-place predicate. Thus, the domain of this function will be the set of entities and
the range will be a set of (characteristic) functions. Assuming the following model, we can
represent love1 as shown underneath:

I {max1, belinda1, fido1, felix1}

F (love1) {<max1 belinda1> <felix1 belinda1> <fido1 felix1>

<felix1 fido1>}

love1: 1 2

max1 --> max1 --> f

belinda1 --> f

fido1 --> f

felix1 --> f

belinda1 --> max1 --> t

belinda1 --> f

fido1 --> f

felix1 --> f

felix1 --> max1 --> f

belinda1 --> t

fido1 --> t

felix1 --> f

fido1 --> max1 --> f

belinda1 --> f

42

fido1 --> f

felix1 --> t

The first function takes us from one entity to a new function from entities to truth-values.
When we supply the second entity, the second function yields a truth-value. Using this tech-
nique, we can now see how the lambda operator is able to create new one-place predicates out
of two-place predicates where one argument is fixed. So, for example, the lambda expression
in (48a) is one way of expressing or referring to the function which appears to the right of the
arrow after max1 above (assuming that it is interpreted in this model). Note that we assume
that we always combine with the object NP before the subject NP.

(48) a λ x [love1(x max1)]

b λ x [love1(x max1)] (belinda1)

c love1(belinda1 max1)

So far we have used the lambda operator to create new functions which abstract over entities
(ie. the variable bound by the lambda operator has ranged over the entities in the model).
However, lambda abstraction can be applied to any category or type in the logical language;
applying it to entities gives Second Order Logic, applying it to one-place predicates, Third
Order Logic, two-place predicates Fourth Order Logic and so forth. We will want to apply
lambda abstraction to some predicates in the new version of the grammar for F2, so the
logical forms we will be constructing will be formulas of (at least) the third order typed
lambda calculus.

Quite rapidly lambda expressions get hard to manipulate syntactically; for example, the
formula in (49a) is equivalent to b) by beta reduction.

(49) a λ x[A(x a)∨ B(x)⇒ λ y [C(y b)∧ λ z [D(x z)∧
E(y c)](d)](e)](f)]

b A(fa) ∨ B(f)⇒ C(eb) ∧ D(fd) ∧ E(ec)

In Prolog-style notation lambda bound variables are represented as X^[ψ] and pulled to the
front of formulas, as in (50).

(50) a [X^[Y^[Z^[if,[or,[A,X,a],[B,X]],[and,[C,Y,b],[and,[D,X,Z],[E,Y,c]]]],d],e],f]

b [if,[or,[A,f,a],[B,f]],[and,[C,e,b],[and[D,f,d],[E,e,c]]]]

7.2 Beta Reduction

Whenever possible, our strategy will be to use LC as a way of specifying the meaning of sub-
expressions but reduce these via beta reduction to well-formed formulas of FOL for specifying
the semantics of propositions. This is because we want to make use of these formulas with
automated theorem provers and these are (mostly) restricted to (a subset of) first-order logic.

Beta reduction applied to a ‘beta-redex’ (a formula containing an argument to a lambda
term) such as λ x[P (x) ∧ Q(x)](a) is defined as the substitution of ‘a’ for all occurrences of
‘x’ in P (x) ∧ Q(x). It is necessary to be careful about variable names, since it is possible to
accidentally bind or substitute for variables with identical names in different formulas when

43

performing reduction. For instance, reducing λP [∃x P (x)] with λ x R(x) should produce
∃x λx1 [R(x1)](x) and not ∃x λx [R(x)](x) in which further lambda reduction would fail
because all the variables would be bound by the existential quantifier. This problem can be
avoided by assigning distinct names to variables in separate terms before reduction.

7.3 Types

We use a typed version of LC to avoid logical paradoxes and to keep the notion of a func-
tion within the bounds of standard set theory. For instance, in untyped LC it is possible
to construct terms which denote things like ‘the set of all sets which are not members of
themselves’ – λx ¬Member(x x) – and to ask questions like ‘is this set a member of itself?’
– (λx ¬Member(x x)λx ¬Member(x x)). If it is, then it is a set which is a member of itself
and if it isn’t, then it is a set which is a not a member of itself, and so should already be part
of its own denotation. Typing prevents such paradoxical results.

An extensional type system can be built up from the primitives ‘e’ for entity and ‘t’ for truth-
value. So an entity constant or variable is of type ‘e’ and a proposition of type ‘t’. The type
of everything else follows from this. For example, a one-place predicate is of type <e t> or
e --> t because it is a function from an entity to a truth-value; a two-place predicate is a
function from an entity to a function from an entity to a truth value; ie. <e <e t>> or (e

--> (e --> t)). So if we are being careful, we should explicitly type all the lambda bound
variables in a LC formula rather than relying on loose conventions like ‘x’,‘y’ or ‘X’, ‘Y’ are
entity variables and ‘P’ and ‘Q’ are x-place predicate variables. However, it all gets a bit
verbose, as (51) indicates, so a lot of the time we’ll suppress the types BUT it is important
to check for typing, at least implicitly, when constructing typed LC formulas.

(51) λP<et>λxeP (x)

7.4 Rule-to-rule Translation

Armed with typed LC, we can now specify more precisely the manner in which logical forms
are built up compositionally in tandem with the application of syntactic rules in F2. For
example, consider the analysis of Max snores again. The syntactic analysis of this sentence
requires the following three rules of F2:

1) S → NP VP : [NP′,VP′]

2) VP → V : X^[V′,X]

3) NP → Name : P^[P,Name′]

These rules are similar to those used in the grammars of F1/2 except that we have specified the
semantic part of the rules in more detail using the notation of LC. The denotation of snores
is a set of entities (written snore1). When we apply rule 2 to snores to obtain the partial
syntactic analysis shown in a) below, we also instantiate the variable in the LC formula paired
with this rule to form the semantic interpretation of snores, as in b):

44

a) VP b) X^[snore1,X]

|

V

snores

This lambda expression is an instruction to form a function over the denotation of snore1
from entities to truth-values. The denotation of Max is max1, so the analysis of the subject
NP proceeds in a similar way to produce:

a) NP b) P^[P,max1]

|

Name

|

Max

However, the semantic rule associated with NPs is an instruction to form a function which
abstracts over the set of properties predicated of max1 (ie. the set of functions representing
one-place predicates). This more complex account of the denotation of an NP is needed so
that NPs containing either proper names or determiners (esp. quantifiers) and nouns will
end up with the same denotation and can therefore be combined with predicates using the
same semantic rules. Thus in F1, where all NPs are proper names, the denotation of an
NP is always an entity constant. Therefore, the semantic rule combining NPs and VPs is
function-argument application, where the function associated with the VP is a characteristic
function which checks for membership of the argument in the denotation of the verb and
returns a truth-value. However, in F2 this won’t work because NPs like every man cannot
denote entities. Instead, we make NPs denote functions from characteristic functions to truth-
values. The only difference between proper name NPs and quantified NPs will be whether the
lambda abstracted set of properties is predicated of an entity constant or (bound) variable.

