ACS Introduction to NLP

Lecture 8: Parsing with Lexicalised PCFGs

NIVERSITY OF
AMBRIDGE

5 '8
- =
7 -
el o

) 1
0 AR

Stephen Clark
Natural Language and Information Processing (NLIP) Group
sc609@am ac. uk

Chart Parsing plus Search 2

Thest = arg max P(T,S)
e The number of possible parses increases exponentially with sentence
length

e For atypical newspaper sentence there are far too many possible parses
to enumerate (using a treebank grammar)

e Two key ideas allow the arg maxy to be performed efficiently:

— dynamic programming leads to an n° algorithm (still not efficient
enough)

— heuristic search enables efficient parsing in practice

Chart Parsing with Lexicalised PCFGs 3

e Use a standard bottom-up chart parser, based on CKY
e The key data structure is the chart

— chart[start, end, label] is the set of all edges in the chart spanning
words start to end inclusive, with non-terminal label label

e We'll look at the parser for Collins Model 1

— Model 2 just requires some extensions to deal with the modelling of
subcategorisation frames

[picture of chart]

Charts, Dynamic Programming and CFGs 4

e Charts naturally and efficiently represent an exponential number of deriva-
tions for a sentence given a CFG

e Key idea: sub-derivations headed by the same non-terminal, spanning
the same subsequence, can be represented by one instance of the
non-terminal

e Key idea (written another way): when parsing bottom-up, only need
to insert one instance of the same non-terminal spanning the same
subsequence

e \We can do this because of the context-free assumption

Charts, Dynamic Programming and PCFGs 5

e Suppose now we want to find the highest-scoring derivation in the chart,
using a PCFG

e Key idea: parsing bottom-up, we only need to keep the single highest
scoring sub-derivation for a particular non-terminal spanning a particu-
lar subsequence

e This leads to the Viterbi algorithm for trees (O(n3))

e \We can do this because of the (probabilistic) context-free assumption

Charts, Dynamic Programming and PCFGs

7 S
R\/‘\
Qal
I
sl |s //
™
3 / VP / PP
N\
/ / b /
2 NP
NP
/™
7 i 7
1| PRP VBD DT NN IN DT NN

she_1 saw_2 a_3 man_4 with.5 a_6 telescope 7

The edge Datatype 7

| abel
headl abel
headwor d
headt ag
start

end

st op

pr ob

chil dren

non-term nal | abel

non-term nal | abel of head child of the edge

t he head word

part of speech tag of the head word

i ndex of first word in edge’ s span

| ndex of last word in edge’ s span

TRUE if the edge has received its stop probabilities
| og probability of the edge

|ist of the children of the edge (left to right)

Dynamic Programming for Collins Model 1 8

e If we're only looking for the highest scoring parse, no need to keep all
edges in an equivalence class

e If two edges are equivalent for the purposes of future parsing, and in
terms of the probability model, then the edge with the lowest score can
be discarded

e Same idea as the Viterbi algorithm for PCFGs

The Equivalence Test 9

[/ assune el and e2 have the sane start and end i ndi ces

bool ean edges eqi val ent (edge el, edge e2)

{

| f(el. | abel = e2. | abel OR
el. headl abel != e2. headl abel OR
el. headword != e2. headword OR
el. headt ag | = e2. headt ag OR
el. stop l = e2. st op)

return FALSE;
el se

return TRUE;

Adding Edges to the Chart

10

voi d add _edge(edge e, int start,
{
foreach edge x in chart[start,
| f (edges_equi val ent (e, X))
{
| f (e. prob > Xx.prob)
replace x wwth e
return;

}

| nt end)

end,

add e to chart[start, end, e.label]

}

e. | abel]

Combining Edges

11

/[l el is adjacent and to the left of e2; e2 is a nodifier of el

void join_ 2 edges foll owedge el, edge e2)

{
edge e3;

e3. | abel =
e3. headl abel =
e3. headword =
e3. headt ag =
e3d.start =
e3. end =
e3. stop =
e3.children =

el

el.
el.
el.
el.

e2

FALSE;

el

. | abel ;
headl abel ;
headwor d;
headt ag;
start;
end;

.children ++ e2;

e3.prob = el.prob + e2.prob + log P r(el, e2);
/[l P_r calculates the additional probability when the nodifier
[/ is to the right

add_edge(e3,el. start, e2. end);

Combining Edges Il 12

/[l el is adjacent and to the left of e2; el is a nodifier of e2

void join_ 2 edges precede(edge el, edge e2)

{
edge e3;

e3. | abel =
e3. headl abel =
e3. headword =
e3. headt ag =
e3d.start =
e3. end =
e3. stop =
e3.children =

e2

e’.
e’.
e2.
el.

e2

FALSE;

el

. | abel ;
headl abel ;
headwor d;
headt ag;
start;
end;

.children ++ e2;

e3.prob = el.prob + e2.prob + log P I(el, e2);
/1 P_| calculates the additional probability when the nodifier
/[l is to the left

add_edge(e3,el. start, e2. end);

Initialising the Chart 13

void initialise()

{
edge e;
for i =1ton // nis nunber of words in input sentence
{
if(word i is an ‘‘“unknown’’ word)
set X = {PCS tag fromtagger for word i}
el se
set X = {set of all tags seen for word i in training data}

foreach POStag T in X

{
e. | abel = T, e. headword = word_ i; e.headtag = T,
e. stop = TRUE, e.start =i, e. end = i +1;
e. prob = 0;

add_edge(e,i,i+1);
}

}
}

All Edge Combinations 14

void conplete(int start, int end)

{

for split = start to end-1
{
foreach edge el in chart[start,split] such that el.stop == FALSE
foreach edge e2 in chart[split+l,end] such that e2.stop == TRUE
join_2 edges followel, e2);

foreach edge el in chart[start,split] such that el.stop == TRUE
foreach edge e2 in chart[split+1l,end] such that e2.stop == FALSE
join_2 edges precede(el, e2);

The Final Parsing Algorithm 15

edge parse()
{

Initialise();

/'l nis the nunber of words in the sentence
for span = 2 to n
for start = 1 to n-span+l
{
end = start + span - 1;
conpl ete(start, end);

}

[/ assune TOP is the start synbol
X = edge in chart[1,n, TOP] wth highest probability;

return X

Parsing Complexity 16

e Calls to join_2_edges [precede|follow] take O(1) time

e These calls are buried within 5 loops:

Complexity | Loop

O(n) for span =2 ton

O(n) for start = 1 to n-span+1

O(n) for split = start to end-1

O(n) foreach edge el in chart[start,split] s.t. el.stop == FALSE
O(n) foreach edge e2 in chart[split+1,end] s.t. e2.stop == TRUE

e Parsing algorithm is essentially an »n° algorithm

e I've ignored some constants along the way (related to size of tag set
etc)

Heuristic Beam Search 17

e n° (plus some non-neglible constants) is inefficient for practical parsing
e \We need to prune low-probability constituents in the chart
e This is a “lossy” strategy since we may throw away the correct parse

— so there are now two sources of possible error in the parser: model
error and search error
— Viterbi finds the optimal solution so does not lead to search errors

e But in practice we can obtain great increases in efficiency with very
small losses in accuracy

Figures of Merit 18

e \What score should we use for a partial parse (constituent)?

e Obvious score to use is pr ob - the (log) conditional probability of the
constituent: P(subtree|label,head-word,head-tag)

e This doesn’t work too well

— problem is that the conditional probability does not account for the
prior probability of seeing the particular (label,head-word,head-tag)
triple

Prior for a Figure of Merit 19

Score(subtree) = P(subtree|label,head-tag,head-word)
X Pprior(label,head-tag,head-word)

e One way to calculate the prior (Collins):

label,head-tag,head-word) = P(head-tag,head-word)
x P(label|lhead-tag,head-word)

Pprior(

e Probabilities estimated using relative frequency from counts in the cor-
pus; second probability smoothed with interpolation

The Beam 20

e Let bestprob(start,end) be the highest score for any constituent span-
ning start..end

e Discard all constituents with span start..end and with
log prob < « bestprob(start,end)

e a is the beam width; typical value is -

Pros and Cons of the Generative Model 21

e Pros:

— Conceptually easy to understand; well understood technigues
— Estimation is easy (max. likelihood = relative frequencies)
— Produces good results

e CoOns:

— Models S when the sentence is given
— Independence assumptions required

— Locality restrictions on features required for efficient estimation and
decoding

— Guarantees on estimation (e.g. soundness) only apply with unlimited
training data

— Choosing the order for the chain rule, and independence assump-
tions plus smoothing, something of a “black art”

References 22

e Appendix B, D and E of Collins’ thesis

e Caraballo and Charniak (1998), New Figures of Merit for best-first prob-
abilistic chart parsing. Computational Linguistics, 24(2), pages 275-298

all available from the web; Collins thesis from Collins’ web page