Since this treatment of NPs is more complex, we’ll try to make things clearer with a concrete
example. Assuming the model given below, the denotation of the NP Max will be the function
shown underneath:

I {max1 belinda1}

F (snore1) {max1}

F (love1) {<max1, belinda1>}

F (like1) {<belinda1 max1>}

NP(max1)

45

{

snore1:

--> t

love1:

max1 --> f

belinda1 --> t

like1:

max1 --> f

belinda1 --> f

}

In other words, the denotation of the NP Max contains the set of possible properties which
can be predicated of max1 in this model, such as snoring, liking himself, loving Belinda etc.,
and the lambda operator creates a function from these VP (one-place predicate) denotations
to truth-values.

Combining the denotation of the NP and VP above using rule 1) produces the syntactic and
semantic analysis shown in a) and b) below:

a) S b) [P^[P,max1],X^[snore1,X]]

/ \

NP VP [X^[snore1,X],max1]

| |

Name V [snore1,max1]

| |

Max snores

The formulas in b) are logically equivalent, the third is the result of applying beta reduction
(twice) to the first. Here beta reduction is like ‘merging’ the two lambda expressions by
matching the (typed) variables ‘P’ and ‘X’ to expressions of the appropriate type. In fact,
what we have done here is compose two functions – one abstracting over predicates, the other
over entities – to produce a formula equivalent to the one we got in F1 for Max snores by
treating max1 as an argument of the one-place predicate snore1.

This may seem like a lot of extra complexity for nothing, but this analysis is essential when
we move on to sentences like Every man snores. To analyse this sentence, we need the other
NP rule given below:

4) NP → Det N : [Det′,N′]

This rule applies the denotation of the determiner to that of the noun. In section 5.2.1, we
anticipated the use of LC by describing the meaning of every as the ‘template’ for a logical
form in (52a).

46

(52) a [forall,X^[if,[P,X],[Q,X]]]

b P^[Q^[forall,X^[if,[P,X],[Q,X]]]]

The correct way to write this in LC is as a lambda abstraction over two one-place predicates,
as in (52b). So the analysis of Every man will come out like this:

a) NP b) [P^[Q^[forall,X^[if,[P,X],[Q,X]]]],X^[man1,X]]

/ \

Det N Q^[forall,X^[if,[X1^[man1,X1],X],[Q,X]]]

| |

Every man Q^[forall,X^[if,[man1,X],[Q,X]]]

By two applications of beta reduction, we obtain the third formula. Now when we analyse
snores we get:

a) S b) [Q^[forall,X^[if,[man1,X],[Q,X]]],Y^[snore1,Y]]

/ \

NP VP [forall,X^[if,[man1,X],[snore1,X]]]

/ \ |

Det N V

| | |

Every man snores

Using the apparatus of LC, we are able to get the different logical forms for quantified and
unquantified NPs, but at the same time achieve this without needing different semantic rules
for combining different types of NPs with VPs. This is essential if we are going to have an
account of semantic productivity. In effect, using LC and raising the type of NPs allows us to
maintain compositionality but provides more flexibility in the way we semantically combine
the meanings of words and phrases.

7.5 Types revisited

We can now give a more precise account of the relationship between syntactic and semantic
rules and categories in the grammar. We can associate with each syntactic category of the
grammar, a semantic type which specifies the type of object denoted by expressions of that
category and also specifies how it combines with other types. For example, we have said that
proper names denote entities (i.e. any discrete object – car1, table1, max1 etc.). We can
write this <e>. Sentences denote propositions (ie truth-values) written <t>, intransitive verbs
denote functions from entities to truth-values <e t>, NPs denote functions from functions
from entities to truth-values to truth-values <<e t> t>. Given this new notation we could
represent the semantic analysis of Every man snores given above slightly more abstractly as
below:

47

a) S b) t

/ \ / \

NP VP <<e t> t> <e t>

/ \ | | \ |

Det N V <<e t> <<e t> t>> <e t> <e t>

| | | | | |

Every man snores all man1 snore1

The type notation illustrates how the generic functions apply to arguments or compose with
each other to yield new functions, and ultimately a truth-value. Once we know the semantic
type of every syntactic category, we know how to combine them to form the semantic types
of larger categories. Of course, when interpreting an actual sentence, we replace the semantic
types with the functions derived from the denotations of the words in the sentence in the
model in which we are performing the interpretation (ie. we replace types with tokens).

7.6 English Fragment 2 Redone

We will now rewrite the grammar for F2, making use of LC to specify more precisely the form
of the semantic rules and giving the semantic type of each syntactic category in the grammar.

Lexicon

The only change to the lexicon concerns the semantics of the quantifiers, which are now
written as double lambda abstractions over two one-place predicates – the noun and VP
denotations, respectively, and of the pronouns, where we now write the ‘externally’ bound
version as a lambda abstracted entity variable.

Max : Name : max1

Fred : Name : fred1

Belinda : Name : belinda1

Fido : Name : fido1

Felix : Name : felix1

he_x : PN : P^[X^[and,[male1,X],[P,X]]]

he : PN : P^[exists,X^[and,[male1,X],[P,X]]]

her_x : PN : P^[X^[and,[female1,X],[P,X]]]

her : PN : P^[exists,X^[and,[female1,X],[P,X]]]

himself_x : PN : P^[X^[and,[male1,X],[P,X]]]

herself_x : PN : P^[X^[and,[female1,X],[P,X]]]

and : Conj : and

or : Conj : or

it-is-not-the-case-that : Neg : not

snores : Vintrans : snore1

smiles : Vintrans : smile1

48

likes : Vtrans : like1

loves : Vtrans : love1

gives : Vditrans : give1

a : Det : P^[Q^[exists,X^[and,[P,X],[Q,X]]]]

no : Det : P^[Q^[not,[exists,X^[and,[P,X],[Q,X]]]]]

some : Det : P^[Q^[exists,X^[and,[P,X],[Q,X]]]]

every : Det : P^[Q^[forall,X^[if,[P,X],[Q,X]]]]

man : N : man1

woman : N : woman1

dog : N : dog1

cat : N : cat1

Grammar for F2

1) S → NP VP : [NP′,VP′]
2) S → S Conj S : [Conj′,S′,S′]
3) S → Neg S : [Neg′,S′]
4) VP → Vtrans NP : [NP′,Y^[X^[V′,X,Y]]]
5) VP → Vintrans : X^[V′,X]
6) NP → Name : P^[P Name′]
7) VP → Vditrans NP NP : [NP′

2,[NP′
1,Z^[Y^[X^[V′,X,Y,Z]]]]]

8) NP → Det N : [Det′,N′]
9) NP → PN : P^[PN′]

The changes from the old version just involve the semantics of the VP rules. These are now
written as lambda expressions. For example, the semantic rule associated with 5) says that
the meaning of an intransitive verb is a lambda abstraction over whatever the denotation of
that intransitive verb is to form a function from entities to truth-values. The semantic rule
for 4) says that the denotation of the transitive verb should be the argument to a function
from entities to a second function from entities to truth-values. Since the semantic type of
the NP will be a lambda expression denoting a function from VP type functions to further
functions, the resulting formula is quite complex. However, after beta reductions it reduces
to the appropriate FOL formula.

7.7 Pronouns and Quantifier Scoping Revisited

The LC treatment of quantifiers in F2 does not resolve the problem of how to get wide-scope
existential readings of examples like Every man loves one woman. Can you show this? Nor
does treating pronouns as ambiguous between existientially-bound for diectic uses and lambda
bound for coreferential uses get us that far. Concentrating again on the coreferential cases
like A mani likes Belinda and hei likes Felix (too), the rules of F2 will not actually reduce the
lambda bound variable translating he so that it is bound by the existential associated with A.
Can you prove this to yourself? The problem is that the semantics of the first conjunct gets

49

‘closed off’ before the second is interpreted. For this reason (and others), several semantic
theories (DRT, Dynamic Semantics: see eg. Bos and Blackburn references) have explored
variant logics which allow the scope of quantifiers to be kept open as the interpretation of a
sentence is built up incrementally.

Since we’ve spent some time looking at the problem scope ambiguities raise for syntax-directed
semantic interpretation, you might wonder why we are explaining in more detail exactly how
syntactic and semantic rules are paired together. However, if we gave up organising the
grammar in this fashion we would be in danger of losing our account of semantic productivity.
We want to show how the meaning of words and phrases are combined using general rules.
The apparatus of LC is likely to be essential to this enterprise because it provides a very
flexible way of specifying the denotations and modes of combination of linguistic expressions.
Therefore, we have a chance of coming up with a general rule which states how all NPs and
VPs combine, say; and not one rule for NPs containing proper names, another for quantified
NPs, another for NPs with pronouns, another for NPs with relative clauses, and so forth. It
may be that ultimately, we want to make these rules sensitive to more than just the syntactic
analysis of these linguistic expressions, but we will still want a compositional account of the
meaning of words, phrase, clauses, and sentences; even if the semantic rules are sensitive to,
say, the presence of specific words or intonation, and aspects of the wider (non-)linguistic
context too.

7.8 Exercises

1) Write down the logically equivalent first order formulas corresponding to the following
lambda expressions by performing as many beta reductions as are necessary:
a) λx [M(x) ∧ L(x b)](m)
b) λx [λy [L(x y) ∨ H(y b)](m)](f)
c) λx [∀y M(y)⇒ L(x y)](f)

2) Convert the following formulas to equivalent lambda expressions by abstracting over the
entity or predicate listed after them (ie. perform the opposite of beta reduction on them):
a) M(m) ∧ L(mb) (abstract over ‘m’)
b) ∀x M(x)⇒ L(x b) (abstract over ‘M’)
c) ∃x M(x) ∧ L(x b) (abstract over ‘M’ and ‘b’)

3) If we have a model M containing a set of entities E and the model contains the following
set { x : x snore1} (ie. the set of entities which snore), then we can represent the same set as
a function from entities to truth-values. Write this function as a lambda expression.

4) I defined love1 (a two-place predicate) as a function from entities to a function from entities
to truth-values. This can be expressed as a lambda expression – λ x [λ y [love1(x y)]] – and,
given a model, as two functions mapping from the entities in the model to more entities and
finally a truth-value. Construct a model which includes denotations for like1 and give1. Then
define these functions by exhaustively listing the possibilities in your model.

5) It would be nice to get rid of it-is-not-the-case-that from our English fragment (since it
isn’t English!) and replace it with not or n’t. To do this we need to extend the fragment in
several ways to cover examples like:

50

Max doesn’t snore
Max doesn’t love Belinda

We need an entry for doesn’t and new syntactic rules for analysing VPs containing this word.
Lets assume the following entry and rule:

doesn’t : Aux : P^[X^[not,[P,X]]]

and the following PS rule:

VP → Aux VP : Aux′(V P ’)

see if you can work out how this works and check that you understand by adding the entry
and rule to the grammar for F2 above and parsing these sentences.

8 Discourse Processing

The problem with the truth-conditional semantics plus theorem proving approach to language
understanding is that we have no notion of the goals of the speaker/user, what speech acts
s/he is attempting; for example, asserting, requesting, asking. The system will simply assume
that all declarative sentences are assertions and all interrogative sentences are requests for
information.

Exercises

Can you construct a situation / dialogue in which this would lead to a system misinterpreting
some input?

Below I survey some ways of augmenting deduction (entailment) with techniques able to
handle some of the phenomena described in the Intro to Linguistics handout.

8.1 Abductive Inference

A form of plausible inference which often looks like the ‘structural opposite of MPP’ and
involves reasoning from consequent to antecedent, as in (53).

(53) a (if (drunk x) (not (walk-straight x)))

b (not (walk-straight john))

c (drunk john)

This is not deduction and the truth of the ‘conclusion’ c) is not guaranteed by the truth of
the premises a) and b). – having a fever may also result in not walking straight. Abduction is
often an inference about causation to find explanations for events. Various forms of abductive
inference have been proposed as a way of recognising speaker intentions or goals and modelling
the defeasible (i.e. default or plausible rather than guaranteed) nature of these inferences.
For example, the discourse in (54a) can be interpreted using abductive inferences.

51

(54) a Kim can open the safe. He knows the combination.

b (can Kim1 (open safe1))

c (know he (combination-of x c))

d (if (can x state) (know x (cause (act x) state)))

e (if (combination-of x c) (cause (dial z x c) (open
x)))

f (plausibly-if (and (know x p) (if p q)) (know x q))

g (know Kim1 (cause (act Kim1) (open safe1)))

h (know he (cause (dial z x c) (open x)))

i (know Kim1 (cause (dial Kim1 safe1 c) (open
safe1)))

I have given a FOL-like representation (in which variables are implicitly universally quantified)
of how to do this. b) and c) are the formulas associated with the two sentences (by parsing /
semantic interpretation). d), e) and f) are background knowledge. g) is inferred from b) and
d) by MPP / forward chaining. h) is inferred from c), e) and f), where e) is first ‘embedded
in’ f) by replacing the propositional variables p and q by e). i) is derived by matching g) and
h) and represents recognition of the elaboration relation, because ‘dial’ is more specific than
‘act’ and Kim1 more specific than ‘he’. The details of the matching process are complex, and
must involve more than first-order unification of (individual) variables. A ‘side-effect’ is that
the antecedent of the pronoun is found, as is the link between the combination and safe1.

Exercises

Can you see any disadvantages to this technique as a general approach to discourse under-
standing? (hard)
see Blythe J., Hobbs, J. et al., Implementing weighted abduction in Markov logic, Int. Wkshp
on Computational Semantics, 2011
aclweb.org/anthology-new/W/W11/W11-0107.pdf
for a recent attempt to build a full discourse interpretation system based on abduction with
weights inferred from data using machine learning.

9 Inadequacies of Formal Semantics

9.1 Intensionality

Embedded propositions cause problems for our semantics. For instance, believe takes a sen-
tential complement, as in Kim believes (that) Sandy loves Fred which we might ‘translate’
into:

believe1(Kim1, love1(Sandy1 Fred1))

However, there is a problem with this analysis because it is quite possible for the two examples
in (55) to correctly characterise Kim’s beliefs.

(55) a Kim believes Sandy loves Fred

b Kim doesn’t believe Miss UK loves Fred

52

If Sandy is Miss UK, then we must assume that Kim is unaware of this, otherwise he would
modify his beliefs appropriately. The translation of Miss UK will be something like ∃ x miss-
uk1(x) . . . , so in a world where Sandy is Miss UK, the referent of this NP and Sandy will
be Sandy1 and we will end up saying that Kim both does and doesn’t believe that Sandy1
loves Fred. The way out of this problem is to say that Kim believes the proposition Miss UK
loves Fred and not its denotation (ie. its truth-value t/f) in the actual world. Or in other
words, that Kim’s belief is about the sense of the embedded sentence. This example shows
then that not all meaning can be reduced to the extended notion of reference that we have
called denotation.

One way of approaching this problem is to switch from an extensional logic whose model-
theoretic interpretation concerns only actual states of affairs to an intensional logic whose
model-theoretic semantics is characterised in terms of ‘possible worlds’. In this approach, the
extension of an expression can vary depending on which world we are considering, so in the
actual world the extension of Miss UK may be Sandy1 but in another possible world it may
be different. We will define the intension of an expression as the set of extensions that it
has in every possible world. Names are usually treated as having the same extension in every
possible world. Since the extensions of Sandy and Miss UK will differ between possible worlds,
the intensions or propositions conveyed by these two embedded sentences will also differ. The
intension of a proposition will be the set of truth-value assignments defined by evaluating its
truth in every possible world. Thus, if Kim’s beliefs are about the intensions of the embedded
sentences, they will be logical (rather than contradictory) but possibly inaccurate in the actual
world. All verbs which take embedded sentences as arguments denote some relation between
an individual and (the intension of) a proposition.

This analysis of embedded propositions predicts that examples such as Kim believes Miss UK
is not a feminist should be ambiguous. It could convey a proposition telling us that Kim
believes that Sandy (who she knows is Miss UK) is not a feminist or one telling us that Kim
believes that whoever Miss UK is she is not a feminist. These two alternative logical forms
can be notated as:

a) ∃ x Miss-uk1(x) ∧ Believe1(Kim1 ^[¬ Feminist(x)]
b) Believe1(Kim1 ^[∃ x Miss-uk1(x) ∧ ¬ Feminist(x)])

The ‘hat’ sign indicates that what is believed is the intension (rather than extension) of the
formula in square brackets. If the existential variable is in the scope of the intension operator,
we get the so-called de dicto reading where Kim believes that whoever Miss UK is, she is not
a feminist. If the existential has wide scope, then we get the so-called de re reading where
Kim believes a particular proposition about Sandy (or whoever happens to be the extension
of Miss UK in the actual world).

However, one consequence of this analysis of believe is that if Kim believes any necessarily
true propositions, then Kim must believe every necessarily true proposition. For example, if
(56a) is true, then b) must be true (if we assume that bachelor just means ‘unmarried man’).

(56) a Kim believes it is raining or it isn’t raining

b Kim believes all bachelors are unmarried men

However, this seems wrong because it is not a consequence of Kim’s beliefs about rain that

53

he believes things about bachelors. To see why we get into this bind, it is necessary to
think about the denotation of a proposition in possible world semantics. The intension of a
proposition is just a set of truth-value assignments derived by evaluating its truth in every
possible world. However, every necessarily true proposition will be true in all worlds, so their
intensions will be identical.

It seems that the notion of intension defined by possible world semantics is not adequate to
capture the sense (as opposed to reference) of a linguistic expression. In any case, a direct
interpretation of possible world semantics in a computational context would be difficult. (See
Cann’s book in references for more on possible worlds, intensionality, etc.)

Exercises

Can you see why? – How many possible worlds are there? How many facts are there in one
world?

Instead we will ignore these problems and do theorem proving with the FOL formulas for
these examples. This works (to some extent) because we are keeping propositions distinct by
utilising their syntactic form – believe1 (Kim1 love1(Kim1 Sandy1)) is structurally distinct
from ∃ x miss-uk1(x) ∧ believe1(Kim1 (love1 Kim1 x)). Why is this not really adequate?

9.2 Word Meaning

So far we have said very little about word meaning. However, we have made a couple of as-
sumptions in order to get our account of sentence meaning off the ground. The first assump-
tion is that word meaning divides into a number of distinct senses (much as in a conventional
dictionary). So we have written Snore1 as the translation of the first (main) sense of snore. In
cases of lexical ambiguity, we can create further senses – Bank1, Bank2, etc. This approach is
fine providing that we agree that word senses are really distinct in this way. However, many
words exhibit polysemy; that is, they have a variety of closely related meanings which shade
off into each other. Consider, for example, the meaning of strike in (57).

(57) a Kim struck Sandy

b Kim struck a match

c Kim struck a bargain

d Kim struck Sandy as ridiculous

Different dictionaries will make different decisions on how to ‘divide up’ the meaning of strike
into distinct senses, underlining the rather arbitrary nature of this activity. Truth-conditional
semantics offers no insights into this issue, so we will not dwell on it further. However, it is
important to remember that when we discuss word meaning, we are discussing word sense
meaning (or equivalently, the meaning of a predicate or lexical item).

The second assumption is central to the principle of compositionality and the account of
semantic productivity which is incorporated into truth-conditional semantics. The contribu-
tion of word meaning to sentence meaning must take the form of an invariant contribution
to the truth-conditions of each sentence. Otherwise, compositionality will be undermined,
because the rules which combine the meanings of words, phrases and clauses to form sentence
meanings do not modify the units which they combine. Of course, this does not prevent
selection of an appropriate sense in a particular context, but it does imply that word meaning

54

is not unpredictably altered by context. Some linguists argue that word meaning is partially
determined by the context of occurrence – idioms and metaphors usually figure largely in this
type of debate. For example, in (58) it is implausible to argue that productive semantic rules
combining the meanings of the individual words produce the most likely interpretation.

(58) a Truth-conditional semantics is dead wood

b Kim is rapidly sliding into a moral cesspool

How serious a problem you think this is will depend a) on how common and central to language
you feel idiomatic and metaphorical usage to be and b) on whether you believe a theory of
idioms and metaphors can be derived from a theory of ‘literal’ meaning.

Formal semanticists largely ignored word meaning except to point out that in formulas we
need to replace a word form or lemma by an appropriate word sense (usually denoted as bold
face lemma prime, lemma-number, etc (loved, love′ / love1). But we also need to know what
follows from a word sense, and this is usually encoded (if at all) in terms of (FOL) meaning
postulates:

(59) a ∀x, y love′(x, y) → like′(x, y)

b ∀x, y love′(x, y) → ¬ hate′(x, y)

c ¬∀x, y desire′(x, y) → love′(x, y)

Although this is conceptually and representationally straightforward enough, there are at
least three major issues:

1. How to get this information?

2. How to ensure it is consistent?

3. How to choose the right sense?

Johann Bos, perhaps the only major computational formal semanticist(!) as part of his
development of Boxer (see section 11.4) solves 1) by pulling lexical facts from WordNet (nouns)
and VerbNet – these are manually created databases (derived in part from dictionaries) which
are certainly not complete and probably inconsistent. The information they contain is specific
to senses of the words defined, so is only applicable in context to a word sense, so Bos simply
assumes the most frequent sense (sense 1, given Wordnet) is appropriate. If the background
theory built via WordNet/VerbNet is overall inconsistent, because the data is inconsistent,
the algorithm for extracting relevant meaning postulates doesn’t work perfectly, or a word
sense is wrong, then the theorem prover cannot be used or will produce useless inferences.

There has been a lot of computational work on learning word meaning from text using distri-
butional models of meaning (see Turney and Pantel, 2010 or Baroni et al. 2012a in references
below for a review) These models represent words by their contexts of occurrence using ap-
proaches which are extensions of techniques used from information retrieval and document
clustering, where a document is represented as a bag-of-words and retrieved via keywords
indexed to documents, a word-document matrix is reduced so that documents are clustered,
or document similarity is computed using the distribution of words (or clustered ‘topics’ or
latent semantic dimensions) in each document.

55

9.3 Word Meaning References

Turney P. & P. Pantel, From frequency to meaning: vector space models of semantics, JAIR,
37, 141–188, 2010
arxiv.org/pdf/1003/1141
Baroni, M., Bernardi, Zamparelli, Frege in Space: A program for compositional distributional
semantics, 2012
clic.cimec.unitn.it/composes/materials/frege-in-space.pdf

10 Generalized Categorial Grammars

10.1 Categorial Grammar

Classic (AB) categorial grammar consists of atomic categories of the form: N, NP, S, etc., and
functor categories of the form S/N, (S\ NP)/NP, etc. constructed by combining atomic cate-
gories with slash and backslash with the functor leftmost and the ‘outer’ argument rightmost
(see Wood, 1993 for a textbook introduction to CG and its generalisations).

Functors and arguments are combined by directional rules of (function-argument) application
as in Figure 2 below. CGs of this form are weakly equivalent to CFGs but assign a fully
binary branching structure. So ditransitive verb complements, whose categories will be ((S\
NP)/PP)/NP, will be assigned a different structure than in a standard CF PSG approach.
Figure 1 shows the CG derivation for a simple example. One feature of CG is that syntax

Kim loves Sandy
NP (S\NP)/NP NP
kim’ λ y,x [love′(x y)] sandy′

---------------------- FA
S\NP
λ x [love′(x sandy′)]

------------------------------ BA
S
love′(kim′ sandy′)

Figure 1: CG Derivation for Kim loves Sandy

and semantics can be more closely associated than in a standard ‘rule-to-rule’ framework as
function application in the syntax can correspond to function application (beta reduction)
in the lambda calculus (regardless of directionality). This framework is ‘radically lexical’
since now there are just two rules of syntactic combination (FA,BA) and one rule of semantic
application. Everything else must be captured in terms of the lexical categories. For example,
modifiers cannot be dealt with in terms of separate rules and instead must be characterised
lexically as functor arguments which yield categories of the same type (X/X, X\X) e.g. N/N
or (S\ NP)/(S\NP) – can you see what classes of word these categories would be appropriate
for?

56

Forward Application:

X/Y Y ⇒ X λ y [X(y)] (y) ⇒ X(y)

Backward Application:

Y X\Y ⇒ X λ y [X(y)] (y) ⇒ X(y)

Forward Composition:

X/Y Y/Z ⇒ X/Z λ y [X(y)] λ z [Y(z)] ⇒ λ z [X(Y(z))]

Backward Composition:

Y\Z X\Y ⇒ X\Z λ z [Y(z)] λ y [X(y)] ⇒ λ z [X(Y(z))]

(Generalized Weak) Permutation:

(X|Y1). . . |Yn ⇒ (X|Yn)|Y1 . . . λ yn . . .,y1 [X(y1 . . .,yn)] ⇒ λ y1,yn . . . [X(y1 . . .,yn)]

Type Raising:

(X ⇒ T/(T\X) a ⇒ λ T [T a]

(X ⇒ T\(T/X) a ⇒ λ T [T a]

Figure 2: GCG Rule Schemata

10.2 Generalized Categorial Grammar

The main interest in exploring CGs is that various extensions of classic AB CG (with just
function application) have been proposed in recent years. These deal well with phenomena
like non-constituent coordination and mostly extend the generative capacity of the grammar
to ‘mild context-sensitivity’ / indexed languages. The specific extension I will outline adds
rules of composition, permutation and type raising to AB CG as in Figure 2. These license
derivations involving non-standard constituency such as Figure 3. Each of the rule schema
come with a corresponding semantic operation defined in terms of the lambda calculus, illus-
trated in the sample derivations. What semantic type is being associated with NPs in the
derivations shown below? How does typing work in this framework (i.e. given the X,Y and
T labels in the rule schemata, how do we know what types are being combined in specific
derivations and that these types are compatible)? Neither function composition nor permuta-
tion change the semantics associated with a given sentence, rather they introduce ‘spurious’
ambiguity in that they allow the same semantics to be recovered in different ways. This can
be exploited to deal with non-constituent coordination (Figure 5), unbounded dependencies
(Figure 4), and the relationship between intonation, focus and semantics. (See Wood, 1993
or Steedman, 1996, 2000, 2012 for fuller treatments of closely related approaches. CCG is
like my GCG, but without permutation.)

There are polynomial parsing algorithms (n6) for some types of generalized CGs of this
form (so long as rules such as type raising are constrained to apply finitely. Because of the
‘spurious’ ambiguity of GCGs some effort has been devoted to defining parsing algorithms
which only find a single derivation in the equivalence class of derivations defining the same

57

Kim loves Sandy
NP (S\NP)/NP NP
kim’ λ y,x [love′(x y)] sandy′

---------- P
(S/NP)\NP
λ x,y [love′(x y)]

---------------------------- BA
S/NP
λ y [love′(kim′ y)]
------------------------------------- FA
S
love′(kim′ sandy′)

Figure 3: GCG Derivation for Kim loves Sandy

who Kim thinks Sandy loves
S/(S/NP) NP (S\NP)/S NP (S\NP)/NP
who′ kim′ λ P,x [think′(x,P)] λ y,x [love′(x y)]

-------------- P
(S/S)\NP
λ x,P [think′(x,P)]

-------------------- BA
S/S
λ P [think′(kim′,P)]

----------- P
(S/NP)\NP
λ x,y [love′(x y)]

-------------------------------- BA
S/NP
λ y [love′(kim′, y)]

-------------------------------------- FC
S/NP
λ y [think′(kim′,love′(sandy′, y))]

---------------------------------- FA
S
think′(kim′,love′(sandy′, who′))]

Figure 4: GCG Derivation for who Kim thinks Sandy loves

58

Kim gave Sandy a book and Lesley a pen
(S/NP)/NP NP NP (X\X)/X
λy,z [g′(k′,y,z)] sandy′ a-bk′ λx,y [&′(x,y)] lesley′ a-pen′

---- T ---- T ---- T ---- T
T\(T/NP) T\(T/NP) (T\T)/NP (T\T)/NP
λ P [P sandy′] . . .
----------------------- BC . . .
T\((T/NP)/NP) . . .
λP [P(sandy′, a-bk′)] . . .
--- conj
T\((T/NP)/NP)
λ P [and′(P(sandy′,a-bk′), P(lesley′,a-pen′))]

-- BC
S
and′(give′(sandy′,a-bk′), give′(lesley′,a-pen′))

Figure 5: GCG Derivation for Kim gave Sandy a book and Lesley a pen

logical form. Steedman (esp. 2000) argues instead that the ambiguity is not spurious at all
but rather correlates with different prosodies conveying different information structure (give-
new, theme-rheme, focus – see Discourse Processing (R216) module or a linguistics textbook
from the Intro to Linguistics handout reading list).

Bayer (1996) draws on another tradition in GCG research which emphasises the connection
between CG and substructural or resource logics (see e.g. Carpenter, 1997; Morrill, 1994).
This tradition has concentrated on demonstrating that the rules of GCGs can be shown to
implement sound deductive systems, rather than on implementation via unification opera-
tions. Thus the slash operator is a form of (linear) implication: from X/Y, infer an X given
a Y.

From this perspective, it makes sense to introduce rules (of inference) like ∧-elimination (AE):
given X ∧ Y, infer Y, and ∨-introduction (OI): given Y, infer X ∨ Y. Bayer defines his GCG
category set as the closure of the atomic category under the operators: / \, ∧, and ∨. He
assigns and the usual polymorphic category (X\X)/X and be the category (S\NP)/(NP ∨ AP).
This along with the rule of OI is enough to license coordinations of unlike categories when
the verb allows different complement types, as in Fig 6 This approach can be generalised
to featural mismatches ‘within’ the same cateogory simply by allowing disjunctive feature
values and aplying OI and AE to these values (e.g. case: acc ∨ dat) (feature neutralisation
in German).

Although the use of unrestricted disjunction operators with complex unification-based feature
systems is known to lead to computational inefficiency, if not intractability, it is not clear that
this move would be so problematic in the context of the ‘logicist’ approach to GCG, as the
features would be restricted to finite-valued morphosyntactic ones.

The sample derivations above illustrate (succinctly!) how GCG/CCG can handle construc-
tions such as unbounded dependencies and non-constituent coordination, both syntactically
and semantically, which would be problematic for a CFG + LC approach like that introduced
in section 7 above.

59

Kim is a conservative and proud of it
S/(NP ∨ AP) NP (X\X)/X AP

----------OI -------OI
(NP ∨ AP) (NP ∨ AP)

----------------------------- FA
(NP ∨ AP)\(NP ∨ AP)

-------------------------------- BA
(NP ∨ AP)

--------------------- FA
S

Figure 6: GCG Derivation for Kim is a conservative and proud of it

10.3 Exercises

1. Work out another derivation for Kim loves Sandy to that shown in Fig 3 and show that
it yields the same semantic interpretation

2. Suppose we assign NPs semantic type <<e t> t> so that we can handle quantifiers
properly, but continue to assign verbs types like <e t>, <e <e t>> etc. Can you show
that the derivation of the interpretation of Max snores using the syntactic and semantic
definition of BA given in Figure 2 still works using appropriate lambda expressions for
the NP and V(P) (i.e. S\NP)?

3. Work out the interpretation for Every man snores by assigning an appropriate semantic
type and lambda expression to every.

4. There are two derivations for Every man loves some woman, the more complex involving
P, BA and then FA. Can you see how to make this second derivation less ‘spurious’
by building the more marked interpretation in which some outscopes every using this
derivation?

5. For F2 (sections 6 and 7), we argued that every and some should be treated like the
quantifiers ∀ and ∃ in FOL. We could plausibly do the same for each, all, a an one,
but what about other ‘quantifiers’ like most or more than one third (of)? Read about
Generalized Quantifiers in the Blackburn and Bos references, or on the web in Wikipedia
or the Stanford Encyclopedia of Philosophy, and see if you can work out how to assign
a formula and interpretation to Most men snore (harder).

10.4 CCG / GCG References

Bayer, S. ‘The coordination of unlike categories’, Language 72.3, 579–616, 1996.
Carpenter, R. Type-Logical Semantics, MIT Press, 1997.
Morrill, G. Type-logical Grammar, Kluwer, 1994.
Steedman, M. Surface Structure and Interpretation, MIT Press, 1996.
Steedman, M. The Syntactic Process, MIT Press, 2000.
Steedman, M. Taking Scope, MIT Press, 2012.
Wood, M. Categorial Grammar, Routledge, 1993

60

11 (Neo-)Davidsonian Semantics

We’ve seen that some quite simple constructions (e.g. those involving adjectives or adverbs)
create problems for FOL representations of natural language semantics. The obvious interpre-
tation of an adverb is that it modifies a verbal predicate or proposition, but this isn’t possible
in FOL. We’ve extended FOL with LC but so far only used LC as a means to composition-
ally construct FOL semantics for sentences in a syntax-guided fashion. We want to avoid
higher-order logics such as modal, intensional or possible world semantics in computational
semantics to keep theorem proving / inference tractable. One way to do so is to reify events
(and worlds) in FOL:

(60) a Kim kissed Sandy passionately

b passionate1(kiss1(kim1, sandy1))

c ∃ e kiss1(e, kim1, sandy1) ∧ passionate1(e)

(61) a Possibly Kim kissed Sandy

b possible1(kiss1(kim1, sandy1))

c ∃ e kiss1(e, kim1, sandy1)) ∧ possible1(e)

Davidson was the first to suggest that we could replace the b) semantics with the c) semantics
by reifying events, i.e. including event individuals/entities in the corresponding FOL model.
We will write them, e, e1, etc to indicate that events are of a different sort to other entities.
A sort being just like a type but applying only to the space of individuals/entities in the
FOL model. States like Kim weighs too much are also reified, so some prefer to talk about
‘eventualities’ rather than events. Actually, this move doesn’t quite work for possibly because
there is a difference in meaning between b) and c) below – can you see it?

(62) a Possibly every unicorn is white

b possible1(∀ x unicorn1(x) → white1(x))

c (∀ x unicorn1(x) → possible1(white1(x)))

(The problem is very similar to that discussed for propositional attitude verbs and related to
the de re /de dicto, sense vs. reference distinctions – see section 9.1).

Parsons took this a stage further by proposing that arguments to predicates become binary
relations between event variables and entities:

(63) a Kim kissed Sandy passionately

b ∃ e kiss1(e) ∧ agent(e,kim1) ∧ patient(e,sandy1) ∧
passionate1(e)

c ∃ e kiss1(e) ∧ arg1(e,kim1) ∧ arg2(e,sandy1) ∧ pas-
sionate1(e)

The problem with relations like ‘agent’ and ‘patient’ is determining exactly what they entail
which is constant across all verbs (e.g. is max1 the agent in Max enjoys films?), so we
generally prefer to use more semantically-neutral relations, as in c). The advantage of this
neo-Davidsonian, Parsons-style representation is that it makes it easy to handle argument

61

optionality. For example, the nominalization of (63i)s:

(64) a Kim’s / The kissing of Sandy (was passionate).

b ∃ e kiss1(e) ∧ arg1(e,kim1) ∧ arg2(e,sandy1) ∧ pas-
sionate1(e)

c ∃ e kiss1(e) ∧ arg2(e,sandy1) ∧ passionate1(e)

and we don’t have to specify the agent, so c) is a reasonable semantics for this case. Some
other advantages of this representation are that we can handle tense more naturally, and PP
adjectival and adverbial modifiers look more similar:

(65) a ∃ e kiss1(e) ∧ arg1(e,kim1) ∧ arg2(e,sandy1) ∧ pas-
sionate1(e) ∧ past(e)

b ∃ e,x kiss1(e) ∧ arg2(e,sandy1) ∧ passionate1(e) ∧
past(e) ∧ in1(e,x) ∧ bar(x)

c ∃ e,x kiss1(e) ∧ arg1(e,kim1) ∧ arg2(e,y) ∧ passion-
ate1(e) ∧ past(e) ∧ in1(y,x) ∧ bar(x) ∧ person1(y)

11.1 Exercises

1. Can you provide English sentences that match the semantics of the examples in (65?)
Can you work out how to build these representations compositionally for sentences using
CCG + LC? (hard)

2. Assign an event-based semantics to the following examples:

(66) a Most men snore loudly or snuffle.

b Each man (who) I met snored.

c Kim’s examination was hard.

d Few students at Cambridge think they are ge-
niuses.

3. Suppose we want to capture the semantics of probably or may properly using a similar
approach. Can you work out how to reify worlds in FOL and give a semantics to these
words in sentences like Max may snore or Probably Max snores? (See Blackburn & Bos
book/papers or http://plato.stanford.edu/entries/possible-worlds/semantics-extensionality.html)

11.2 References

Parsons, T., Events in the Semantics of English, MIT Press, 1990

11.3 Wide-coverage Event-based Semantics for CCG

Bos et al. (2004) show how to derive FOL neo-Davidsonian representations from CCG deriva-
tions using the lambda calculus by assigning lambda functions to complex CCG categories
(e.g. (S\NP)/NP λ P,y,x [P(x y)]) and defining decomposed function application schemes

62

to associate with combinatory and type changing rules. (The decomposition operator, (@),
circumvents some of the complexities of using the lambda calculus for syntax-directed se-
mantic composition.). The paper is the first to show that it is possible to derive a logical
semantic representation compositionally from a wide-coverage state-of-the-art parser applied
to real data, and to evaluate the well-formedness of the representions produced. However,
the resulting semantics doesn’t handle scope underspecification or integrate with generalized
quantifiers, it introduces argument relations like agent and patient which lack a coherent
semantics, and it doesn’t handle ‘construction-specific semantics’ (e.g. a noun compound
such as steel warehouse can mean warehouse for steel or warehouse of steel, so the N/N +
N forward application (FA) rule needs to be sensitive to whether it is forming a compound
or combining an adjective and noun, because for the compound an adequate semantics will
introduce an additional underspecified relation: steel(x) ∧ warehouse(y) ∧ R(x,y)).

11.4 Boxer

Bos (2005, 2008) has developed the approach to obtaining a wide-coverage FOL semantics
from CCG to support reasoning. Firstly, he uses (underspecified) Discourse Representation
Theory, (u)DRT, as his semantic representation. This is a neo-Davidsonian FOL variant
historically developed to handle anaphora better, rather than to support underspecification of
sets of well-formed FOL formulas; e.g. in (67a) and (67b), the pronouns function semantically
like bound variables within the scope of every and a:

(67) a Every farmer who owns a donkey beats it.

b Every farmer owns a donkey. He beats it.

c every(x, farmer(x), some(y, donkey(y), own(x y),
beat(x y)))

That is the (simplified) semantics of these examples is captured by (67c). For (67b) it is
fairly easy to see that syntax-guided translation of sentences into FOL will lead to problems
as the translation of the first sentence will ‘close off’ the scope of the quantifiers before the
pronouns are reached. Something similar happens in (67a), at least in classical Montague-
style semantics (as in Cann’s Formal Semantics book). Bos & Blackburn (2004, Working
with DRT) discuss (u)DRT and pronouns in detail.

Although, uDRT provides a technical solution that allows predications to be inserted into
an implictly conjunctive semantic representation within the scope of quantifiers, this doesn’t
really solve the problem of choosing the right antecedent for a pronoun. So Bos (2008)
extends Boxer with a simple anaphora resolution system and Bos (2005) extends it with
meaning postulates for lexical entailments derived from WordNet (see section 9.2).

At this point, Boxer is able to output a resolved semantics for quite a large fragment of
English. This can (often) be converted to FOL / Horn Clauses and fed to a theorem prover
to perform inference, and to a (minimal) model builder to check for consistency between
meaning postulates and Boxer’s output. Bos’ papers give examples of inferences that are sup-
ported by the system and discuss where the system makes mistakes. The inferences mostly
involve comparatively simple hyponymy or synonymy relations and the mistakes mostly in-
volve discourse interpretation (pronouns, presuppositions). The off-the-shelf theorem proving
technology that he uses also means that generalized quantifiers can’t be handled unless they

63

translate into FOL quantifiers. Nevertheless, the coverage of real data is unprecedented and
impressive.

11.5 Boxer References

Wide-Coverage Semantic Representations from a CCG Parser. Johan Bos, Stephen Clark,
Mark Steedman, James R. Curran and Julia Hockenmaier. Proceedings of COLING-04,
pp.1240-1246, Geneva, Switzerland, 2004.
http://www.aclweb.org/anthology/C/C04/C04-1180.pdf
Wide Coverage Semantic Analysis with Boxer, Johan Bos, 2008, STEP
Towards Wide Coverage Semantic Interpretation, Johan Bos, 2005, IWCS-6
http://www.let.rug.nl/bos/publications.html

11.6 Software

Boxer: http://svn.ask.it.usyd.edu.au/trac/candc/wiki/boxer
(Including on-line demo)

11.6.1 Exercise

If you want to explore what Boxer can and can’t do, try running some examples through
the on-line demo. You can use the sentences from previous exercises and examples from this
handout, if you need inspiration for things to try out (e.g. the ‘donkey’ sentences and variants
like Every farmer who owns a donkey beats it. It hurts.

12 Conclusions / Core Reading

The best way (so far) to do semantics is to specify the ‘translations’ of sentences into a logic
with a model theory and proof theory. We have considered the semantics of a small fragment
of English (which we have only dealt with partially, ignoring e.g. tense/aspect). We can
construct these translations compositionally so that the meaning of a sentence is a function
of the meaning of its constituents. We can implement such a compositional semantics for
CFG or CCG (possibly extended with unification / syntactic features).

Tractable computation in this framework requires theorem proving but extending the ap-
proach to interpreting even simple discourses requires more than deduction – perhaps some-
thing like weighted abduction or some other more data-driven, statistical approach. Similarly
dealing with word meaning by manually specifying meaning postulates looks like a Sysphean
(impossible) task, so more data-driven approaches that infer similarity from text may be
useful.

Jurafsky, D. and Martin, J. (J&M) Speech and Language Processing, Prentice-Hall / Pearson
International, 2009
is the core book for the NLP modules and contains short introductions to relevant areas of
linguistics (my references are to the latest edition but earlier ones often contain substantially
the same material – see http://www.cs.colorado.edu/ martin/slp.html

64

Some good textbooks to read focussed on compositional and computational semantics are
Cann, Formal Semantics and Blackburn and Bos Representation and Inference for Natural
Language and Working with Discourse Representation Theory (see http://www.let.rug.nl/bos/comsem/.
The latter are more computational and lead onto issues like underspecification and event-based
semantics.

65

